6. Block theory for surficial excavations

1) Basic concepts

- Examples of rock slopes
- Buildings, roads, bridges on rock slopes, dam abutments, portals of a tunnel (Fig.6.1)
- Slope failure
- Fundamental failure: Sliding along one face (plane failure, Fig.6.3)

Sliding along two faces (wedge failure, Fig.6.2)
Rotation (toppling failure, Fig.6.4)

- Fracturing by stress (Fig.6.5)
- Progressive failure (Fig.6.6): (= complex failure) combination of fundamental failures

1) Basic concepts

- Design

- Application of block theory: support design, slope strike/dip design
- Influence of discontinuities on slope stability: steep slopes can be more stable in some cases.

2) Conditions for removability of blocks intersecting surface excavations

- Infinite blocks
- BP (= JP $\cap \mathrm{EP}) \neq \varnothing$
- Finite blocks
$-\mathrm{BP}=\emptyset \equiv \mathrm{JP} \subset \mathrm{SP}$

- Tapered blocks
$-\mathrm{JP}=\emptyset(\rightarrow \mathrm{JP} \subset \mathrm{SP})$
- Removable blocks
- $\mathrm{JP} \subset \mathrm{SP}$ (finite) and $\mathrm{JP} \neq \varnothing$ (not tapered)

3) Identification of key blocks using stereographic projection

- A slope formed by a single plane

TABLE 6.1 Joint and Slope Orientations for Example Problems

Joint Set or Slope Plane (Frec Surface)	Dip, α (deg)	Dip Direction, β (deg)
1 (joint set)	75	80
2 (joint set)	65	330
3 (joint set)	40	30
4 (joint set)	10	270
5 (free surface)	60	0
6 (free surface)	80	90

-Removable: 0001, 0011 and 1001
-Tapered: 1101 and 0010
-Infinite (11) : 1111, 0111, 1110...

3) Identification of key blocks using stereographic projection

- Convex slopes

-Removable: 0001, 0011, 1001,1010 1011
-Tapered: 1101 and 0010
-Infinite (9) : 0000, 1000, 0111, 111C...

3) Identification of key blocks using stereographic projection

- Concave slopes

3) Identification of key blocks using stereographic projection

- Horizontally convex slopes ?
-Removable:
-Tapered: 1101 and 0010 -Infinite () :

3) Identification of key blocks using stereographic projection

- Removable blocks with one repeated joint set

Refer to Fig. 6.20 and Table 6.2 (Plane 5) or
Table 6.3 (convex slope by plane $5 \& 6$)

- Removable blocks with two repeated joint sets
-Refer to Fig.6.21 and Table 6.4 (Plane 5)
-Case of the horizontally convex slope?

4) Evaluation of finiteness and removability of blocks using vector methods

- Finiteness test using an inequality system

$$
\begin{gathered}
A_{1} x+B_{1} y+C_{1} z \geq 0 \\
A_{2} x+B_{2} y+C_{2} z \geq 0 \\
\vdots \\
A_{n} x+B_{n} y+C_{n} z \geq 0 \\
\end{gathered}
$$

Put $\pm \vec{I}_{i j}$ into the inequality system
\square
If there is no $\pm \vec{I}_{i j}$ satisfying all the inequalities the block is finite $(\mathrm{BP}=\varnothing)$

4) Evaluation of finiteness and removability of blocks using vector methods

- Finiteness test using an testing matrix (T)

Build a direction-ordering index $I_{k}^{i j}$ matrix

$$
I_{k}^{i j}=\operatorname{sign}\left[\left(n_{i} \times n_{j}\right) \cdot n_{k}\right] \quad(\text { Table } 6.6)
$$

Determine a signed block code index $\left(I\left(a_{i}\right)\right)$

$$
I\left(a_{i}\right)=\left(\begin{array}{l}
+1 \text { if } a_{i}=0 \\
-1 \text { if } a_{i}=1 \\
0 \quad \text { if } a_{i}=2 \\
\pm 1 \text { if } a_{i}=3
\end{array}\right.
$$

Build a testing matrix $T^{i j}=I_{k}^{i j} \cdot I\left(a_{k}\right)$ and check out the signs of rows

$$
T^{i j}=\left(I_{1}^{i j} \cdot I\left(a_{1}\right), I_{2}^{i j} \cdot I\left(a_{2}\right), \ldots, I_{n}^{i j} \cdot I\left(a_{n}\right)\right)(\text { Table } 6.7)
$$

4) Evaluation of finiteness and removability of blocks using vector methods

- Finiteness test of a block

$$
\text { Direction-ordering index, } I_{k}^{i j}=\operatorname{Sign}\left[\left(n_{i} \times n_{j}\right) \cdot n_{k}\right]
$$

$$
\begin{aligned}
\vec{I}_{12}\left(=\hat{n}_{1} \times \hat{n}_{2}\right), \vec{I}_{13}, \ldots, \vec{I}_{56} & \\
0.9512 x+0.1677 y+0.2588 z & =0 \\
-0.4531 x+0.7848 y+0.4226 z & =0 \\
0.3213 x+0.5566 y+0.7660 z & =0 \\
-0.1736 x+\quad 0.9848 z & =0 \\
0.8660 y+0.5000 z & =0 \\
0.9848 x+\quad 0.1736 z & =0
\end{aligned}
$$

Direction-ordering index, $I_{k}^{i j}=\operatorname{Sign}\left[\left(n_{i} \times n_{j}\right) \cdot n_{k}\right]$

i	j	k					
		1	2	3	4	5	6
1	2	0	0	1	1	-1	1
1	3	0	-1	0	1	-1	1
1	4	0	-1	-1	0	-1	1
1	5	0	1	1	1	0	1
1	6	0	-1	-1	-1	-1	\bigcirc
2	3	1	0	0	-1	1	1
2	4	1	0	1	0	1	1
2	5	-1	0	-1	-1	0	-1
2	6	1	0	-1	-1	1	0
3	4	1	-1	0	0	-1	1
3	5	-1	1	0	1	0	-1
3	6	1	1	0	-1	1	0
4	5	-1	1	-1	0	-	-1
4	6	1	1	1	0	1	0
5	6	1	-1	-1	-1	0	0

4) Evaluation of finiteness and removability of blocks using vector methods

Direction-ordering index, $I_{k}^{i j}=\operatorname{Sign}\left[\left(\hat{n}_{i} \times \hat{n}_{j}\right) \cdot \hat{n}_{k}\right]$
Testing matrix for $\mathrm{BC}=\left(\begin{array}{lllll}1 & 0 & 0 & 1 & 1\end{array}\right)$

\boldsymbol{i}	\boldsymbol{j}	$\mathbf{1}$	2	3	4	5	6
1	2	0	0	1	1	-1	1
1	3	0	-1	0	1	-1	1
1	4	0	-1	-1	0	-1	1
1	5	0	1	1	1	0	1
1	6	0	-1	-1	-1	-1	0
2	3	1	0	0	-1	1	1
2	4	1	0	1	0	1	1
2	5	-1	0	-1	-1	0	-1
2	6	1	0	-1	-1	1	0
3	4	1	-1	0	0	-1	1
3	5	-1	1	0	1	0	-1
3	6	1	1	0	-1	1	0
4	5	-1	1	-1	0	0	-1
4	6	1	1	1	0	1	0
5	6	1	-1	-1	-1	0	0

| \boldsymbol{i} | \boldsymbol{j} | $\mathbf{1}$ | 2 | 3 | 4 | 5 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 0 | 0 | 1 | -1 | 1 | 0 |
| 1 | 3 | 0 | -1 | 0 | -1 | 1 | 0 |
| 1 | 4 | 0 | -1 | -1 | 0 | 1 | 0 |
| 1 | 5 | 0 | 1 | 1 | -1 | 0 | 0 |
| 1 | 6 | 0 | -1 | -1 | 1 | 1 | 0 |
| 2 | 3 | -1 | 0 | 0 | 1 | -1 | 0 |
| 2 | 4 | -1 | 0 | 1 | 0 | -1 | 0 |
| 2 | 5 | 1 | 0 | -1 | 1 | 0 | 0 |
| 2 | 6 | 1 | 0 | -1 | 1 | -1 | 0 |
| 3 | 4 | -1 | -1 | 0 | 0 | 1 | 0 |
| 3 | 5 | 1 | 1 | 0 | -1 | 0 | 0 |
| 3 | 6 | 1 | 1 | 0 | 1 | -1 | 0 |
| 4 | 5 | 1 | 1 | -1 | 0 | 0 | 0 |
| 4 | 6 | 1 | 1 | 1 | 0 | -1 | 0 |
| 5 | 6 | 1 | -1 | -1 | 1 | 0 | 0 |

4) Evaluation of finiteness and removability of blocks using vector methods

- Finiteness test of a block with a repeated joint set

Direction-ordering index, $I_{k}^{i j}=\operatorname{Sign}\left[\left(\hat{n}_{i} \times \hat{n}_{j}\right) \cdot \hat{n}_{k}\right]$ Testing matrix for $\mathrm{BC}=\left(\begin{array}{lllll}1 & 2 & 0 & 3 & 1\end{array}\right)$

\boldsymbol{i}	\boldsymbol{j}	$\mathbf{1}$	2	3	4	5	6
1	2	0	0	1	1	-1	1
1	3	0	-1	0	1	-1	1
1	4	0	-1	-1	0	-1	1
1	5	0	1	1	1	0	1
1	6	0	-1	-1	-1	-1	0
2	3	1	0	0	-1	1	1
2	4	1	0	1	0	1	1
2	5	-1	0	-1	-1	0	-1
2	6	1	0	-1	-1	1	0
3	4	1	-1	0	0	-1	1
3	5	-1	1	0	1	0	-1
3	6	1	1	0	-1	1	0
4	5	-1	1	-1	0	0	-1
4	6	1	1	1	0	1	0
5	6	1	-1	-1	-1	0	0

5) Procedures for designing rock slopes

- Most critical key-block types
- Key blocks that are bigger or of higher net shear force are more critical.

Net shear force $=$ sliding force - resisting force

- Higher sliding force means steeper joints and joint edges (0011).

5) Procedures for designing rock slopes

- Determining the dip angle of a slope for an assigned strike

5) Procedures for designing rock slopes

- Determining the strike of a slope for an assigned dip angle

Great circle containing JP 0011

5) Procedures for designing rock slopes

- Determining the strike of a slope for an assigned dip angle

Great circle containing JP 0001

