445.204

Introduction to Mechanics of Materials (재료역학개론)

Myoung-Gyu Lee, 이명규 Tel. 880-1711; Email: myounglee@snu.ac.kr

TA: Seong-Hwan Choi, 최성환

Lab: Materials Mechanics lab.

Office: 30-521

Email: cgr1986@snu.ac.kr

Homework #4

Page 186-188: #5.1, 5.5, 5.7, 5.12, 5.17 Page 198-201: #5.23, 5.24, 5.31, 5.40 Page 208-211: #5.55, 5.69 Page 223-227: #5.73, 5.78, 5.103

> Due by Mid-night on May 18 (Mon.) Through ETL !

Chapter 6

Shear and Moment in Beams

Outline

- Classification of Beams
- Calculation of Beam Reactions
- Shear Force and Bending Moment
- Load, Shear, and Moment Relationships
- Shear and Moment Diagrams
- (Optional) Discontinuity Functions

Beams are important members used in bridges (as shown in this picture) and a variety of other structures. The internal shear forces and bending moments in beams resulting from external loadings will be studied in this chapter.

Paul Raftery/Alamy Limited.

What we learn ...

- Analysis of force and moment distributions in beams using statics principles
- What kinds of beams ?
- How to calculate reaction forces at supports
- How to construct 1) shear force and 2) bending moment diagrams

Overhang beam

Types of beams

Calculation of beam reaction forces

- Linear elastic Hooke's law, unless otherwise specified
- Equations of static equilibrium are used to determine the reaction forces of a loaded beam
- Self-weight of the beam is usually neglected unless otherwise specified.

Example of cantilever beam

 $\left(\frac{1}{2}\omega_{n}L\right)\cdot\frac{1}{3}-Pe\left(\frac{1}{4}+\frac{1}{3}\right)-2$ ZMA Me ZFy = RAy - 2 Pet I wol $\therefore M_A = -76A kip in Ray = -9$

Example of overhang beam

$$\sum M_{B} = 15 \cdot (1) - 40 \cdot (2) + R_{iy} \cdot (4) = 0$$

$$\sum M_{c} = 15 \cdot (6) - R_{B} \cdot (4) + 40 \cdot (12) = 0$$

$$\therefore R_{cy} = 12 \cdot 5 \text{ KN}$$

$$R_{B} = 42 \cdot 5 \text{ KN}$$

Example of simple (simply supported) beam

 $\Sigma M_A = R_B L - M_0 - P. \overline{4} = 0$ $\sum M_B = -R_{Ay} L + p. \frac{3}{4} L - M_0 = 0$

Shear force and bending moment

• Under transverse loads in the beam, stress resultants are 1) shear force V and bending moment M

Load, shear, and moment relationships

Shear force and load relation

$$\frac{dV}{dx} = w \qquad \text{"Slope of shear force is w"} \\ \begin{array}{c} \vdots f \quad \psi = 0 \quad \vdots \quad V = con(f, f) \\ + (\quad \psi = con(f, f) \\ & \forall u = con(f,$$

 $V_B - V_A = \text{area of the load diagram between } A \text{ and } B$ (ΔA_{AB}) $\therefore \qquad \bigvee_{B \in V} \bigvee_{A} + \Delta A_{AB}^{(w)}$

Shear force and bending moment relation

$$\sum M_{b} = [M+dM) - M - V d x$$

$$- (w d x) (\frac{dx}{d}) = 0$$

$$\frac{dM}{dx} = V$$

$$M_{b} = M_{b}$$

 $M_B - M_A$ = area of the shear diagram between A and B

w dx

Graphic method

- 1. Determine the reactions from the free-body diagram, or load diagram, of the entire beam.
- 2. Determine the value of shear at the change-of-load points, successively summing from the left end of the beam the vertical external forces.
- 3. Draw the shear diagram obtaining. Locate the points of zero shear. Determine the values of moment at the change-of-load points and at points of zero shear, either continuously summing the external moments from the left end of the beam. Draw the moment diagram.

Ex. 6.7.

Ex. 6.9.

Summary

Shear force and load relation

$$\frac{dV}{dx} = w$$
$$V_B - V_A = \int_A^B w \, dx$$

= area of load diagram between A and B

Moment and shear force relation

$$dM/dx = V$$
$$M_B - M_A = \int_A^B V \, dx$$

= area of shear diagram between A and B