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6.1 Introduction 
à In this chapter, we shall consider the problem of twisting, or 

torsion. A slender element subjected primarily to twist is usually 
called a shaft. 

▶ Use of shafts under torsion 

i) A twisted shaft can be used to provide a spring with prescribed 
stiffness with respect to rotation; examples of this are the torsion-bar 
spring system on automobiles. 

 

ii) On a different scale, the measurement of extremely small forces by an 
instrument which uses a very fine wire in torsion as the basic spring. 

à We are interested primarily in, 

① The twisting moment, torque, which can be transmitted by the 
shaft without damage to the material. 

② The components of stresses in the materials under this torque. 

③ The stresses in the shaft. In the use of a shaft as a torsional spring, 
we are interested primarily in the relation between the applied 
twisting moment and the resulting angular twist of the shaft. 

 

▶ Procedure of the analysis of torsion problem 

i) Geometric behavior of a twisted shaft  

ii) Stress - strain relations 

iii) Conditions of equilibrium 
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6.2 Geometry of Deformation of a Twisted Circular 
Shaft 
à Let us start our consideration of possible modes of deformation by 

isolating from the shaft a slice  in length with faces originally 
plane and normal to the axis of the shaft.  

 We take this slice from somewhere near the middle of the shaft so 
that we are away from any possible end effects. 

▶ Analysis of deformation 

à In case that material is isotropic and the slice has full geometric 
circular symmetry about the z axis,  

1▷ When a circular shaft is twisted, its cross-sections must 
remain plane. 

 Skip the proof. Refer to Fig. 6.4 

2▷ Straight diameters are carried into straight diameters by the 
twisting deformation. 

  <<Proof>> 

  <Case.1> 

  A deformation would violate geometric compatibility since the 
curvatures of     and  have opposite sense. It would be 
impossible to fit these two elements together when deformed as 
shown. 



M2794.001000 (Solid Mechanics) Professor Youn, Byeng Dong 

Ch. 6 Torsion 4 / 12 

 

   

  <Case.2> 

  We rotate the element in Fig. 6.6a about the axis   which is 

perpendicular to the element . After a rotation of 180˚ the 
element is upside down, as shown in Fig. 6.6 (b). Now we compare 
Fig. 6.6 (a) with 6.6 (b). The elements are of identical shape and 
material and are subjected to identical loadings. Therefore, they 
should have identical deformations. The curvatures of diameters in 
the two elements, however, are of opposite sense. 
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  <Conclusion> 

  Thus the assumption that diametral lines deform into curved lines is 
ruled out by symmetry, and we are forced to the conclusion that the 
deformation pattern must be as indicated in Fig. 6.7. 
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3▷ Symmetry of deformation has not ruled out a symmetrical 
expansion or contraction of the circular cross section or a 
lengthening or shortening of the cylinder. It does not seem 
plausible, however, that such dilational deformations would be 
an important part of the deformation due to a twisting moment. 

 We assume that  =  =  = 0 in this section. 

4▷ On the basis of this assumption we shall arrive at a consistent 
theory which meets all the requirements of the theory of 
elasticity, providing the amount of twist is small.  

  = ∆→  = ∆→ ∆∆ =      (6.1) 

 

à It is important to emphasize that this states that the shear strain 
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varies in direct proportion to the radius, from no shear at the center 
to a greatest shear at the outside, where  =  (i.e., the element  in Fig. 6.8 has this greatest shear strain) 

 

5▷ Twist per unit length (or Rate of twist) 

  We call /  the twist per unit length and it is a constant along a 
uniform section of shaft subjected to twisting moments at the ends. 

6▷ Strains in the shaft 

à Thus, from symmetry and the plausible assumption that the 
extensional strains are zero, we have arrived at the following 
distribution of strains.  =  =  =  =  = 0   =     (6.2) 

 

 These strains were derived from the geometrically compatible 
deformation of Fig 6.8 by simple geometry. We next turn to a 
consideration of the force-deformation relations of the shaft 
material. 

6.3 Stresses obtained from Stress-Strain Relation 

  Using Hooke’s law in cylindrical coordinates, we find that the stress 
components related to the strain components given by (6.2) are 

   =  =  =  =  = 0  

   =  =     (6.3) 
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∴ The only component acting is the tangential shear stress 
component , whose magnitude varies linearly with radius as 
given by (6.3). 

 These stress components are shown as follow (Fig. 6.9). 

 

  Inside each element, such as that shown in Fig.6.9a is in equilibrium 
because the shear stress τ  does not change in the θ  direction 
(because of symmetry) nor in the z direction. (Because of the 
uniformity of the deformation and stress pattern along the length of 
the shaft.) 

 

6.4 Equilibrium Requirement 

▶ From Fig. 6.9 

i) Both the shear strain γ and the shear stress τare proportional to 
the rate of twist dϕ/dz 
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ii) The stress distribution given by Eq. (6.3) and shown in Fig. 6.9b 
leaves the external cylindrical surface of the shaft free of stress, as it 
should. 

iii) Both γ   τ don’t change in the θ nor in the z direction. 

iv) The shearing stress is therefore the same on each z and θ face of the 
element in Fig.6.9a, and thus the element is in equilibrium. 

▶ Equilibrium 

  ∫ () =   (6.4) 

   

6.5 Stress and Deformation in a Twisted Elastic 
Circular Shaft. 

▶  −  −  Relations  = ∫ (  ) = ∫        =   ∫   =     (6.5) 
  where  = / 2 = /32 (polar moment of inertia) (6.6)  
  From Eq. (6.5), we obtain the rate of twist / in terms of the applied twisting moment  =   (6.7)  = ∫   =   [ ]  (6.8)  When we substitute / from (6.7) into (6.3), we obtain the 
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stress in terms of the applied twisting moment.  =   =   =    (6.9) 
 

▶ Confer 

i) The conditions for Eqs. (6.2) and (6.3) satisfy 

① The fundamental equations of elasticity 

② The requirements of equilibrium for every small element 

③ Geometric compatibility 

④ Hooke’s law 

⑤ No stress on the outside cylindrical surface 

ii) Edge effect 

If the shaft is reasonably long, our estimate (6.8) of the total twist is 
probably not very much affected by the manner of loading at the ends. 
We cannot, however, use (6.9) to predict the local stresses at the ends. 

iii) With respect to central axis,   = / 2 = /32  (6.6) 
 

▶ Torsional Stiffness  =  =    
 It gives the twisting moment per radian of twist. 

 This ratio is analogous to a spring constant which gives tensile 
force per unit length of stretch. 
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▶ Example 6.2 A couple of 70N∙m is applied to a 25-mm-diameter 
2024-0 aluminum-alloy shaft, as shown in Fig. 6.11 (a). The ends A and 
C of the shaft are built-in and prevented from rotating, and we wish to 
know the angle through which the center cross section O of the shaft 
rotates.  

 

1▷ Equilibrium 

From fig. (b)  +  − 70 = 0  (a) 

2▷ Geometry  =   (b) 
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3▷ Load-Deformation  =  ,          =  ,          =    (c) 

 

à From Eq. (b)  =    ∴    =     
à From Eq.(a)  +   − 70 = 0   = / = 52.5  ∙    ∴     = 70 −  = 17.5  ∙     

∴  =   = .(.)[()][(. )/] = 0.021  = 1.20° 

▶ Summary  =     (6.2)  =  =     (6.3)  = ∫ (2 ) =   ∫   =     (6.5)  =  ,                 =   =    (6.7) (6.8)  =    =    (6.9) 


