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6.1 Introduction

à In this chapter, we shall consider the problem of twisting, or 

torsion. A slender element subjected primarily to twist is usually 

called a shaft.

▶ Use of shafts under torsion

i) A twisted shaft can be used to provide a spring with prescribed 

stiffness with respect to rotation; examples of this are the torsion-bar 

spring system on automobiles.

ii) On a different scale, the measurement of extremely small forces by 

an instrument which uses a very fine wire in torsion as the basic 

spring.

àWe are interested primarily in,

① The twisting moment, torque, which can be transmitted by the 

shaft without damage to the material.

② The components of stresses in the materials under this torque.

③ The stresses in the shaft. In the use of a shaft as a torsional 

spring, we are interested primarily in the relation between the 

applied twisting moment and the resulting angular twist of the 

shaft.

▶ Procedure of the analysis of torsion problem

i) Geometric behavior of a twisted shaft

ii) Stress - strain relations

iii)Conditions of equilibrium
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6.2 Geometry of Deformation of a Twisted Circular 

Shaft

à Let us start our consideration of possible modes of deformation 

by isolating from the shaft a slice �� in length with faces 

originally plane and normal to the axis of the shaft.

We take this slice from somewhere near the middle of the shaft so 
that we are away from any possible end effects.

▶ Analysis of deformation

à In case that material is isotropic and the slice has full geometric 

circular symmetry about the z axis, 

1▷When a circular shaft is twisted, its cross-sections must 

remain plane.

Skip the proof. Refer to Fig. 6.4

2▷ Straight diameters are carried into straight diameters by the 

twisting deformation.

<<Proof>>

<Case.1>

A deformation would violate geometric compatibility since the 

curvatures of ��
���

���
� and ������ have opposite sense. It would 

be impossible to fit these two elements together when deformed as 

shown.
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<Case.2>

We rotate the element in Fig. 6.6a about the axis �� which is 

perpendicular to the element ������. After a rotation of 180˚ the 

element is upside down, as shown in Fig. 6.6 (b). Now we compare 

Fig. 6.6 (a) with 6.6 (b). The elements are of identical shape and 

material and are subjected to identical loadings. Therefore, they 

should have identical deformations. The curvatures of diameters in 

the two elements, however, are of opposite sense.
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<Conclusion>

Thus the assumption that diametral lines deform into curved lines is 

ruled out by symmetry, and we are forced to the conclusion that the 

deformation pattern must be as indicated in Fig. 6.7.
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3▷ Symmetry of deformation has not ruled out a symmetrical 

expansion or contraction of the circular cross section or a 

lengthening or shortening of the cylinder. It does not seem 

plausible, however, that such dilatational deformations would 

be an important part of the deformation due to a twisting 

moment.

We assume that �� = �� = �� = 0 in this section.

4▷ On the basis of this assumption we shall arrive at a 

consistent theory which meets all the requirements of the 

theory of elasticity, providing the amount of twist is small.

��� = ���∆�→�
����

����
= ���∆�→�

�∆�

∆�
= �

��

��
  (6.1)



M2794.001000 (Solid Mechanics) Professor Youn, Byeng Dong

Ch. 6 Torsion 7 / 13

à It is important to emphasize that this states that the shear strain 

varies in direct proportion to the radius, from no shear at the 

center to a greatest shear at the outside, where � = �� (i.e., the 

element �������� in Fig. 6.8 has this greatest shear strain)

5▷ Twist per unit length (or Rate of twist)

We call ��/�� the twist per unit length and it is a constant along a 

uniform section of shaft subjected to twisting moments at the ends.

6▷ Strains in the shaft

à Thus, from symmetry and the plausible assumption that the 

extensional strains are zero, we have arrived at the following 

distribution of strains.

�� = �� = �� = ��� = ��� = 0

��� = �
��

��
(6.2)

These strains were derived from the geometrically compatible 
deformation of Fig 6.8 by simple geometry. We next turn to a 
consideration of the force-deformation relations of the shaft 

material.

6.3 Stresses obtained from Stress-Strain Relation

Using Hooke’s law in cylindrical coordinates, we find that the stress 

components related to the strain components given by (6.2) are

�� = �� = �� = ��� = ��� = 0

��� = ���� = ��
��

��
(6.3)
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∴ The only component acting is the tangential shear stress 

component ���, whose magnitude varies linearly with radius as 

given by (6.3).

These stress components are shown as follow (Fig. 6.9).

Inside each element, such as that shown in Fig.6.9a is in equilibrium 

because the shear stress τ�� does not change in the θ direction 

(because of symmetry) nor in the z direction. (Because of the 

uniformity of the deformation and stress pattern along the length of 

the shaft.)

6.4 Equilibrium Requirement

▶ From Fig. 6.9

i) Both the shear strain γ�� and the shear stress τ��are proportional 

to the rate of twist dϕ/dz
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ii) The stress distribution given by Eq. (6.3) and shown in Fig. 6.9b 

leaves the external cylindrical surface of the shaft free of stress, as it 

should.

iii)Both γ��	���	τ�� don’t change in the θ nor in the z direction.

iv) The shearing stress is therefore the same on each z and θ	face of the 

element in Fig.6.9a, and thus the element is in equilibrium.

▶ Equilibrium

∫ �(�����)�
= �� (6.4)

6.5 Stress and Deformation in a Twisted Elastic 

Circular Shaft.

▶ ��� −�� − � Relations

�� = ∫ �(���	��)�
= ∫ � ���

��

��
	���

�

= �
��

��
∫ ��	��
�

= ��
��

��
� (6.5)

where �� = ���
�/	2 = ���/32 (6.6)

From	Eq.	 (6.5),	we	obtain	 the	 rate	 of	 twist	 ��/�� in	 terms	of	

the	applied	twisting	moment

��

��
=

��

���
(6.7)

� = ∫
��

���

�

�
�� =

���

���
	[���] (6.8)

When	we	substitute	 ��/�� from	(6.7)	into	(6.3),	we	obtain	the	



M2794.001000 (Solid Mechanics) Professor Youn, Byeng Dong

Ch. 6 Torsion 10 / 13

stress	in	terms	of	the	applied	twisting	moment.

��� = ��
��

��
= ��

��

���
=

���

��
(6.9)

▶ Confer

i) The conditions for Eqs. (6.2) and (6.3) satisfy

① The fundamental equations of elasticity

② The requirements of equilibrium for every small element

③ Geometric compatibility

④ Hooke’s law

⑤ No stress on the outside cylindrical surface

ii) Edge effect

If the shaft is reasonably long, our estimate (6.8) of the total twist is 

probably not very much affected by the manner of loading at the 

ends. We cannot, however, use (6.9) to predict the local stresses at 

the ends.

iii)With respect to central axis, 

�� = ���
�/	2 = ���/32 (6.6)

▶ Torsional Stiffness

�	 =
��

�
=

���

�

It gives the twisting moment per radian of twist.

This ratio is analogous to a spring constant which gives tensile 
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force per unit length of stretch.

▶ Example 6.2 A couple of 70N∙m is applied to a 25-mm-diameter 

2024-0 aluminum-alloy shaft, as shown in Fig. 6.11 (a). The ends A

and C of the shaft are built-in and prevented from rotating, and we 

wish to know the angle through which the center cross section O of the 

shaft rotates.

1▷ Equilibrium

From fig. (b)

�� +�� − 70 = 0 (a)

2▷ Geometry
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��� = ��� (b)

3▷ Load-Deformation

��� =
�����

���
,									��� =

�����

���
,									��� =

�����

���
(c)

à From Eq. (b)

�����

���
=

�����

���

∴ 		�� =
���

���
��

à From Eq.(a)

�� +
���

���
�� − 70 = 0

�� =
��

�����/���
= 52.5	� ∙ �	

∴ 			�� = 70 −�� = 17.5	� ∙ �	

∴ ��� =
�����

���
=

��.�(�.�)

[��(��)�][�(�.���)�/��]
= 0.021	��� = 1.20°

▶ Summary

��� = �
��

��
(6.2)

��� = ���� = ��
��

��
(6.3)

�� = ∫ ����(2��	��) = �
��

��
∫ ��	�� = ���

��

��

�

�
(6.5)

��

��
=

��

���
,																� =

��

��
� =

���

���
(6.7)	(6.8)
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��� = �� �
��

���
� =

���

��
(6.9)
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6.6 Torsion of Elastic Hollow Circular Shafts

à The only difference is that the integral in (6.4) now extends over 

an annulus instead of a complete circle.

�� =
���

�

�
�1 −

��
�

��
�� =

���
�

��
�1 −

��
�

��
�� (6.11)

∫ �(�����)�
= �� (6.4)
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▶ Analysis

i) Making a concentric hole in a shaft does not reduce the torsional 

stiffness in proportion to the amount of material removed.

à An element of material near the center of the shaft has a low 

stress and a small moment arm and thus contributes less to the 

twisting moment than an element near the outside of the shaft.

ii) The torsional stiffness for a given length of given material depends 

only on the polar moment of inertia ��.

iii) It is apparent that a given amount of material is used most 

efficiently in torsion when it is formed into a hollow shaft.

There is a limit on the increase in effectiveness that can be 
obtained by increasing the diameter and decreasing the wall 
thickness. (If the wall is made too thin, the cylinder wall will 
buckle due to compressive stresses which act in the wall on 

surfaces inclined at 45° to the axis of the cylinder.)

iv) Compare the hollow shaft and solid shaft in Fig 6.13 which have the 

same cross-sectional area but markedly different maximum stresses 

and deformation.

��

��
=

����/��

����/��
=

���

����
=

����(�)

(�����)��
=

���

���
=

��

��
= 0.37	

��

��
=

���/��

���/��
=

��

��
=

�������

��
=

��

�
= 4.56

The shear-stress ratio is same with yield �� ratio and stiffness 

ratio means ratio of torsion angle.
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▶Non-uniform torsion examples

� = ∑
����

����

�
��� 																� = ∫ ��

�

�
= ∫

����

���

�

�

▶Composite shaft

�
�� = ��� +���											

�� = �� =
����

����
=

����

����

�

�
��� = �� �

����

���������
�

��� = �� �
����

���������
�

�

∴		�� = �� =
���

���������

��

��
=

��g�
��g�

=
��

��

Above ratio can be smaller than 1.
Shear strains in two parts which are attached have same value, but 
each material has different coefficient and therefore stress is 
different.



M2794.001000 (Solid Mechanics) Professor Youn, Byeng Dong

Ch. 6 Torsion 4 / 17

6.7 Stress Analysis in Torsion; Combined Stress
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àWhen shaft is twisted, it is on the pure shear stress state. And a 

convenient way to determine these stress components is to use 

Mohr’s circle for stress.

We may use the two-dimensional Mohr’s circle because there is 

no stress in the �-direction.

▶ Magnitudes of principal stresses (from Mohr circle)

|��| = |��| = |���|

�� = 45°

If a piece of chalk (which is a brittle material with a low tensile 
strength and much larger strength in compression and shear) is 
twisted, the chalk will fracture along a spiral line normal to the 

direction of maximum tension (e.g., along the line �� in Fig. 

6.14)
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▶ Combined-stress

à The stresses and strains contributed by one form of loading are 

not altered by the presence of another kind of loading.

à The justification for superposition lies in the linearity of Eqs. 

(5.6), (5.7), and (5.8) underlying the theory of elasticity.

▶Example 6.3

In Fig. 6.16 (a) an uniform, homogeneous, circular shaft is shown 

subjected simultaneously to an axial tensile force � and a twisting 

moment �� . In Fig. 6.16 (b) the individual stress distributions are 

sketched for the separate loads.
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From the Fig. 6.16 (a), 

��� =
����

��
(a)

�� =
�

���
� (b)

The most convenient method of describing the combined-stress 
state is to use the principal stress components.
Note that this element is in a state of plane stress, i.e., the third 
principal stress �� is zero.

à Positive shear stress ��� (see Fig. 4.11) is plotted downward at �

and upward at �. Negative shear stress is plotted upward at � and 

downward at �.

▶Note

▷ In pure shear state, 

�� = ���/2
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6.8 Strain Energy Due to Torsion

à In this section we apply that result specifically to the case of 

torsion of circular members and consider an example of 

Castigliano’s theorem applied to torsional deformation.

Obtaining the strain energy is important in many ways such as 

dynamic analysis and structure theory.

▶For circular shaft  [Isotropic-linear-elastic]
à The only non-vanishing stress and strain components are ���

and ���. The total strain energy (5.17) thus reduces to

� =
�

�
∫ ������	���

(6.12)

=
�

�
∫

�

�
�
���

��
�
�
	��

�
=

�

�
∫

��
�

���
� ��� ∫ ��	��

�

= ∫
��
�

����
	��

�
= ∫

���

�
�
�∅

��
�
�
	��

�
(6.13)

→ �� =
�

�
��	�� =

�

�
��

��

��
	�� =

���

�
�
��

��
�
�

(6.14)

▷ For uniform torsion

�
� =

�

�
=

������

�
=

���
�

��
=

����
�

�

� =
��
��

����
=

���∅
�

��
=

��∅

�
											

�

We illustrate the application of Castigliano’s theorem (�� =

��/���) to a torsional system in the following example 6.4.
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▶Example 6.4
Consider a closely wound coil spring of radius � loaded by a force �

(Fig. 6.18 (a)). The spring consists of � turns of wire with wire radius �. 

We wish to find the deflection of the spring and hence the spring constant.

1▷ The strain energy associated with the twisting moment

� = ∫
����

����
	��

�
= ∫

����

����
�	��

���

�
=

����

����
2�� (a)

2▷ Strain energy due to the transverse shear force
à There is additional strain energy in the spring due to the 

transverse shear force �. It can be shown, however, that the ratio 

of strain energy due to transverse shear to strain energy due to 

torsion is proportional to �
�

�
�
�

and hence is small for springs of 

usual design.
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3▷ Application of Castigliano’s theorem

� =
��

��
=

���

���
2�� (b)

→			∴ 			� =
�

�
=

���

�����
(c)

Upon substituting for the moment of inertia �� in (c), we find that

� =
���

����

àWe see that the spring constant is inversely proportional to the 

number of coils � and directly proportional to the fourth power 

of the wire radius. For example, if we increase the wire radius by 

19 percent, the spring constant is doubled.

6.9 The Onset of Yielding in Torsion

à In order to apply either criterion to a particular material it is 

necessary to obtain (experimentally) the yield stress � in 

uniaxial tension.

à Then, to decide whether yielding will occur in a general state of 

stress, we compute the equivalent or effective stress ��(or �)̅ 

according to the criterion employed and compare with �.

▶ The principal stresses acting on an element of a shaft in 

torsion

�� = ���	,								�� = −���			,								�� = 0 (6.15)

1▷ Using the Mises criterion

�� = � = �
�

�
[(2���)

� + (−���)
� + (−���)

�] = √3��� (6.16)

thus an element of a shaft in torsion would be expected to begin 

yielding when
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∴ 					 ��� =
�

√�
� = 0.577	� (6.17)

2▷ Using the maximum shear-stress criterion

���� =
���������

�
=

�

�
(6.18)

The equivalent shear stress is � =̅ ���

∴ 			 ��� =
�

�
� = 0.500� (6.19)

à As can be seen from (6.17) and (6.19), this discrepancy is about 

15 percent. From the point of view of the designer trying to 

avoid yielding, it is more conservative to design on the basis of 

(6 19).

Since the shear stress ��� is proportional to the radius � in an 
elastic shaft, it is clear that according to either criterion the 
elements on the outer surface of the shaft will reach the yield 

condition first.

6.10 Plastic Deformations

à It is important to remember that in passing from elastic to plastic 

behavior there is no alteration in the conditions of equilibrium or 

in the conditions of geometric compatibility. The only change is 

in the stress-strain relation.

The only non-vanishing strain component was ��� remain valid 
whether the material is elastic or plastic. What will be different is 

the relation between ��� and ���.

▶ Two ways to obtain the relation between ��� and ��� in 

plastic region

i) Direct experiment in which the material is subjected to uniform pure 

shear
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ii) To make use of tension test data and to predict the relation between 

��� and ��� in torsion by using one of the plastic flow rules → it is 

less exact, but simpler.

In this chapter we shall confine our analytical treatment to the 

elastic-perfectly plastic material. (∴ Strain hardening does not 

exist.)

à In plastic region, ��� = �� = ��������.
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▶Analysis

1▷ To obtain quantitative representations of the sketches in Fig. 6.20, 

we proceed as follows. The elastic relations (6.8) and (6.9) apply 

until the yield-point situation in Fig. 6.20 (b) is reached.

� =
��

��
� =

���

���
(6.8)

��� = �� �
��

���
� =

���

��
(6.9)

2▷ Let us call the twisting moment and twisting angle associated with 

this (b) stress distribution �� and	��, respectively. Then from (6.8)

and (6.9) we have

�� =
����

��
=

�

�
����

� (6.20. a)
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∴ �� = ��
�

���
= �

�

�
����

��
�

����/�		
=

���

���
(6.20. b)

� = ∫
��

�	��
	��

�

�
=

��	�

�	��
(6.8)

��� =
���

��
(6.9)

3▷ Now as the shaft is twisted further the shear strain at the outer 

radius becomes larger than ��. We still have the geometric relation 

(6.1) between shear strain and twist angle

γ�� = �
��

��
= �

�

�
(6.21)

4▷ At some intermediate radius �� the strain will be just equal to ��.

We can solve for �� when � > ��

�� =
���

�
(6.22)

5▷ Using the fact that �� = ��� and introducing the second of 

(6.20), we find

�� =
���

�
= ��

��

�
(6.23)

6▷ Next, we obtain a quantitative representation for the stress 

distribution ��� corresponding to the strain distribution ��� of  

(6.21) by using the stress-strain relation of Fig. 6.19. In the inner 

elastic core 0 < � < ��,

��� = ����

=�
�

�
� = �

[���/���]�

�
= ��

�

��
(6.24)

7▷ In the outer plastic region �� < � < ��,

��� = �� (6.25)

8▷ The stress distribution defined by (6.24) and (6.25) is sketched in 

Fig. 6.20 (c). Finally, we use the equilibrium requirement that the 

stress distribution of Fig. 6.20 (c) should be equivalent to the 

applied twisting moment ��.

�� = ∫ �������

= ∫ �(��
�

��
)

��
�

2��	�� + ∫ ���
��
��

2��	��
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=
��

�
����

� �1 −
�

�

��
�

��
�� (6.26)

9▷ This result can be put into a more useful final form by introducing 

the yield-point twisting moment from (6.20) and the twisting angle 

from (6.23)

�� =
�

�
�� �1 −

�

�

��
�

��
� (6.27)

This nonlinear relationship is valid when � > ��

10▷ The limit or fully plastic 

twisting moment �� (Fig. 

6.21)

when	� → ∞

�� →
�

�
��

6.11 Residual Stresses

▶ From Fig. 6.22;

If we assume that the material of the shaft unloads elastically after it 

has been strained plastically, then if at any stage the twisting 

moment were to be decreased, the twisting moment-twisting angle 

curve would trace out a straight line parallel to the original elastic 

relation of (6.8), as sketched in Fig. 6.22.

à The justification for this lies in the fact that the geometric and 

equilibrium requirements for torsion remain unchanged while the 
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stress-increment strain-increment relation is now elastic for the 

entire shaft.

▶ Residual stress

Although there is no external load on the shaft in this condition, 

there is a distribution of self-balancing internal stresses in the shaft. 

These internal stresses which are “locked in” the material by the 

plastic deformation are called residual stresses.

à The distribution of residual stresses can be found by using 

superposition.

▶ Calculation of residual stress
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i) When parts (a) and (b) of Fig. 6.23 are superposed, we end up with 

no external twisting moment but with a distribution of residual 

stresses, as shown in Fig. 6.23 (c).

ii) The outer part of the shaft carries shearing stresses of the opposite 

sense to that imposed by the original application of the load, while 

the inner part carries stresses of the same sense as those originally 

imposed.

iii) Under some circumstances the reversed stresses obtained in this 

manner might be larger than the yield stress in the opposite direction. 

In this case simple linear superposition would not be applicable (see 

Prob. 6.41).


