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Chapter 6

Shear and Moment in Beams



Outline

e Classification of Beams

* Calculation of Beam Reactions

e Shear Force and Bending Moment

* Load, Shear, and Moment Relationships
e Shear and Moment Diagrams

* (Optional) Discontinuity Functions



Beams are important members
used in bridges (as shown in this
picture) and a variety of other
structures. The internal shear
forces and bending moments in
beams resulting from external
loadings will be studied in this
chapter.
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What we learn ...

* Analysis of force and moment distributions in beams
using statics principles

* What kinds of beams ?
* How to calculate reaction forces at supports

* How to construct 1) shear force and 2) bending
moment diagrams



Types of beams
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Cantilever beam
Or simply supported beams
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Calculation of beam reaction forces

* Linear elastic — Hooke’s law, unless
otherwise specified

* Equations of static equilibrium are used
to determine the reaction forces of a
loaded beam

* Self-weight of the beam is usually
neglected unless otherwise specified.



Example of cantilever beam
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FIGURE 6.3 (a) Aircraft; (#) wing model; Ry,
(¢) free-body diagram of the wing. e L -
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Example of overhang beam
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FIGURE 6.4 (a) Beam with
an overhang and two loads;
(b) [ree-body diagram.
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Example of simple (simply
supported) beam
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diagram.
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Shear force and bending moment

 Under transverse loads in the beam, stress resultants are 1)
shear force V and bending moment M
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bending moment; (b) deformations (highly exaggerated) of beam segments caused by shear

and moment.




(ct)

(B)

()

()

P =5kN

w = 10 kN/m
¥ ¥ ¥ ¥r F T F ¥ r ¥ r ¥ *
Al - | n
il C 0! oy B
Lfl T —*=* 4 m =1 m—
S5kN
10 kN/m
¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ '
Al D
( AB
Ry=15kN Ry =30kN
10 kN/m
A M i):‘ﬁ'
¢ C oy,
ISKN| 1 .
6y ——]

10 KN/m

lﬁ kN

”I 1'" yYYyyy
' 0 AB

30 kN

Ill'_}




<)

AT 5 -(0-0D -V =0

ZM 5= —5 4% (o (x-1) -l;d“‘)

(a)

(b)

()

P=5KN
w =10 kN/m
Uy
A C 0l B b
le l 1 m—+
10 kN/m
byl
,\“ f D
R,=15kN Ry=30kN
10 kKN/m ]
N ‘l).-w
A c o,
N |
y 10 kN/m_ SKN
Y
:\-1'(1 n




Load, shear, and moment relationships
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Shear force and load relation
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Shear force and bending moment relation
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Graphic method

1. Determine the reactions from the free-body diagram, or load
diagram, of the entire beam.

2. Determine the value of shear at the change-of-load points,
successively summing from the left end of the beam the vertical
external forces.

3. Draw the shear diagram obtaining. Locate the points of zero
shear. Determine the values of moment at the change-of-load
points and at points of zero shear, either continuously summing
the external moments from the left end of the beam. Draw the
moment diagram.
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FIGURE 6.11 Equlibrium approach: (a) simply supported beam under a load F;
() free-body diagram of entire beam; (¢, d) free-body diagrams of two parts A,
(e) shear diagram; (f) moment diagram.
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Ex. 6.9.
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FIGURE6.16 (a) Beam with an overhang and

two loads; (b) free-body diagram of the enture
beam: (c) shear diagram; (d) moment diagram.
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Summary

Shear force and load relation

dV /dx = w

‘B
Vg — V) = / wdx
JA
— area of load diagram between A and B
Moment and shear force relation
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— area of shear diagram between A and B




