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Introduction

Model-Based Prognostics Data-Driven Prognostics
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 Pros: Assess RUL in early stages
Require less failure data

 Cons: Require physics model
Applicable for component level

 Examples: PoF*-based models 
Bayesian updating approaches 
Kalman/Particle Filter

 Pros: Don’t require assumptions about model
Applicable to complex systems

 Cons: Require large amount of data
Require heavy computational load

 Examples: Interpolation-based approach
Extrapolation-based approach
Machine learning-based approach 

To predict future health condition and remaining useful lives (RULs) in real-time

*Physics-of-Failure
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Introduction
Remaining Useful Life Probability Density Function
• Health prognostics function predicts the time remaining before the fault progresses to an 

unacceptable level, in other words, the remaining useful life (RUL)
• Depending on how uncertainty is handled in the prediction process, machine health can 

be regarded as probability distribution, degradation can be regarded as evolution of 
distribution
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𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈 𝐚𝐚𝐚𝐚 𝑡𝑡1 𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈 𝐚𝐚𝐚𝐚 𝑡𝑡𝟐𝟐 𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈 𝐚𝐚𝐚𝐚 𝑡𝑡𝟑𝟑

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡𝐻 𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐼𝐼𝐴𝐴𝐼𝐼𝐴𝐴𝐴𝐴𝐻𝐻𝐻𝐻𝐴𝐴 𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐼𝐼
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Model-Based Prognostics
PoF-based models 
• PoF-based models have been investigated to capture various degradation phenomena in 

engineered systems
• Defect (e.g., cracks and anomalies) initiation and propagation can be derived by using 

principles of physics

Updating PoF-based models by Bayesian approach
Sensor data contain rich information about system degradation behavior, and model-

based prognostics incorporates new sensor information to update PoF-based models. Among 
the various approaches available to incorporate these evolving sensor data, Bayesian 
updating is the most widely used
• Iterative Bayesian updating approaches 
- Commonly used simulation approaches include iterative Markov Chain Monte Carlo 

(MCMC) methods (e.g., Metropolis-Hastings and Gibbs Sampling)
• Non-iterative Bayesian updating approached
- Bayesian updating with analytical methods (e.g, importance sampling and rejection 

sampling)
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Model-Based : PoF-Based Models 
Physics of Failure Models for Prognostics
• PoF-based models, clearly of interest from the prognosis viewpoint, are separated into 

two major categories; 1) deterministic models 2) stochastic models
• Variations of available deterministic damage propagation models are based on physical 

law (ex. Paris’ law, Fick’s law)
- Paris’ formula (fatigue crack propagation model)

𝑑𝑑𝛼𝛼
𝑑𝑑𝑑𝑑

= 𝐶𝐶0 ∆𝐾𝐾 𝑛𝑛

where 𝛼𝛼 = instantaneous length of dominant crack
𝑁𝑁 = running cycles
𝐶𝐶0,𝐼𝐼 = material dependent constants
∆𝐾𝐾 = range of stress-intensity factor over one loading cycle

• Stochastic degradation models consider all parameters as random quantities thus the 
resulting degradation equation is a stochastic differential equation.
- Cumulative damage model

𝑐𝑐(𝑋𝑋𝑛𝑛+1) = 𝑐𝑐(𝑋𝑋𝑛𝑛) + 𝐷𝐷𝑛𝑛𝐻 𝑋𝑋𝑛𝑛

where 𝑐𝑐 ⋅ = damage accumulation function
𝑋𝑋𝑛𝑛= cumulative damage after n
𝐷𝐷𝑛𝑛= damage incurred at the (n+1)st increment
𝐻(⋅) = damage model function

�
0

𝑡𝑡
1

𝐻 𝑋𝑋𝑢𝑢
d𝑐𝑐 𝑋𝑋𝑢𝑢 = �

0

𝑡𝑡

𝐼𝐼𝐷𝐷𝑢𝑢 = 𝐷𝐷𝑡𝑡 − 𝐷𝐷0
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Model-Based : PoF-Based Models 
Example - Health prognosis for power generator stator windings (1/2)
• Overview of stator windings

• Crevice corrosion mechanism of stator winding

Capacitance measurement

𝜀𝜀𝑟𝑟: Relative static permittivity
𝜺𝜺𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 : 80.4
𝜺𝜺𝒎𝒎𝒎𝒎𝒎𝒎𝒘𝒘 : 5.6 - 6.0

𝜀𝜀0: Electric constant
(~ 8.854x10-12 F/m)

A: Area of tester
t : Thickness of insulation

0r
AC
t

ε ε=

Capacitance [pF]

Stator Rotor

Coolant leakage
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Model-Based : PoF-Based Models 
Example - Health prognosis for power generator stator windings (2/2)
• Fick's Law of diffusion describes the time course of the transfer of a solute between two 

compartments
• Calculation of concentration change of water impregnated into insulator over time using 

Fick’s second law
Failure analysis Fick’s second law

𝜕𝜕𝐴𝐴
𝜕𝜕𝑡𝑡 = 𝐷𝐷

𝜕𝜕2𝐴𝐴
𝜕𝜕𝐼𝐼2

m = concentration of water in insulator 
D = diffusion coefficient
x = position in sample

Analytical model

𝐴𝐴 = 1 − exp −7.3
𝐷𝐷 𝑡𝑡 − 𝑡𝑡𝑖𝑖 0.75

𝐻2
𝐴𝐴∞

𝐴𝐴∞= Concentration of water at steady state
𝑡𝑡𝑖𝑖 = Time when water absorption happened
h = Thickness of insulation

DMD: Directional Mahalanobis Distance

RUL prediction
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Model-Based : Iterative Bayesian Updating Approaches
• Bayesian updating with simulation approach
• Commonly used simulation approaches include iterative Markov Chain Monte Carlo 

(MCMC)
- e.g, Metropolis-Hastings, Gibbs Sampling

𝑆𝑆 𝑡𝑡𝑖𝑖 = 𝑆𝑆0 + 𝛿𝛿 ⋅ exp 𝛼𝛼𝑡𝑡𝑖𝑖2 + 𝛽𝛽𝑡𝑡𝑖𝑖 + 𝜀𝜀 𝑡𝑡𝑖𝑖 −
𝜎𝜎2

2
where 𝑆𝑆(𝑡𝑡𝑖𝑖) = degradation signal at time 𝑡𝑡𝑖𝑖

𝛿𝛿,𝛼𝛼,𝛽𝛽 = stochastic model parameters representing the uncertainty of generator operating conditions
𝜀𝜀 = random error term modeling possible sensor noise that follows a zero-mean Gaussian distribution

with std. deviation 𝜎𝜎

Updating of a degradation model and RUL distribution
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• Bayesian updating with analytical approaches
Ex) Rejection sampling, Importance samplingParticle Filter

• Consider a dynamic time sequential system with probabilistic state space model

Here 𝐈𝐈𝑖𝑖 is the vector of (hidden) system states at time 𝑡𝑡𝑖𝑖 = 𝑖𝑖 � ∆𝑡𝑡, ∆𝑡𝑡 is a fixed time step between 
two adjacent measurement points, and i is the index of the measurement time step, respectively; 
𝐲𝐲𝑖𝑖 is the vector of system observations (or measurements); and 𝐮𝐮𝑖𝑖 is the vector of process noise 
for the states; 𝐯𝐯𝑖𝑖 is the vector of measurement noise; and 𝑓𝑓(�) and 𝑔𝑔(�) are the state transition 
and measurement functions. It is aim to infer the system states x from noisy observations y

Model-Based : Non-Iterative Bayesian Updating Approaches

Transition : 𝐈𝐈𝑖𝑖 = 𝑓𝑓 𝐈𝐈𝑖𝑖−1 + 𝐮𝐮𝑖𝑖−1
Measurement : 𝐲𝐲𝑖𝑖+1 = 𝑔𝑔 𝐈𝐈𝑖𝑖 + 𝐯𝐯𝑖𝑖

Kalman filter Particle filter

State space model
Linear Model

xi = 𝐹𝐹𝐼𝐼𝑖𝑖−1 + ui−1
yi+1 = 𝐺𝐺𝐼𝐼𝑖𝑖 + vi

Non-Linear Model
xi = 𝑓𝑓 𝐼𝐼𝑖𝑖−1 + 𝑢𝑢𝑖𝑖−1
yi = 𝑔𝑔 𝐼𝐼𝑖𝑖 + 𝑣𝑣𝑖𝑖

Noise type Gaussian,
Unimodal

Any distribution,
Multimodal

Solution Solving exact solution
(linear-Gaussian model)

Approximate solution
(Importance Sampling)

Computational speed Fast Slow
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Model-Based : Kalman Filter
Example – Battery Health Prognosis (1/2)
• Overview of Battery Health Management

Voltmeter

Amperemeter

Thermocouple

Legend

0%

100% Charge le
vel

Battery Pack

HEV Sensing

 Voltage
 Current
 Temperature

Reasoning/Prognostics

 State of charge (SOC)
 State of health (SOH)
 State of life (SOL)

Restoration action

 Decision making
 Cell balancing
 Cell replacement

+

–

Passive capacity: Cdis = 20%, Cchar = 10%

 Reduced charge & discharge capacity of pack

Adaptive capacity: Cdis = 60%, Cchar = 40%

+

–
 Maximized charge & discharge capacity of pack
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Model-Based : Kalman Filter

Time update
xk,l

–=xk,l-1
^ +ηi·T·ik,l-1/Ck-1

Ck
–

xk,l
–

xk,l-1
^

Ck-1

ik,l-1 Measurement update
(cell dynamic model)

xk,l
^

Vk,l ik,l

Ckxk,L
~

Macroscale achieved 
(go to Macro EKF)? xk,l

^

No

Yesxk,L
^

(SOC)
Micro EKF

Macro EKF
(Capacity)Measurement update

Ck
+ = Ck

– +Kk
C·[xk,L

^ – xk,L
~ ]

Capacity transition
Ck

– = Ck–1
+

SOC projection
xk,L

~ = xk,0+η·T·ik,0:L-1/Ck
–Cell current

Zoom of first minutes

SOC estimationCell voltage 

Cell voltage profile Cell current profile

Zoom of first minutes

SOC estimation Capacity estimation

Example – Battery Health Prognosis (2/2)
• Multiscale Extend Kalman Filter(EKF) for SOC & Capacity Estimation
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Model-Based : Particle Filter
Example – Machine Tool Prognosis (1/2)
• 20% of machine downtime from the failure of machine tools
• Indirect measurement of wear from the sensors such as force, vibration, and so on
• Non-linear process of tool wear growth with non-Gaussian noise

Milling
machine

Accelerometer

Wear Severe Wear

Machine tool

Indirect measurement of wear with vibration

Direct measurement of wear
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Model-Based : Particle Filter
Example – Machine Tool Prognosis (2/2)
• RUL prediction with wear growth model and particle filter

Wear growth model

𝐼𝐼𝐼𝐼
𝐼𝐼𝑡𝑡

= 𝐶𝐶𝐼𝐼𝑚𝑚

𝐼𝐼: wear width
𝐶𝐶, 𝐴𝐴: model constant

System model
𝐼𝐼𝑘𝑘 = 𝐶𝐶𝑘𝑘−1𝐼𝐼𝑘𝑘−1

𝑚𝑚𝑘𝑘−1𝐼𝐼𝑡𝑡 + 𝐼𝐼𝑘𝑘−1

𝐼𝐼𝑘𝑘: wear state
𝐶𝐶𝑘𝑘, 𝐴𝐴𝑘𝑘: uncertain constant

discretization

Measurement
𝑧𝑧𝑘𝑘 = 𝐼𝐼𝑘𝑘 + 𝑣𝑣𝑘𝑘

𝑣𝑣𝑘𝑘: measurement noise
z𝑘𝑘: feature from signals

Particle Filter
𝐼𝐼𝑘𝑘
= 𝐶𝐶𝑘𝑘−1𝐼𝐼𝑘𝑘−1

𝑚𝑚𝑘𝑘−1𝐼𝐼𝑡𝑡 + 𝐼𝐼𝑘𝑘−1

Wear Tracking

RUL Prediction

𝒑𝒑(𝒙𝒙𝒌𝒌�𝒙𝒙𝒌𝒌−𝟏𝟏)

𝒑𝒑(𝒙𝒙𝒌𝒌�𝒛𝒛𝒌𝒌)
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Data-Driven Prognostics
• Data-driven prognostic techniques utilize monitored operational data related to system 

health
• The major advantage of data-driven approaches is that they can be deployed more 

quickly and often at a lower cost, as compared to other approaches
• In addition, data-driven techniques can provide system-wide coverage
• Three approaches can be used for online RUL prediction in data-driven approaches; 

interpolation, extrapolation, and machine learning 
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Data-Driven : Interpolation-based approach
Similarity-Based Interpolation
• Background health knowledge model using relevance vector machine (RVM)

• Conditional remaining useful life (CRUL) from each 𝐻𝑖𝑖(𝑡𝑡)
• Given: CRULs (CRULi) from background knowledges
• To find the similarity weights (Wi) for all RULs

Similarity weights

( )
1 1

1     where   
K K

i i i
i i

RUL W CRUL W W
W = =

= ⋅ =∑ ∑

( )
1

2

1
( ) ( )

N
p

i i j i j
j

W h t h t
−

=

 
= − 
 
∑

Remaining useful life (RUL) of an online unit

( ) ( )
1

( ) or

where  is a kernel density function

N

i i
i

h t t t tωφ ε

φ
=

= − + = ⋅ +∑ h Φ ω ε



Seoul National University2019/1/4 - 19 -

Chapter 6. Health Prognosis

Data-Driven : Interpolation-based approach
Similarity-Based Interpolation
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Data-Driven : Extrapolation-based approach

Prior Curve Posterior Curve

Likelihood 
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Φ: Online design matrix 

h(t) = b1t2 + b2t + b3

bj ~ N (μj,σj)

b = (ΦTΣ–1Φ)–1ΦT Σ–1h

Bayesian linear regression
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Data-Driven : Extrapolation-based approach
Example –Power Transformer Prognosis (1/2)
• Classified health grades without failure data (unsupervised) in a statistical manner

UJ-1

YK-1C3

UJ-1C1

UJ-1B2

Safe

Warning

St
at

is
tic

al
 M

od
el

in
g 

(C
op

ul
a)

St
at

is
tic

al
 H

ea
lth

 G
ra

de

( ) ( ) ( )
( ) ( )( )

1 2 1 1 2 2

1 1 2 2

, 1
,

h x x F x F x
C F x F x

= − −
+

Statistical 
health grades

Grade A (healthy): h > Φ(–1.0σ)

Grade B (warning): Φ(–2.0σ) ≤ h < Φ(–1.0σ)

Grade C (faulty): h ≤ Φ(–2.0σ)

Marginal CDFs

Joint CDF (copula)

Health condition

Failure

Health Reasoning : Statistical Health Grade System
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Data-Driven : Extrapolation-based approach
Example –Power Transformer Prognosis (2/2)
• Proved feasibility in health prognostics with limited data obtained in 2 years

( ) ( )1 exph t a bt= − ⋅
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Data-Driven: Machine Learning-Based Approach
• In contrast to the interpolation- or extrapolation-based approaches, the machine learning-based 

approach does not involve any visible manipulation black box model
• It requires the training of a prognostics model using the offline data
• It is capable of learning nonlinear dynamic temporal behavior, e.x, RNN (Chapter 6)

Chapter 6. Health Prognosis

�𝑅𝑅𝑖𝑖
(𝑡𝑡) = �

𝑗𝑗

𝑊𝑊𝑖𝑖𝑗𝑗
𝑅𝑅𝑅𝑅𝐼𝐼𝑗𝑗

(𝑡𝑡) + �
𝑗𝑗

𝑊𝑊𝑖𝑖𝑗𝑗
𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗

(𝑡𝑡−1)

𝑅𝑅𝑖𝑖
(𝑡𝑡) = 𝑓𝑓 �𝑅𝑅𝑖𝑖

𝑡𝑡 = 1 + 𝐻𝐻𝑒𝑒𝐼𝐼 − �𝑅𝑅𝑖𝑖
𝑡𝑡 −1

𝑂𝑂𝑖𝑖
(𝑡𝑡) = 𝑓𝑓 �𝑂𝑂𝑖𝑖

𝑡𝑡 = 1 + 𝐻𝐻𝑒𝑒𝐼𝐼 − �𝑂𝑂𝑖𝑖
𝑡𝑡 −1

�𝑂𝑂𝑖𝑖
(𝑡𝑡) = �

𝑗𝑗

𝑊𝑊𝑖𝑖𝑗𝑗
𝑂𝑂𝑅𝑅𝑅𝑅𝑗𝑗

(𝑡𝑡)

𝑊𝑊𝑅𝑅𝑅𝑅 : weights of input and recurrent layer

𝑊𝑊𝑂𝑂𝑅𝑅 : weights of recurrent and output layer

𝑊𝑊𝑅𝑅𝑅𝑅 : recurrent weights

𝑅𝑅(𝑡𝑡) : recurrent units

𝑅𝑅(𝑡𝑡−1) : previous recurrent units

𝑓𝑓 : activation function(sigmoid, tanh, ReLu)
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Data-Driven: Machine Learning-Based Approach

Chapter 6. Health Prognosis

The output performanceFlow chart

Input Data
Time and Measurement value

Construct the fitted measurement 
value as training set

Validate ANN

Train ANN

Predict the life percentage of
bearing failure

Example – (Mahamad et al, 2010)
• Using IMS bearing test bed signal (RMS, kurtosis)
• Input data : 6 nodes

– Current and previous time
– RMS at current and previous time (fitted with Weibull hazard rate function)
– Kurtosis at current and previous time (fitted by Weibull hazard rate function)

• Output : life percentage (normalized)
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Case Study: LDI (Model-Based )
Overview of Liquid Damage Indicator (LDI) Prognostics (Oh, et al. 2015)

• Liquid Damage Indicator / Liquid Contact Indicator
- A small indicator that turns from white into another color, typically red, after contact with water
- Numerous complaints are reported regarding the performance of LDIs
- Several law suits were filed for denying warranty service to customers based on inaccurate LDIs 

(ex. iPhone 3G)

• Objective
- To devise an deficient scheme for evaluating the performance of LDIs
- To develop a performance degradation model
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Case Study: LDI (Model-Based )
Two Main Physics Mechanisms
• Phase change from vapor to water

- V ∝ ∆𝑇𝑇 𝑚𝑚

- 𝑉𝑉 is the volume of condensed water after phase change
- ∆𝑇𝑇 is the temperature difference
- 𝐴𝐴 is the model constant

• Water transport in the paper (capillary action)
- 𝐼𝐼 ∝ 𝐼𝐼𝑘𝑘

- 𝐼𝐼 is the distance of penetration
- 𝐼𝐼 is the number of thermal cycles
- 𝑘𝑘 is the model constant
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Case Study: LDI (Model-Based )
Accelerated Life Test for LDIs
• Step 1: Determination of test conditions

- According to technical data, 
the operational condition is -40°C to 60°C and 
highly humid condition (95% RH at 55°C)

- The use conditions for portable electronics with 
a use temperature range of -20°C to 45°C, 
and a relative humidity of 5-95% 

• Step 2: Steps for life tests
- I. Execute a 30-min test for a sample in chamber 1
- II. Execute a 5-min test in chamber 2 as soon as the sample is taken out of chamber 2
- III. Take a picture of the sample after II under a predefined light and angle condition
- IV. Repeat I-III until the sample experiences 50 cycles or the LDI turns entirely red.

• Step 3: Quantification of performance degradation

- A pixel = � white pixel, 𝑖𝑖𝑓𝑓 𝐺𝐺𝑖𝑖 + 𝐵𝐵𝑖𝑖 > �𝑔𝑔𝑟𝑟𝑟𝑟𝑑𝑑 + �𝑏𝑏𝑟𝑟𝑟𝑟𝑑𝑑
red pixel, 𝐴𝐴𝑡𝑡𝐻𝐻𝐻𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝐻𝐻

- �𝑔𝑔𝑟𝑟𝑟𝑟𝑑𝑑 + �𝑏𝑏𝑟𝑟𝑟𝑟𝑑𝑑 = 𝜇𝜇𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜇𝜇𝑩𝑩𝑟𝑟𝑟𝑟𝑟𝑟 + 5 𝜎𝜎𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜎𝜎𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟
- 𝐺𝐺𝑖𝑖 and 𝐵𝐵𝑖𝑖 denote the 𝐺𝐺 and 𝐵𝐵 values of the 𝑖𝑖th pixel
- �𝑔𝑔𝑟𝑟𝑟𝑟𝑑𝑑 and �𝑏𝑏𝑟𝑟𝑟𝑟𝑑𝑑 indicate the 𝐺𝐺 and 𝐵𝐵 value margins in red

Test no. Chamber 1 (°C) Chamber 2

1 -30
25°C, 95% RH

1) LDIs on the FPCB substrate
2) LDIs on the glass substrate

2 -25

3 -20

4 -15



Seoul National University2019/1/4 - 28 -

Chapter 6. Health Prognosis

0 10 20 30 40 50
0

20

40

60

80

100

Number of thermal cycles

Pe
rf

or
m

an
ce

 d
eg

ra
da

tio
n 

(%
) Dataset 1 (-30°C to 25°C)

Dataset 2 (-25°C to 25°C)

Dataset 3 (-20°C to 25°C)

0 10 20 30 40 50
0

20

40

60

80

100

Number of thermal cycles

Pe
rf

or
m

an
ce

 d
eg

ra
da

tio
n 

(%
)

Dataset 5 (-30°C to 25°C)

Dataset 6 (-25°C to 25°C)

Case Study: LDI (Model-Based )
Degradation Model for LDIs
• A Novel Performance Degradation Model for LDIs

- 𝐷𝐷 𝐼𝐼;∆𝑇𝑇 = 100 − 𝐻𝐻(∆𝑇𝑇)𝑏𝑏𝐼𝐼𝑐𝑐

- 𝐷𝐷 is the index that represents the performance degradation for LDIs (%)
- 𝐻𝐻, 𝑏𝑏 and 𝑐𝑐 are the model constant
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Actual CTF of the two iPhones: 
4 and 16 cycles

( ) ( ); 100 b cD n T a T n∆ = − ∆

a = 0.005312
(lower bound, upper bound) =

(0.0008927, 0.009731)
b = 2.015 

(lower bound, upper bound) =
(1.81, 2.22)

c = 0.5199
(lower bound, upper bound) =

(0.4886, 0.5512)

Predicted cycles to failure (CTF): 
21 cycles

Case Study: LDI (Model-Based )
Validation of Proposed Model
• The cycles to failure was calculated using the proposed model.
• Two actual iPhone 3G were tested between -15 °C and 25 °C with 95% relative 

humidity.
• The amount of error in the prediction is reasonable considering inherent randomness 

in the specimen and measurement error.
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pixel
Sub-pixel

Case Study: OLED (Model-Based )
Overview of Organic Lighting-Emitting Diode (OLED) Prognostics 

(Kim, et al. 2017)
• Issues of OLED Prognosis

- The organic light-emitting diode (OLED) technology are more visual compelling and power 
efficient than liquid-crystal displays (LCDs)

- OLED TV with layered structure and materials is subject to a great deal of manufacturing and 
operational uncertainties

- Light-emitting layer and TFT are the major contributors to the degradation of OLED TV, which 
are correlated in a complicated manner

• Objective
- To propose a reliable lifetime model of large OLED panels that incorporates manufacturing & 

operational uncertainty under various usage condition
- To develop an effective scheme that predicts OLED TV reliability accurately and efficiently at an 

early product development stage.
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Case Study: OLED (Model-Based )
Failure Modes and Failure Mechanism
• OLED TV Panel

- OLED TV degrades over time by a luminance changes and color shift
- Light-emitting layer and TFT are the major contributors to the degradation of OLED TV, which 

are correlated in a complicated manner.

35℃ 35℃ 35℃

38℃ 41℃ 37℃

39℃ 47℃ 38℃

 Local heat source
 Natural convection

 Spatial deviation of temperature 
 Degradation mechanism of two 

components – TFT & emissive layer

after long time usage

 Luminance 
change

 Color shift
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Case Study: OLED (Model-Based )
Life Tests for OLED
• Major acceleration factors

- Ambient temperature and initial luminance intensity
- Six sets of OLED panels for the accelerated degradation tests (ADTs) 
- Temperature: 3 sets in convection oven (25℃) and other 3 sets (40℃)
- Luminance intensity: 4 levels of luminance intensity (×1, ×2, ×4, ×6)

• Measurement interval
- Measurements were conducted at variable intervals between 24 - 180 hrs.
- until an operating time reached 1,500 hours
- Out of 36 patterns, R/G/B/W were excluded.  As a result, 28 patterns were used for the 

measurement data

Panel Temperature
condition

Initial luminance intensity
(The number of pattern)

Total number
of patterns

×1 ×2 ×4 ×6 (168)
#1 25℃ 7 7 6 8 28
#2 25℃ 7 7 7 7 28
#3 25℃ 7 7 7 7 28
#4 40℃ 7 7 7 7 28
#5 40℃ 7 7 7 7 28
#6 40℃ 7 7 7 7 28
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Case Study: OLED (Model-Based )
Degradation Model for OLED
• A Novel Bivariate Performance Degradation Model for OLEDs

- 𝑀𝑀𝑇𝑇𝑇𝑇𝐹𝐹 𝑇𝑇, 𝐼𝐼lum = 𝐴𝐴
𝑇𝑇
⋅ 𝐻𝐻

𝐵𝐵
𝑘𝑘𝑘𝑘 ⋅ 𝐻𝐻𝑅𝑅lum(𝑅𝑅+ 𝐷𝐷

𝑘𝑘𝑘𝑘)

- By integrating the two lifetime models; Arrhenius equation (temperature), inverse power law 
(luminance)

- 𝑘𝑘 is the Boltzmann constant; 𝑇𝑇 is the ambient temperature; 𝐼𝐼lum is the initial luminance intensity; 
and 𝐴𝐴,𝐵𝐵,𝐶𝐶 and 𝐷𝐷are the model parameters c
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Model

Estimated lifetime Chi-square GoF test KS GoF test
MTTFobs

*=
1875 Error* Hypothesis P-value Hypothesis P-value

Proposed 1959 4% Accept 1.66×10-1 Accept 6.38×10-2

Peck’s Model 2607 39% Reject 8.09×10-5 Reject 5.61×10-5

Intel’s Model 2277 21% Reject 8.77×10-4 Reject 4.72×10-5
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Estimated CDF by proposed model

Case Study: OLED (Model-Based )
Validation of Proposed Model
• 21 failure data under use condition employed for validation.
• The MTTF of the 21 failure samples was 1,876 hours, whereas the MTTF estimated 

from the proposed model was 1,959 hours.
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Case Study: Steam Turbine (Model-Based )
Overview of Steam Turbine Prognostics (Choi, et al. 2018)
• Issues of Steam Turbine Prognosis

- The design life of steam turbine is typically 25 years of 200,000-250,000 h
- Premature failure of the power plant machinery is the one of main interests for operators
- The RUL of key elements could be predicted by metallurgical or theoretical analysis of as-

received and degraded element but it is difficult to quantify the health conditions from results

• Objective
- To quantify the result of the hardness measurement method that is most commonly and easily 

used in actual field
- To propose a new damage growth model within the Bayesian statistical framework that can 

utilize sporadically measured and heterogeneous on-site data from stem turbines

Schematic of a steam turbine Metallurgical changes of rotor steel after 146,708 h operation
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Case Study: Steam Turbine (Model-Based )
FMEA for a Steam Turbine
• Among the components of the steam turbine, HIP rotor has the highest severity and risk
• Creep and low/high cycle fatigue are known to be the dominant mechanisms
• High temperatures and centrifugal force causes creep damage in high-stress regions
• Thermo-mechanical fatigue damage from the the thermal cyclic load causes cracking at 

the wheel corner
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Case Study: Steam Turbine (Model-Based )
Characteristics of On-site Measurement Data
• It is extremely difficult to measure material degradation directly
• Material hardness data was achieved both low-stress and high-stress conditions 
• The harness in a low-temperature region can be used as a reference hardness
• Ten sets of the hardness data set were sporadically measured at overhauls over 10 years

Quantitative Damage Index for the Hardness Data
• Hardness Damage index was introduced that takes into account both creep and fatigue 

damage

𝐷𝐷 = 1 −
�𝐻𝐻
𝐻𝐻

= 1 −
𝐻𝐻𝑎𝑎
𝐻𝐻𝑣𝑣

where 𝐻𝐻𝑎𝑎 and  𝐻𝐻𝑣𝑣 are the hardness values measured at aged and virgin
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Case Study: Steam Turbine (Model-Based )
Damage Growth Model using Sporadically Measured and Heterogeneous On-site Data
• New damage growth model that utilizes the hardness damage indices

- Bayesian inference and Markov Chain Monte-carlo(MCMC) techniques are used to update the 
parameters

- The damage growth model can be defined in the form of a distribution as
𝐷𝐷 𝑡𝑡 ~ N 𝜇𝜇𝐷𝐷 𝑡𝑡 ,𝜎𝜎𝐷𝐷 𝑡𝑡

where 𝜇𝜇𝐷𝐷 𝑡𝑡 ,𝜎𝜎𝐷𝐷 𝑡𝑡 are the mean and standard deviation of the time-varying damage 
- Metropolis-Hasting algorithm to generate samples that MCMC simulation

Mean and standard deviation results obtained by performing the Bayesian updating
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Case Study: Steam Turbine (Model-Based )
Validation of Proposed Model
• RUL prediction at three operating times (0, 200,000h, and 250,000) to determine an 

appropriate failure criterion
• Failure criterion of the damage index 0.2 gives a reasonable RUL for steam turbine 

with the actual retirement history of steam turbines
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Example for Ensemble method

Overview of Ensemble Method
• Limitation of single prognostic algorithm

- Dependency of the algorithm’s accuracy on training data set
 Number and type of training data affects algorithm’s accuracy

- Weak for variable manufacturing, environmental and operational conditions
More robustness for various operating conditions is necessary

- Difficulty reflecting various types of degradation trend.
 Each algorithm can produce good results for only appropriate degradation trends

• Combination of multiple algorithms to form a hybrid algorithm
- To improve the robustness

 For type of algorithm
 For operating and environmental conditions
 For type or number of input data

- To increase accuracy of algorithm
 Sum of multiple algorithms’ results



Seoul National University2019/1/4 - 41 -

Case Study: Ensemble Method (Data-Driven)

Chapter 6. Health Prognosis

Procedure of Ensemble approach

• STEP 1 : Acquire offline training sensory signals

• STEP 2 : Offline Process
– STEP 2a : Perform the offline training and testing processes with k-fold cross validation(CV) with             

the training sensory signals to compute the CV error
– STEP 2b : Determine the weights using 3 weighting schemes

(accuracy-based, diversity-based, optimization-based)

• STEP 3 : Acquire online testing sensory signals

• STEP 4 : Online Process
– STEP 4a : Predict RULs using the member algorithms through the online prediction process 

which employs health knowledge obtained from the offline training process
– STEP 4b : Predict the ensemble RULs with the optimum weights obtained from STEP 2b

Offline Process

Training & 
testing with 

CV 

Weight 
determination

Online Process

Member RUL 
predictions

Ensemble of 
RULs

Predicted 
RULs

Testing 
Signals

Training 
Signals

Flowchart of the ensemble method
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Details of Ensemble Method
• Ensemble of 5 Prognostics Algorithm

– Similarity-based interpolation approach
• RVM (Relevance Vector Machine), SVM (Support Vector Machine), Exponential fitting

– Extrapolation-based approach 
• Bayesian linear regression

– Recurrent neural network approach
• Weighting schemes

– Accuracy-based weighting 
• To give larger weight to an algorithm with higher prediction accuracy

– Diversity-based weighting
• To give large weight to higher prediction diversity algorithm, contributing more to the 

ensemble RUL
– Optimization-based weighting

• To maximize the accuracy and robustness by synthesizing the accuracy & diversity

• Weighted-sum of predicted RULs by 5 algorithms

�𝐿𝐿 = �
𝑗𝑗=1

𝑀𝑀

𝑜𝑜𝑗𝑗 �𝐿𝐿𝑗𝑗(𝒚𝒚𝒘𝒘,𝒀𝒀)

(�𝐿𝐿 : ensemble predicted RUL, 𝑜𝑜𝑗𝑗 : weight to the jth algorithm, �𝐿𝐿𝑗𝑗 : RUL by jth algorithm)
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2008 PHM challenge data Electric cooling fanPower transformer

Case Studies for Validation of Proposed Model
• Apply Ensemble model to 3 sensory data

– 2008 PHM challenge data, Power transformer, Electric cooling fan 

• Weighting results (Electric cooling fan)

• RUL results plot
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Overview of RUL prediction using Co-training method (Chao et. al., 2015)
• Issues of traditional data-driven prognostics

- It requires some amount of failure data for achieving good prediction accuracy
- Failure data are fairly expensive and time-consuming to obtain
- Suspension data* are relatively easier to obtain than Failure data

• Objective
- To improve the accuracy in RUL prediction using small amount of Failure data and large amount 

of suspension data

• Sample space 
- Failure data (Labeled, small amounts)
- Suspension data (Unlabeled, large amounts)

2019/1/4 - 44 -

Case Study: Co-Training Method (Data-Driven)

Chapter 6. Health Prognosis

Co-training algorithm is a machine learning algorithm using small amounts of labeled data 
and large amounts of unlabeled data, it is often called as Semi-Supervised Learning

* Suspension data : condition monitoring data acquired from the very beginning of an engineered system's lifetime till planned
inspection or maintenance when the system is taken out of service. 

Prognosis sample space

Unlabeled data

Labeled data Test data
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COPROG (CO-training PROGnostics) Process
• Algorithm1 : FFNN (Feed-forward neural network)

- Prediction accuracy is quantified using the SSE performance function (or the validation error)

• Algorithm2 : RBN (Radial basis network)
- It is ANN that uses radial basis functions as activation functions
- The output layer weights is determined which the best approximate the training instances by a 

matrix pseudo-inverse technique

Flowchart of training process in COPROG

Algorithm1
(FFNN)

Failure data (labeled training data)

Algorithm 2
(RBN)

Labeled
Unlabeled

(suspension)
data

Labeled
Unlabeled

(suspension)
data

Suspension data (unlabeled training data)

train train

label label

train train

𝑆𝑆𝑆𝑆𝑆𝑆 = �𝐻𝐻2 = � 𝐿𝐿𝑝𝑝 − 𝐿𝐿𝑇𝑇 2 𝐿𝐿𝑝𝑝 : Predicted Normalized RUL 
𝐿𝐿𝑇𝑇 : True Normalized RUL
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COPROG (CO-training PROGnostics) Process
• Iterative Training process

(1) training each algorithm using labeled data 
(2) predicting label of unlabeled data using trained algorithm 
(3) Training using labeled unlabeled data also

• Iterative training is repeated until no suspension unit can be found to be capable of 
reducing the prediction error of either algorithm on its training data set

Flowchart of training process in COPROG

Algorithm1
(FFNN)

Failure data (labeled training data)

Algorithm 2
(RBN)

Labeled
Unlabeled

(suspension)
data

Labeled
Unlabeled

(suspension)
data

Suspension data (unlabeled training data)

train train

label label

train train
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Chapter 6. Health Prognosis

COPROG (CO-training PROGnostics) Process

• Confidence Measure
- It is need to identify the appropriate suspension unit and to minimize SSE in RUL prediction on the 

failure units

• Weight Optimization
- the RUL predictions of these two algorithms are combined in a weighted-sum formulation as the 

final prediction

𝑀𝑀𝑖𝑖𝐼𝐼𝑖𝑖𝐴𝐴𝑖𝑖𝑧𝑧𝐻𝐻 𝑆𝑆𝑆𝑆𝑆𝑆 = �
𝑋𝑋𝑖𝑖∈ℒ

𝐿𝐿𝑖𝑖𝑇𝑇 − 𝑜𝑜1𝐻1 𝑋𝑋𝑖𝑖 + 𝑜𝑜2𝐻2 𝑋𝑋𝑖𝑖
2

𝑆𝑆𝑢𝑢𝑏𝑏𝑆𝑆𝐻𝐻𝑐𝑐𝑡𝑡 𝑡𝑡𝐴𝐴 𝑜𝑜1 + 𝑜𝑜2 = 1, 0 ≤ 𝑜𝑜1 ≤ 1, 0 ≤ 𝑜𝑜2 ≤ 1

𝑋𝑋𝑖𝑖 : Training input instance
ℒ : labeled training data set
𝐿𝐿𝑖𝑖𝑇𝑇 : True Normalized RUL
𝐻 : Training Function

(1=FFNN, 2=RBN)
𝑜𝑜 : weight

RUL predictions for a testing fan unit by co-training prognosis
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