445.204

Introduction to Mechanics of Materials
W EEEY

Myoung-Gyu Lee, O|
Tel. 880-1711; Email: myounglee@snu.ac.kr

TA: Seong-Hwan Choi, | gt
Lab: Materials Mechanics lab.
Office: 30-521
Email: cgr1986@snu.ac.kr



Notice — Final exam.

e June 15 (Monday)
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Homework #4

* Page 241-243: #6.1, 6.5, 6.11, 6.15, 6.19
* Page 255-259: #6.30, 6.32, 6.37,6.40, 6.56 6.59

* Page 250: Example 6.8, 6.10, 6.11

Due by May 27 (Wed.) Midnight!
Through ETL




Chapter 7

Stresses In beams



Outline

PART A PURE BENDING

 Beam deformation in Pure Bending
Beam Theory (with assumptions)
Normal Strains in Beams

Normal Stresses in Beams

Stress Concentrations in Bending

PART B SHEAR AND BENDING

e Shear Stresses in Beams

e Shear Stress Distribution in Rectangular Beams

e Shear Stresses in Beams of Circular Cross Section




Outline

Shear Stress Distribution in Flanged Beams
Comparison of Shear and Bending Stresses
Design of Prismatic Beams

(Option) Design of Beams of Constant Strength

PART C (Option) SPECIAL TOPICS
* Composite Beams

Reinforced Concrete Beams

* Unsymmetric Bending

Shear Center

Inelastic Bending

Curved Beams



Introduction

* In ch. 6, shear force and bending moment for
different types of beams are calculated.

* In this chapter, two important stresses in beams are
discussed. 1) Bending stresses by moment load, and 2)
shear stresses casued by shear force



Part A

Pure Bending



Introduction- Beam bending

Three solid mechanics principles:

* Equilibrium (3 forces, 3 moments)

 Material behavior (Hooke’s law,
perfect plasticity etc.)

 Geometry of deformation or

compatibility



Beam deformation in Pure Bending

Pure bending is caused when a beam is ,,Long” or ,slender”,

* Itslength 5 or more times the largest cross sectional dimension. In this
case, the shear stress (also called transverse shear) compared to bending
stress will not be significant and hence can be neglected.

* |n practice, the span/depth ratio is approximately 10 or more for metal
beams of compact section, 15 or more for beams with relatively thin webs,
and 24 or more for rectangular timber beams.

* Also, the slope of the deflection curve of the beam is almost always less
than 5% or 0.087 rad, and hence (0.087)? = 0.00761, which is a small

number.
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FIGURE 7.1 A cantilever beam loaded in its
plane of symmetry. xY




Pure bending: example
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A moment load M causes no
shear force.




WH

A
(a) (. T

R=W

R — H\J’

C
(b) '

M =Wa

?)

M =Wa

W

FIGURE 7.2 Bar with symmetrical loading: (a) free-body

diagram; (b) center portion in pure bendi

ng.




An almost pure bending

| [1.5-inch

doo e
15-inch 0.5-inch

T

L/depth = 15/1.5 = 10; therefore this is
considered as a ,long” beam and so the
shear force effect is neglected.

A




Geometry of deformation

* Deflection (elastic) curve
* Longitudinal axis of the beam
* Plane sections of the beam

* Tension versus compression in the longitudinal
fibers of the beam

e Neutral axis (neutral surface)
* Radius of curvature (p) of the beam
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FIGURE 7.3 Beam in pure bending: (a) before
deformation; (b) cross section;




Deflection

curve

FIGURE 7.3 Beam in pure bending: (c) after bending




Radius of curvature formula
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Assumptions of beam theory

1. The deflection of the beam axis is small compared with the span
of the beam. The angle of rotation of the deflection curve is also
very small, and approximately equal to the slope, 6 = dv/dx. If the
beam is slightly curved initially, the curvature is in the plane of the
bending, and the radius of curvature is large in relation to its depth (p
> 10h).

2. Plane sections initially normal to the beam axis remain plane
and normal to that axis after bending (for example, ab). This
means that the shearing strains y,, are negligible. The deflection of
the beam is thus associated principally with the longitudinal normal or
bending strains «,.

3. The effects of transverse normal strains g, and the remaining
strains (g,,Y,,: vy,) ON the distribution of the g, may also be
ignored.

4. The distribution of the normal or bending stresses o, is not affected
by the deformation due to shear stresses t,,. The stresses normal
to the neutral surface, o, are small compared with o, and may
also be omitted. This supposition becomes unreliable in the vicinity of
large concentrated transverse loads.



Example (cantilever beam)
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FIGURE 7.4 Beam subjected to
transverse loading: (a) before
deformation; (b) cross section;

(¢) after deformation.



Normal strains in beams
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FIGURE 7.5 The geometry of an
b d  elementin pure bending: (a) before
Ay deformation.
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FIGURE 7.5 The geometry of an { }
element in pure bending:
(b) after deformation.
b d

(b)



Transverse strains

vy
Ey = & — VKYy — ——

“Poisson’s effect”

Transverse radius of curvature is given by:

0 M X
pl = — — Kl — — VK
V
Neutral X ¢
Anticlastic radius of curvature is given by: surface
|
, Neutral V1 1
1 Neutral ‘\\ pll ’l S “\ pll ;l[
K| = — FIGURE 7.6 Segment of axis ) | | V1
rectangular beam in pure \ } : \ : i
pl bending: (a) deformed \ l,’ \ ! ;'
. . . \ IR
shape showing anticlastic ! i
curvature; (b) deformed ‘\},’ i
cross section. 1o (a) (b) 4o



Example 7.1: Curvature and deflection of
cantilever beam

() (B

FIGURE 7.7 (a) Example of a cantilever beam in pure bending; (b)
deformed beam axis.






Normal stresses (or bending stress)
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FIGURE 7.8 Distribution of bending stress in a beam.
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Equilibriums
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L]

ydA =0 oo 2f.

* This term is the first moment of area that requires
the neutral axis to pass through the centroidal axis

I

= deA

* This is the second moment of area or moment of inertia
equation which is a geometric property of the cross section
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Q/ * This is the moment equation with the product El
\\~ known as flexural rigidity
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e This is the flexure formula to calculate * In this formula, S is called
the bending stress the section modulus

(S=1/c)




Moment of inertia

FIGURE 7.9 Doubly
symmetric cross-sectional
shapes.
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The moment of inertia |, and section modulus S for a rectangular
section with the neutral axis parallel to the base b is:

d
L bi b2 ST e
©12 6 - 2

| and S for a solid circular section with radius r and diameter d are
given by:



Dreterminination of the bending stress

e Draw free body diagram(s) and determine the support
reaction forces if necessary

* Draw the bending moment diagram to determine the
magnitude and location of the maximum bending moment

* Locate the centroid of the cross section using the principles
of statics

* Determine the moment of inertia using the parallel axis
theorem if necessary

e Determine the maximum value (+ or -) of the bending stress
using the flexure formula
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FIGURE 6.16 ({a) Beam with an overhang and
two loads; (b) free-body diagram of the entire
beam: (c) shear diagram; (d) moment diagram.
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Based on the given M

max’

find the diameter of the beam ACBD
assuming that its cross section is solid round




Centroid, area moment of inertia
(appendix a)
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FIGURE A.5 An unequal-leg section.

Composite areas



Centroid, area moment of inertia
(appendix a)

A.3 PARALLEL-AXIS THEOREM
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FIGURE A.8 Parallel axes. ' ' ' )



Example:

Single- overhang beam with
distributed load and T-cross
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Example: Two-plane bending problem

Calculate the diameter of the shaft based on maximum bending stress

’<— 04m-—s—06mMm—w=04m —=
"

6 kN

()—x

Figure P6.56




Stress concentration in bending

ﬂ'ma::

FIGURE 7.12 Stress distribution near grooves
in a beam under pure bending.
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FIGURE 7.13 Stress-concentration factor K for a filleted flat
bar in bending (Refs. 7.5 to 7.7).
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FIGURE 7.14 Stress concentration factor K for a grooved flat
bar in bending (Refs. 7.5 to 7.7).




Part B

Shear and Bending
(Bending under shear and moment)



Shear Stresses in Beams: introduction

* This chapter deals with the
distribution of the shear
stresses and compare the
magnitudes of the shear
and bending stresses, and
related design of beams

- - -

Ml

Shear flow in a wide-flange beam



Beams subjected to non-uniform bending,
transverse (or vertical shear) forces V, in
addition to bending moments M, are
associated to the beam cross section.

The normal stresses with the bending
moments (along beam axis) can be
determined by the flexure formula (Part A).

The vertical shearing stress 1,  at any point
on the cross section must be equal to the

horizontal shear stress 1, at the same point:

Ty = Tyxe

Therefore, the horizontal shear stresses
must also exist in any beam subjected to a
transverse loading

(a)
r

(b)
FIGURE 7.16 Bending of four
nonbonded planks.




Derivation of shear stresses




4 Beam segment (dx)
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Derivation of shear stresses — important formula

V VO
. 'dA = —=| Shear formula
T Ib
0 = ydA = A"y | First moment of area
J A*
q=— Shear flow —
/ € P el fegy




The shear stress in thin-walled beams




Shear Stress
Distribution in
Rectangular Beams
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FIGURE 7.20 Shear stressesin
a beam of rectangular cross

section.







Shear Stresses in Beams of Circular Cross Section
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Shear Stress Distribution in Flanged Beams
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* For the wide flange beam, | for the entire cross section
about the neutral axis is given by:

I:mmﬁ

(b — 1,,)(2¢)
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* Shear stress in the web sections is given by:

( Txy ) max
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* Shear stress in the flange sections
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FIGURE 7.25 Shear flow in a
flanged beam.




(a)

FIGURE 7.26 (a) A cantilever beam with a vertical
load P; () shear force and shear stresses at a cross
section; (¢) shear stress distribution at a cross section.
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Comparison of Shear and Bending Stresses
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* If L=10h (“long” beam), then this ratio is only 1/20, which means that T, is

only 5% of o,




Design of Prismatic Beams

1. Evaluate the modes of possible failure. It is assumed that failure results from
yielding or from fracture, and flexural stress is considered to be most closely
associated with structural damage.

2. Determine the relationships between load and stress. The significant value of the
bending stress is 0 = M« /S.

3. Determine the maximum usable value of stress. The maximum usable value of &
to avoid failure, omax, 1s the yield strength o or the ultimate strength o,.

4. Select the factor of safety. A factor of safety ng is applied to o to obtain the
allowable stress: o, = omax/ng. The required section modulus of a beam is then

M.
§ == (7.28)
Tall




