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7.1 Introduction

à Our aim in this chapter is to determine the distributions of 

stresses which have the shear force V and the bending moment 

M� as their resultant.

▶ Beam

When a slender member is subjected to transverse loading, we say it 
acts as a beam.

▶ Pure bending

When there is no shear force, and a constant bending moment is 

transmitted, we say it is a state of pure bending �∵ −� =
��

��
�

Our method of approach will be similar to that followed in the 
investigation of torsion in Chap. 6, and to a certain extent our 
results will be similar. 

In this chapter we shall also obtain an exact solution within the 
theory of elasticity of the special case of a beam subjected to pure 
bending. For more general cases we shall obtain approximate 

distributions of stresses on the basis of equilibrium considerations.
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7.2 Geometry of deformation of a symmetrical beam 

subjected to pure bending

▶ Assumptions (See Fig. 7.2)

i) We consider an originally straight beam which is uniform along its 
length, whose cross sections is symmetrical.

ii) Its material properties are constant along the length of the beam.

iii)It is subjected to pure bending.

∴ The deformation pattern can be fixed by symmetry arguments

alone.

The result derived from these assumptions is valid to any types of 

beams whose materials are linear or nonlinear, elastic or plastic.
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▶ Curvature

à The curvature of a plane curve is defined as the rate of the slope 

angle change of the curve with respect to distance along the curve.

∴ For	∆s → 0	(see	�ig. 7.3)

� =
��

��
= ���∆�→�

∆�

∆�
= ���∆�→�

�

��������� =
�

�
(7.1)

where � = �� is the radius of curvature at point B.
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▶ Deformation behavior under pure bending

i) The surface A���, ����, ���� must be plane surfaces 
perpendicular to the plane of symmetry. 

∴ In pure bending in a plane of symmetry plane cross sections 
remain plane.

ii) The fact that each element deforms identically means that the initially 
parallel plane sections now must have a common intersection, as 
illustrated by point O in Fig. 7.4b, and that the beam bends into the 

arc of a circle centered on this intersection.
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▶ Neutral Axis

Neutral axis is one line in the plane of symmetry which has not 
changed in length.
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▶ Distribution of strain (See Fig. 7.5)

�� =
�������

��
=

���������

����
	(∵ �� = ����) (7.2)

where ���� = �∆�,									���� = (� − �)∆�	 (7.3)

∴ 			 �� = −
�

�
= −

��

��
� = −�� (7.4)

▷ Remarks on Eq. (7.4)

i) Longitudinal strain of the beam �� is proportional to curvature �	(= 
bending deformation rate) and varies linearly with the distance from 
the neutral surface �.

ii) The derivation of (7.4) applies strictly only to the plane of symmetry, 
but we shall assume that (7.4) describes the longitudinal strain at all 
points in the cross section of the beam.

iii)This equation is irrelevant to the stress-strain relation of material.

▷ Other strain components of strain

��� = ��� = 0 (7.5)

We can make no quantitative statements about the strains 

��, ��	and	��� beyond the remark that they must be symmetrical 

with respect to the xy plane.

7.3 Stresses obtained from stress-strain relations

à In this section we shall restrict ourselves to beams made of linear 
isotropic elastic material, i.e., to materials which follow Hooke’s 
law.
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▶ Strain components

�� =
�

�
��� − ���� + ���� = −

�

�

��� =
���

�
= 0 (7.6)

��� =
���
�

= 0

à In pure bending, ��� = ��� = 0

7.4 Equilibrium requirements

▶ Considering equilibrium (Fig. 7.6)

∑�� = ∫ �� 	���
= 0

∑�� = ∫ ��� 	���
= 0 (7.7)

∑�� = −∫ ��� 	���
= ��

We make the fundamental assumption that the deformation of the 
cross section is sufficiently small so that we can use the 
undeformed coordinates to locate points in the deformed cross 
section.
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7.5 Stress and deformation in symmetrical elastic 

beams subjected to pure bending

▶ Aim of this section 

àWe shall find the solution satisfying strain requirements, Eqs. (7.6) 

and (7.7).

▶ Assumption

à Considering that there is no normal or shear stress on the external 

surface of Δ� and that the beam is slender, we can assume as 

follow.

�� = �� = ��� = 0 (7.8)
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▶Analysis of stresses

Given above assumption, in the beam under pure bending, which follows

Hooke’s low, the only stress component is

�� = −�
�

�
= −��� = −�

��

��
� (7.9)

▷ Equilibrium

i) ∑�� = ∫ ��	���
= −

�

�
∫ �	��
�

= 0 (7.10)

à ∴ Since ∫ ��	���
= 0, the neutral surface must pass through the 

centroid of the cross-sectional area.

In case of a composite or nonlinear beam, it’s possible to apply 
∑�� = 0 but the neutral surface doesn’t pass through the 
centroid.

ii) ∑�� = ∫ ���	���
= −

�

�
∫ ��	��
�

= 0 (7.11)

à As the cross section is symmetrical with respect to xy plane, 

∫ ��	��
�

= 0

iii) ∑�� = −∫ ��� 	���
=

�

�
∫ ��	��
�

=	�� (7.12)

where �� = ∫ ��	��
�

(7.13)

à ∴ Eq. (7.12) is

� =
�

�
=

��

��
=

��

����
(7.14)

See the similarity with � =
��

��
=

��

���
(6.7)

∴ 	
��

���
= � = −

��

�
				→ 			 �� = −

���

���
(7.15)

∴ �� = ��� = −
���

��
(7.16)

See the similarity with ��� =
���

��
(6.9)
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▶Analysis of strains

�� =
�

�
��� − �(�� + ��)� =

�

�
�0 − � �0 −

���

��
��

=
����

���
= −���

�� =
�

�
��� − ���� + ���� =

�

�
�0 − � �−

���

��
+ 0�� (7.17)

=
����

���
= −���

��� =
���

�
= 0

▷ Remarks on lateral strain
i) Since the axial normal strain is compressive at the top of the beam 

and tensile at the bottom, the top of the cross section expands 
while the bottom of the cross section contracts.

ii) The trace of the neutral surface on the cross section has become an 
arc with curvature −�(1/�).
∴ The deformed neutral surface is a surface of double curvature 
(1/�	and	 − �/�). A further result of the anticlastic curvature is 
that the neutral axis is the only line in the deformed neutral surface 
whose curvature is in a plane parallel to the original plane of 
symmetry of the beam

▷ This transverse curvature of the beam is called anticlastic curvature.
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▷ Validity of the assumption
i) The strains (7.5), (7.15), and (7.17) are geometrically 

compatible; the stresses (7.6), (7.8), and (7.16) satisfy the 
differential equations of equilibrium; and at every point the 
stresses and strains satisfy Hooke’s law.

ii) Our solution is still very accurate in the central portion of the 
beam in accord with St. Venant’s principle and only becomes 
appreciably in error near the ends. (The length of these 
transition regions at the ends is of the order of the depth of the
beam cross section.)

▷ The analysis of the pure bending of curved beams is reasonably 
accurate for the non-uniform bending of curved beams.

▶ Section modulus, S

� =
����

������
(a)

or �� =
��

����
	,			�� =

��

����

���� = −
��

��
		,			���� = −

��

��

à It’s convenience to define a required section modulus when we 

select the beam.

i) The cross section of the beam must be used when the � is larger than 
the value that obtained from Eq. (a).

ii) It is desirable to select the cross section that has satisfactory section 
modulus and the smallest cross sectional area.

iii) On the rectangular cross section, the greater height ℎ is, the larger 

� is.

iv) The square cross section beam is more efficient than the circular 

cross section beam with respect to the same area.

v) To design the beam economically, material should be placed in 
location that is away from the neutral axis as possible. (But, in an 

excessive case, there is a danger of buckling.)
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▶Example 7.1

A steel beam 25 mm wide and 75 mm deep is pinned to supports at points A 
and B, as shown in Fig. 7.11a, where the support B is on rollers and free to 
move horizontally. When the ends of the beam are loaded with 5kN loads, 
find the maximum bending stress at the mid-span of the beam and also the 

angle Δ�� subtended by the cross sections at A and B in the deformed 

beam.
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Sol)

From	Fig.	(c)

�� = ∫ ���	��
�/�

��/�
=

���

��
= 8.789 × 10�	mm�

∴ 			���� = −
��(�/�)

�
= −

(�����)���.�×�����

�.���(��)��
= 64.0	MN/m�

� =
��

��
=

��

���

∴ 			�� − �� = ∫
��

��
	��

�/�

��/�
=

���

���
=

�����(�.�)

�(�.���×����)

Here,	we	let	 � = 205	GPa

∆�� =
�����(�.�)

(���×���)(�.���×����)
= −0.0125	rad = 0.7155°

Now,	 �� =
�

�
=

���

��
= −120.12	m

▶Example 7.2

Find the maximum tensile and compressive bending stresses in the 
symmetrical T beam of Fig. 7.12 (a) under the action of a constant bending 
moment �� .

Sol) 

�� =
∑ ������

∑ ���
=

(�/�)�(���)�(�/�)(���)

�������
=

�

�
ℎ (a)

(���)� =
�(��)�

��
+ 2�ℎ �

�

�
ℎ�

�
=

��

��
�ℎ� (b)

(���)� =
��(�/�)�

��
+ 3�ℎ �

�

�
�
�
=

��

��
�ℎ� (c)

Then, for the entire cross section

��� = (���)� + (���)� = 125/48	�ℎ� (d)

∴ �
���� = −

��(��/�	�)

(���/��)���
=

��

���

��

���
	

���� = −
��(�/�	�)

(���/��)���
= −

��

���

��

���

�

|����| ≈ |2.3 ∙ ����|
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7.6 Stress in symmetrical elastic beam transmitting 

both shear force and bending moment

à It is more difficult to obtain an exact solution to this problem since 
the presence of the shear force means that the bending moment 
varies along the beam and hence many of the symmetry arguments 
of Sec 7.2 are no longer applicable. Therefore, in this section we 
shall describe what is frequently referred to as the engineering 
theory of the stresses in beam.

▶ Engineering theory of beams

▷ Assumption
à The bending-stress distribution (7.16) is valid even when the 

bending moment varies along the beam, i.e., when a shear force is 
present.

�� = ��� = −
���

��
(7.16)

▷ Analysis
i) Fig. (a)
àWe take the case where there is no external transverse load acting 

on the element so that the transverse shear force � is independent 
of �.

àWe assume the shear force is constant through the beam to 
simplify the analysis.
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ii) Fig. (b)
à Due to the increase ∆��, in the bending moment over the length 
∆�, the bending stresses acting on the positive � face of the beam 
element will be somewhat larger than those on the negative �
face.

àWe assume that the bending stresses are given by (7.16).

iii) Fig. (c), Fig. (d)
àWe next consider the equilibrium of the segment of the beam 

shown in Fig. 7.13 (c), which we obtain by isolating that part of 
the beam element of Fig. 7.13 (b) above the plane defined by 
� = ��. Due to the unbalance of bending stresses on the ends of 
this segment, there must be a force ∆��� acting on the negative �

face to maintain force balance in the � direction.

∑�� = �∫ �� 	����
�
��∆�

− ∆��� − �∫ �� 	����
�
�
= 0 (7.18)

→ ∆��� = −∫
(���∆��)�

���
	��

��
+ ∫

���

���
	��

��

= −
∆��

���
∫ �	��
��

(7.19)
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∴
����

��
= lim∆�→�

∆���

∆�
= −

���

��

�

���
∫ �	��
��

(7.20)

where 
����

��
= ��� (7.22

���

��
= −� (3.12)

∫ �	��
��

= � (7.22

∴ 		��� =
��

���
(7.23)

à The quantity ��� , which is the total longitudinal shear force 

transmitted across the plane defined by � = �� per unit length 
along the beam, is called the shear flow. The shear flow ���
obviously is the resultant of a shear stress ��� distributed across 

the width � of the beam. If we make the assumption that the 
shear stress is uniform across the beam, we can estimate the shear 
stress ��� at � = �� to be

��� =
���

�
=

��

����
= ��� (7.25)

i) The foregoing theory can be proved to be internally consistent 
in that it can be shown that for a beam of arbitrary cross 
section the resultant of the stress distribution (7.25) over the 
cross section is in fact the shear force �.

ii) The shear stress distribution at the bottom and the top is zero.

▶ Shear stress distribution in rectangular beam

à The equilibrium equations (4.13) apply.

�

���

��
+

����

��
= 0

����

��
+

���

��
= 0

� (4.13)
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à If we deal with a case where the shear force does not vary with �, 
the shear stress also will be independent of �, and the second of 
(4.13) is automatically satisfied since the normal stress �� has 
been assumed to be zero.

∴ 1st	equation	becomes,

−
����

��
=

���

��
=

�

��
�−

���

���
� =

�

���
� (7.26)

∴ 		−∫
����

��
	��

�/�

��
=

�

���
∫ �	��
�/�

��
=

�

���
�
��

�
�
��

�/�

∴ 	−������/� + �������
=

�

����
	��

�

�
�
�
− ��

�� (7.27)

à The shear stress is a maximum at the neutral surface and falls off 
parabolically, as illustrated in Fig. 7.15.
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▷ The relation between shear stress and shear strain in a rectangular beam
i) By substituting the stress distribution (7.27) into Hooke’s law 

(5.2), we find that the shear strain ���, also varies parabolically 
across the section.

ii) If the shear force is constant along the length of the beam, any 
longitudinal line �� does not change its length as it deforms into 
the position ����. From this we would suppose that the presence of 
a constant shear force would have little effect on the bending-stress 
distribution (7.16).

The exact solution from the theory of elasticity shows that (7.14) 
and (7.16) are still correct when there is a constant shear force. 
This means that the expression (7.23) for the shear flow is also 
exact for the case of constant shear force. 
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Both (7.14) and (7.16) are in error when the shear force varies 
along the beam, but the magnitude of error is small for long, 
slender beams and, consequently, (7.23) represents a good estimate 
even in the presence of a varying shear force.

▶ Comments on rectangular beam

i) From ��� =
�

��
[�
�

�
�
�
− ��

�], (7.27)

���� =
���

��
=

��

��
= 1.5����

→	∴ ����	is	50%	greater	than	����(= �/�)

ii) Eq. (7.27) is useful only for linear elastic beams.

iii)This equation is more accurate when b is smaller than h. If b is 

same with h, true ���� is 13% greater than ���� that is derived 

from Eq. (7.27).

▶ Shear-stress distribution in I-beam
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▷ Assumptions
i) The shear stress is uniform across the thickness ��, ��.
ii) We neglect the effect of small fillet at the connection of flange and 

web.

▷ From Fig. (b)

��� = −
��

���
(7.28)

��� = ��� =
���

��
= −

��

�����
(7.29)

▷ Shear-stress distribution

à In Fig. 7.17 (d) we show the shear-stress distribution over the cross 
section of the beam; in each flange the stress ��� varies linearly 
from a maximum at the junction with the web to zero at the edge, 
while in the web the stress ��� has a parabolic distribution.
The stress distribution at the junction of the web and flange is quite 
complicated; standard rolled I beams are provided with generous 
fillets at these points to reduce the stress concentration.
On a typical wide-flange beam, mean shear-stress is within the 
±10% of the true maximum shear-stress.
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▶ Note

▷ Proof of the Eq. (7.28)

∑�� = �∫ �� 	����
�
��∆�

+ ∆��� − �∫ �� 	����
�
�
= 0

∴ ∆��� = ∫
(���∆��)�

���
	��

��
− ∫

���

���
	��

��
= ∫

∆���

���
	��

��
=

∆���

���

∴ ��� = ���∆�→�
∆���

∆�
=

���

��

�

���
= −

��

���
(7.28)

▶ Example 7.3

In making the brass beam of Fig. 7.18 (a), the box sections are soldered to 
the 1 cm plate, as indicated in Fig. 7.18 (b). If the shear stress in the 
solder is not to exceed 1000 N/cm�, what is the maximum shear force 
which the beam can carry?
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2��� =
��

���
(a)

where

��� = 1000(0.5) = 500	N/cm

� = 12.5[5� − 4�] = 112.5	cm�

∴ 		� =
�������

�

=
�(���)(����)

���.�
= 38551	N

▶ Example 7.4

A rectangular beam is carried on simple supports and subjected to a 
central load, as illustrated in Fig 7.19. We wish to find the ratio of the 
maximum shear stress (���)��� to the maximum bending stress 

(��)���.
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(��)��� = ��/4 (a)

��� = �ℎ�/12 (b)

Substituting (a) and (b) in (7.16)

(��)��� = −
(��)���(��/�)

���
= −

(��/�)(��/�)

���/��
=

�

�

��

���
(c)

Substituting �� = 0 in (7.27),

��������
=

�/�

�(���\��)
��
�

�
�
�
− 0�� =

�

�

�/�

��
=

�

�

�

��
(d)

∴ 		
��������

(��)���
=

�

�

�

�
(e)

à The bending and shear stresses are of comparable magnitude only 
when � and ℎ are of the same magnitude. (the factor of 1/2 in 
(e) can be as large as 3 or 4 for I beams with thin webs.)

If a different loading is put on the beam m Fig 7.19, the ratio of the 
maximum stresses will again be found to depend upon the ratio of 
the depth to the length of the beam, although, of course, the factor 
of proportionality will differ from that just found. If beams of 
other cross-sectional shape are investigated, similar results are 
obtained.
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▶ Localized buckling in I beams

à From the point of view of reducing bending stress, it is apparent 
from (7.16) that for a given cross-sectional area of beam it is best to 
distribute that area so that ��� is as large as practical, i.e., to 
concentrate the area as far as possible from the centroid. But there 
are restrictions due to the side effects of buckling.

1  ▷ If the cross-sectional area of the I beam was kept constant while the 
depth was increased at the expense of a decrease in the flange 
thickness; 
The beam might fail by a buckling of the compression flange at a 
stress level well below that at which the material would yield.

2  ▷ If an increase in beam depth was accomplished at the expense of a 
decrease in web thickness; 
The compressive stresses resulting from the transmission of shear 
along the beam might cause buckling of the web.
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7.8 Strain Energy Due to Bending

▶We consider first the case of pure bending where the only nonvanishing 
stress component is the longitudinal stress. The total strain energy (5.17) 

thus reduces to

� =
�

�
∭���� 	������ =∭

��
�

��
	������ (7.30)

=∭
�

��
�
���

���
�
�
������ = ∫

��
�

�����
� 	���

∬ ��	����
�

= ∫
��
�

�����
	��

�
(7.31)

▶ This formula may also be derived by considering each differential 

element of length �� to act as a bending spring.

�� =
����

�
=

�

�
��

��

��
	�� =

�

�
�� �

��

����
���	

∴ 		� = ∫
��
�

�����
	��

�
(7.31)

▶When a beam is subjected to transverse shear in addition to bending, 

there are, in general, transverse shear-stress components ��� and ���
in addition to the bending stress��. The total strain energy (5.17) then 
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becomes

� =
�

�
∭����� + ������ + �������������

=∭
��
�

��
	������ +∭

���
� ����

�

��
	������ (7.32)

For slender members the latter contribution is almost always 
negligible in comparison with the former. This may be inferred from 
the discussion in Sec. 7.6 concerning the comparative magnitudes of 

the bending and shear stresses. If �� is an order of magnitude larger 

than ��� and ���, then, since the integrals in (7.32) depend on the 

squares of the stresses, we see that the first integral is two orders of 
magnitude larger than the second. As a consequence, it is common to 
neglect the contribution to the strain energy due to the transverse 
shear stresses. The pure-bending formula (7.31) is then used to 
represent the total strain energy in a beam whether there is transverse 

shear or not.

▶ The contribution of ��������, ������ in the rectangular beam
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�� =
�

�
〈�〉�� − � 〈� −

�

�
〉��

�(�) = −
�

�
〈�〉� + � 〈� −

�

�
〉� = � �−

�

�
+ 〈� −

�

�
〉��

��(�) =
�

�
� − � 〈� −

�

�
〉� = � �

�

�
− 〈� −

�

�
〉��

∴ For 0 < � < �,			 −
�

�
< � <

�

�
,				−

�

�
< � <

�

�

��� =
�(�)

����
��
�

�
�
�
− ��� (7.27)

��� = 0

∴ From Eq. (7.32) (� = �� + ��),

�� = ∫
��
�

�����
	��

�
= 2∫

(��/�)�

�����
	��

�

�
�

=
����

�����
(7.33)

�� = ∫
��

�����
� 	��

�

�
∙ ∫ ��

�

�
�
�
− ���

�

��
�/�

��/�
∙ ∫ 		��

�/�

��/�

=
������

���∙����
� =

�

��

���

���
(7.34)

∴ 	� = �� + �� =
����

�����
+

�

��

���

���
=

����

�����
�1 +

�

�

�

�
�
�

�
�
�
� (7.35)

∴ The ratio of two contributions is

��

��
=

�

�

�

�
�
�

�
�
�
=

��

�
(1 + �) �

�

�
�
�

i) For a beam with � > 10ℎ and with Poisson’s ratio 	� = 0.28, 
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the shear contribution is less than 3 percent of the bending 
contribution. (��/�� does not depend on width �.)

ii) For beams with other loadings and other cross-sectional shapes, 
the ratio of �� to �� is always proportional to the square of the 
ratio of beam depth to beam length.

iii) The numerical factor of 6/5 in (7.35) can be as large as 12 for I 
beams.

7.9 Onset of Yielding in Bending

▶For pure bending

�� = �� 								�� = �� = 0 (7.36)

→ ∴ In this case, the yielding condition is as follows;

�� = � (7.37)

▶For combined load

�
Von	Mises	Criterion
Tresca	Criterion

�

Even in relatively simple structures the most critically stressed 
point may not be obvious, and calculations may have to be made 

for more than one point.

▶ Example 7.7

A circular rod of radius � is bent into the U-shape to form the structure 
of Fig. 7.25 (a). The material in the rod has a yield stress � in simple 
tension. We wish to determine the load � that will cause yielding to 
begin at some point in the structure.
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Sol) Referring the Fig. 7.25, we can guess that ��	or	�� are critical 
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cross-sections.
1 ▷ For �� (see Fig. 7.26 (a))

� = ��
�

�

���

���
�
�
+ �

����

���
�
�
=

�

�

���

���
= (���)��� (a)

Principal stresses are

⎩
⎨

⎧ �� = +
���

���

�� = −4
���

���

�� = 0

� (b)

i) By von Mises Criterion

�
�

�
��
���

���
+ 4

���

���
�
�
+ �−4

���

���
− 0�

�
+ �0 −

���

���
�
�
� = � (c)

→	∴ The	yiedling	condition	is

∴ � = 0.218
����

��
(d)

ii) By Tresca Criterion

���� =
|���������|

�
=

�

�
�
���

���
+ 4

���

���
� =

�

�
(e)

∴ � = 0.200
����

��
(f)

à ∴ The difference between (d) and (f) is 9%.
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2 ▷ For �� (see Fig. 7.26 (b))

Principal stresses are

⎩
⎨

⎧�� = +
�

�

���

���

�� = −
�

�

���

���

�� = 0

� (g)

i) By von Mises Criterion

�
�

�
[�
�

�

���

���
+

�

�

���

���
�
�
+ �−

�

�

���

���
− 0�

�
+ �0 −

�

�

���

���
�
�
] = � (h)

→	∴ The	yiedling	condition	is

∴ � = 0.210
����

��
(i)

ii) By Tresca Criterion

���� =
|���������|

�
=

�

�
�
�

�

���

���
+

�

�

���

���
� =

�

�
(j)

∴ � = 0.200
����

��
(k)

à ∴ The difference between (i) and (k) is 5%.
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à The maximum shear-stress criterion predicts yielding at locations ��
and �� at the same load, indicating that the Mohr’s circles in Fig. 
7.26 (a) and (b) are of equal size. The Mises criterion identifies ��
as the critical location and predicts yielding there at a load 5 percent 
greater than the load for yielding according to the maximum shear-
stress criterion.

7.10 Plastic deformation

▶ Assumptions

i) We shall restrict our attention to symmetrical beams.

ii) We shall further restrict our inquiry to beams in which the material 

has the elastic-perfectly plastic stress-strain behavior.

iii) The Mises and the maximum shear-stress criteria predict yielding at 
the same bending-stress level since pure bending corresponds to a 

uniaxial state of stress.
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▶ From Fig. 7.28

The nature of the geometric deformation is independent of the stress-strain 

behavior of the material.

1▷ Elastic region (0 < σ��� < �)

�� = −
�

�
= −

��

��
� (7.4)

2▷ Onset of yielding (σ��� = �)

��

��
=

�

�
=

��

����
(7.14)

�� corresponds to the situation where �� = −� at � = +ℎ/2.
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�� =
�����/���

�/�
=

���

�
� (7.38)

�
�

�
�
�
=

��

�/�
(7.39)

3▷ Between yielding and fully plastic (σ��� = �,			�� < �� < ��)

�
i)	���	0 < � < ��										;					�� = −

�

��
�

ii)	���	�� < � < ℎ/2							;							�� = −�
� (7.40)

→ Taking an element of area of size ∆� = �∆�,

�� = ∫ ���	���

= 2�−∫ ����	��
��
�

− ∫ ����	��
�/�

��
� (7.41)

=
���

�
� �1 −

�

�
�
��

�/�
�
�
�	 (7.42)

Since, 
�

�
=

��

��
(7.43)

From Eq. (7.39),

��

�/�
=

(�/�)�

�/�
(7.44)

∴ Eq. (7.42) is;

�� =
���

�
�

�

���
��� �1 −

�

�
�
(�/�)�

�/�
�
�
�

=
�

�
�� �1 −

�

�
�
(�/�)�

�/�
�
�

� (7.45)

when 
�

�
> �

�

�
�
�

4▷ Fully plastic region (�� = �,�� = ��)
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i) As the curvature increases, the moment approaches the asymptotic 

value 3/2�� which we call the fully plastic moment, or limit 

moment, and for which we use the symbol ��.

ii) The ratio � ≡
��

��
is a function of the geometry of the cross section.

Ex) Solid rectangular: � = 1.5

   Solid circle: � = 1.7

   Thin-walled circular tube: � = 1.3

   Typical I beam: � = 1.1~1.2

iii) In the engineering theory the effect of shear force on the value of 
the bending moment corresponding to fully plastic behavior is 

negligible in beams of reasonable length.

▶ Example 7.8

An originally straight rectangular bar is bent around a circular mandrel of 
radius �� − ℎ/2, as shown in Fig. 7.3l (a). As the bar is released from 
the mandrel, its radius of curvature increases to R�, as indicated in Fig. 
7.3l (b). This change of curvature is called elastic spring-back; it becomes 
a factor of great importance when metals must be formed to close 
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dimensional tolerances. Our interest here is in the amount of this spring-
back and in the residual stresses which remain after the bar is released.

Sol) As you can see in Fig. 7.32, the decrease in curvature due to the 
elastic unloading is

�

��
−

�

��
=

�

�
�
�

�
�
�

(a)

where,

�
�

�
�
�
=

��

�/�
=

�

�

�

�
(b)

∴
�

��
−

�

��
=

�

�

�

�
(c)

▷ From Fig. 7.33
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If we now added a further negative bending moment, we could decrease 
the curvature still further beyond the value 1/��. At first, such action 
would be elastic, but when this additional bending moment exceeded the 

value �� = −
�

�
��, there would be reversed yielding at the inner and 

outer radii of the bar.


