Mechanics and Design

Chapter 7. FEM: Plane Stress and Strain

Byeng D. Youn

System Health \& Risk Management Laboratory
Department of Mechanical \& Aerospace Engineering
Seoul National University

CONTENTS

1 Plane Stress and Plane Strain

2 Plane Triangular Element

3 FEM in a Plane Stress Problem

Plane Stress and Plane Strain

- Finite element in 2-D: Thin plate element required 2 coordinates
- Plane stress and plane strain problems
- Constant-strain triangular element
- Equilibrium equation in 2-D

Plane stress: The stress state when normal stress, which is perpendicular to the plane $x-y$, and shear stress are both zero.
Plane strain: The strain state when normal strain \mathcal{E}_{z}, which is perpendicular to the plane $\mathrm{x}-\mathrm{y}$, and shear strain $\gamma_{x z}, \gamma_{y z}$ are both zero.

Fig. 7.1 Plane stress: (a), (b)

Fig. 7.2 Plane strain: (a), (b)

Plane Stress and Plane Strain

Stress and strain in 2-D

Stresses in 2-D

Principal stress and its direction

$$
\begin{aligned}
& \sigma_{1}=\frac{\sigma_{x}+\sigma_{y}}{2}+\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}}=\sigma_{\max } \\
& \sigma_{2}=\frac{\sigma_{x}+\sigma_{y}}{2}-\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}}=\sigma_{\min }
\end{aligned}
$$

Plane Stress and Plane Strain

Stress and strain in 2-D

Displacement and rotation of plane element $x-y$

$$
\varepsilon_{x}=\frac{\partial u}{\partial x} \quad \varepsilon_{y}=\frac{\partial v}{\partial y} \quad \gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x} \quad\{\varepsilon\}=\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right\}
$$

Plane Stress and Plane Strain

Stress and strain in 2-D

$$
\{\sigma\}=[D]\{\varepsilon\}
$$

Stress-strain matrix(or material composed matrix) of isotropic material for plane stress $\left(\sigma_{z}=\tau_{x z}=\tau_{y z}=0\right)$

$$
[D]=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & \frac{1-v}{2}
\end{array}\right]
$$

Stress-strain matrix(or material composed matrix) of isotropic material for plane deformation ($\varepsilon_{z}=\gamma_{x z}=\gamma_{y z}=0$)

$$
[D]=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{ccc}
1-v & v & 0 \\
v & 1-v & 0 \\
0 & 0 & \frac{1-2 v}{2}
\end{array}\right]
$$

General Steps of Formulation Process for Plane Triangular Element

- Step 1: Determination of element type
- Step 2: Determination of displacement function
- Step 3: Relation of deformation rate - strain and stress-strain
- Step 4: Derivation of element stiffness and equation
- Step 5: Construction of global system equations and application of boundary conditions
- Step 6: Calculation of nodal displacement
- Step 7: Calculation of force (stress) in an element

General Steps of Formulation Process for Plane Triangular Element

Step1: Determination of element type

Considering a triangular element, the nodes i, j, m are notated in the anticlockwise direction.

The way to name the nodal members in an entire structure must be devised to avoid negative element area.

General Steps of Formulation Process for Plane Triangular Element

Step2: Determination of displacement function

$$
\begin{aligned}
& u(x, y)=a_{1}+a_{2} x+a_{3} y \\
& v(x, y)=a_{4}+a_{5} x+a_{6} y
\end{aligned}
$$

Linear function gives a guarantee to satisfy the compatibility.
A general displacement function $\{\psi\}$ containing function u and v can be expressed as below.

$$
\{\psi\}=\left\{\begin{array}{l}
a_{1}+a_{2} x+a_{3} y \\
a_{4}+a_{5} x+a_{6} y
\end{array}\right\}=\left[\begin{array}{cccccc}
1 & x & y & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & x & y
\end{array}\right]\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5} \\
a_{6}
\end{array}\right\}
$$

Substitute nodal coordinates to the equation for obtaining the values of a.

General Steps of Formulation Process for Plane Triangular Element

Step2: Determination of displacement function (Continued)

Calculation of a_{1}, a_{2}, a_{3} :

$$
\begin{aligned}
u_{i} & =a_{1}+a_{2} x_{i}+a_{3} y_{i} \\
u_{j} & =a_{1}+a_{2} x_{j}+a_{3} y_{j} \\
u_{m} & =a_{1}+a_{2} x_{m}+a_{3} y_{m}
\end{aligned} \quad \text { or } \quad\left\{\begin{array}{c}
u_{i} \\
u_{j} \\
u_{m}
\end{array}\right\}=\left[\begin{array}{ccc}
1 & x_{i} & y_{i} \\
1 & x_{j} & y_{j} \\
1 & x_{m} & y_{m}
\end{array}\right]\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right\}
$$

Solving $a,\{a\}=[x]^{-1}\{u\}$

Obtaining the inverse matrix of $[x]$,

$$
[x]^{-1}=\frac{1}{2 A}\left[\begin{array}{lll}
\alpha_{i} & \alpha_{j} & \alpha_{m} \\
\beta_{i} & \beta_{j} & \beta_{m} \\
\gamma_{i} & \gamma_{j} & \gamma_{m}
\end{array}\right]
$$

where, $2 A=x_{i}\left(y_{j}-y_{m}\right)+x_{j}\left(y_{m}-y_{i}\right)+x_{m}\left(y_{i}-y_{j}\right): 2$ times of triangle area.

$$
\begin{array}{ccc}
\alpha_{i}=x_{j} y_{m}-y_{j} x_{m} & \alpha_{j}=y_{i} x_{m}-x_{i} y_{m} & \alpha_{m}=x_{i} y_{j}-y_{i} x_{j} \\
\beta_{i}=y_{j}-y_{m} & \beta_{j}=y_{m}-y_{i} & \beta_{m}=y_{i}-y_{j} \\
\gamma_{i}=x_{m}-x_{j} & \gamma_{j}=x_{i}-x_{m} & \gamma_{m}=x_{j}-x_{i}
\end{array}
$$

General Steps of Formulation Process for Plane Triangular Element

Step2: Determination of displacement function (Continued)

$$
\begin{gathered}
\{a\}=[x]^{-1}\{u\} \\
\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right\}=\frac{1}{2 A}\left[\begin{array}{ccc}
\alpha_{i} & \alpha_{j} & \alpha_{m} \\
\beta_{i} & \beta_{j} & \beta_{m} \\
\gamma_{i} & \gamma_{j} & \gamma_{m}
\end{array}\right]\left\{\begin{array}{c}
u_{i} \\
u_{j} \\
u_{m}
\end{array}\right\}
\end{gathered}
$$

Similarly,

$$
\left\{\begin{array}{l}
a_{4} \\
a_{5} \\
a_{6}
\end{array}\right\}=\frac{1}{2 A}\left[\begin{array}{lll}
\alpha_{i} & \alpha_{j} & \alpha_{m} \\
\beta_{i} & \beta_{j} & \beta_{m} \\
\gamma_{i} & \gamma_{j} & \gamma_{m}
\end{array}\right]\left\{\begin{array}{c}
v_{i} \\
v_{j} \\
v_{m}
\end{array}\right\}
$$

Derivation of displacement function $u(x, y)$ (v can also be derived similarly)

$$
\{u\}=\left[\begin{array}{lll}
1 & x & y
\end{array}\right]\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right\}=\frac{1}{2 A}\left[\begin{array}{lll}
1 & x & y
\end{array}\right]\left[\begin{array}{ccc}
\alpha_{i} & \alpha_{j} & \alpha_{m} \\
\beta_{i} & \beta_{j} & \beta_{m} \\
\gamma_{i} & \gamma_{j} & \gamma_{m}
\end{array}\right]\left\{\begin{array}{c}
u_{i} \\
u_{j} \\
u_{m}
\end{array}\right\}
$$

General Steps of Formulation Process for Plane Triangular Element

Step2: Determination of displacement function (Continued)

Arranging by deployment:

$$
\begin{gathered}
u(x, y)=\frac{1}{2 A}\left\{\left(\alpha_{i}+\beta_{i} x+\gamma_{i} y\right) u_{i}+\left(\alpha_{j}+\beta_{j} x+\gamma_{j} y\right) u_{j}\right. \\
\left.+\left(\alpha_{m}+\beta_{m} x+\gamma_{m} y\right) u_{m}\right\}
\end{gathered}
$$

As the same way,

$$
\begin{gathered}
v(x, y)=\frac{1}{2 A}\left\{\left(\alpha_{i}+\beta_{i} x+\gamma_{i} y\right) v_{i}+\left(\alpha_{j}+\beta_{j} x+\gamma_{j} y\right) v_{j}\right. \\
\left.+\left(\alpha_{m}+\beta_{m} x+\gamma_{m} y\right) v_{m}\right\}
\end{gathered}
$$

Simple expression of u and v :

$$
\begin{aligned}
& u(x, y)=N_{i} u_{i}+N_{j} u_{j}+N_{m} u_{m} \\
& v(x, y)=N_{i} v_{i}+N_{j} v_{j}+N_{m} v_{m} \\
& \text { where } \\
& N_{j}=\frac{1}{2 A}\left(\alpha_{j}+\beta_{j} x+\gamma_{j} y\right) \\
& N_{m}=\frac{1}{2 A}\left(\alpha_{m}+\beta_{m} x+\gamma_{m} y\right)
\end{aligned}
$$

General Steps of Formulation Process for Plane Triangular Element

Step2: Determination of displacement function (Continued)
Arranging by deployment:

$$
\{\psi\}=\left\{\begin{array}{l}
u(x, y) \\
v(x, y)
\end{array}\right\}=\left\{\begin{array}{l}
N_{i} u_{i}+N_{j} u_{j}+N_{m} u_{m} \\
N_{i} v_{i}+N_{j} v_{j}+N_{m} v_{m}
\end{array}\right\}=\left[\begin{array}{cccccc}
N_{i} & 0 & N_{j} & 0 & N_{m} & 0 \\
0 & N_{i} & 0 & N_{j} & x & N_{m}
\end{array}\right]\left\{\begin{array}{c}
u_{i} \\
v_{i} \\
u_{j} \\
v_{j} \\
u_{m} \\
v_{m}
\end{array}\right\}
$$

Making the equation be simple in a form of matrix, $\{\psi\}=[N]\{d\}$
where

$$
[N]=\left[\begin{array}{cccccc}
N_{i} & 0 & N_{j} & 0 & N_{m} & 0 \\
0 & N_{i} & 0 & N_{j} & x & N_{m}
\end{array}\right]
$$

The displacement function $\{\psi\}$ is represented with shape functions N_{i}, N_{j}, N_{m} and nodal displacement $\{d\}$.

General Steps of Formulation Process for Plane Triangular Element

Step2: Determination of displacement function (Continued)

Review of characteristics of shape function:
$N_{i}=1, N_{j}=0, N_{m}=0$ at nodes $\left(x_{i}, y_{i}\right)$

A change of N_{i} of general elements across the surface $x-y$

General Steps of Formulation Process for Plane Triangular Element

Step3: Relation of deformation rate - strain and stress-strain

Deformation rate:

$$
\{\varepsilon\}=\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right\}=\left\{\begin{array}{c}
\frac{\partial u}{\partial x} \\
\frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}
\end{array}\right\}
$$

Calculation of partial differential terms

$$
\begin{gathered}
\frac{\partial u}{\partial x}=u_{, x}=\frac{\partial}{\partial x}\left(N_{i} u_{i}+N_{j} u_{j}+N_{m} u_{m}\right)=N_{i, x} u_{i}+N_{j, x} u_{j}+N_{m, x} u_{m} \\
N_{i, x}=\frac{1}{2 A} \frac{\partial}{\partial x}\left(\alpha_{i}+\beta_{i} x+\gamma_{i} y\right)=\frac{\beta_{i}}{2 A}, \quad N_{j, x}=\frac{\beta_{j}}{2 A}, \quad N_{m, x}=\frac{\beta_{m}}{2 A} \\
\therefore \frac{\partial u}{\partial x}=\frac{1}{2 A}\left(\beta_{i} u_{i}+\beta_{j} u_{j}+\beta_{m} u_{m}\right)
\end{gathered}
$$

General Steps of Formulation Process for Plane Triangular Element

Step3: Relation of deformation rate - strain and stress-strain

$$
\frac{\partial v}{\partial y}=\frac{1}{2 A}\left(\gamma_{i} v_{i}+\gamma_{j} v_{j}+\gamma_{m} v_{m}\right)
$$

Likewise,

$$
\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=\frac{1}{2 A}\left(\gamma_{i} u_{i}+\beta_{i} v_{i}+\gamma_{j} u_{j}+\beta_{j} v_{j}+\gamma_{m} u_{m}+\beta_{m} v_{m}\right.
$$

Summarizing the deformation rate equation,

$$
\{\varepsilon\}=\frac{1}{2 A}\left[\begin{array}{cccccc}
\beta_{i} & 0 & \beta_{j} & 0 & \beta_{m} & 0 \\
0 & \gamma_{i} & 0 & \gamma_{j} & 0 & \gamma_{m} \\
\gamma_{i} & \beta_{i} & \gamma_{j} & \beta_{j} & \gamma_{m} & \beta_{m}
\end{array}\right]\left\{\begin{array}{c}
u_{i} \\
v_{i} \\
u_{j} \\
v_{j} \\
u_{m} \\
v_{m}
\end{array}\right\}=\left[\begin{array}{lll}
B
\end{array}\right]\{d\}=\left[\begin{array}{lll}
\underline{B}_{i} & B_{j} & \underline{B}_{m}
\end{array}\right]\left\{\begin{array}{l}
\underline{d}_{i} \\
\underline{d}_{j} \\
\underline{d}_{m}
\end{array}\right\}
$$

where,

$$
\left[B_{i}\right]=\frac{1}{2 A}\left[\begin{array}{cc}
\beta_{i} & 0 \\
0 & \gamma_{i} \\
\gamma_{i} & \beta_{i}
\end{array}\right] \quad\left[B_{j}\right]=\frac{1}{2 A}\left[\begin{array}{cc}
\beta_{j} & 0 \\
0 & \gamma_{j} \\
\gamma_{j} & \beta_{j}
\end{array}\right] \quad\left[B_{m}\right]=\frac{1}{2 A}\left[\begin{array}{cc}
\beta_{m} & 0 \\
0 & \gamma_{m} \\
\gamma_{m} & \beta_{m}
\end{array}\right]
$$

General Steps of Formulation Process for Plane Triangular Element

Step3: Relation of deformation rate - strain and stress-strain (Continued)
Strain is constant in an element, for matrix \underline{B} regardless of \mathbf{x} and \mathbf{y} coordinates, and is influenced by only nodal coordinates in an element.
\rightarrow CST: Constant - Strain Triangle

Relation of stress - strain

$$
\left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}=[D]\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right\} \quad \rightarrow \quad\{\sigma\}=[D][B]\{d\}
$$

General Steps of Formulation Process for Plane Triangular Element

Step4: Derivation of element stiffness matrix and equation Using minimum potential energy principle.

Total potential energy

$$
\pi_{p}=\pi_{p}\left(u_{i}, v_{i}, u_{j}, \ldots, v_{m}\right)=U+\Omega_{b}+\Omega_{p}+\Omega_{s}
$$

Strain energy

$$
U=\frac{1}{2} \iiint_{V}\{\varepsilon\}^{T}\{\sigma\} d V=\iiint_{V}\{\varepsilon\}^{T}[D]\{\varepsilon\} d V
$$

Potential energy due to body force

$$
\begin{gathered}
\Omega_{b}=-\iiint_{V}\{\psi\}^{T}\{X\} d V \\
\Omega_{p}=-\{d\}^{T}\{P\}
\end{gathered}
$$

Potential energy due to concentrated load
Potential energy due to distributed load (or surface force) $\quad \Omega_{S}=-\iint_{S}\{\psi\}^{T}\{T\} d S$

General Steps of Formulation Process for Plane Triangular Element

Step4: Derivation of element stiffness matrix and equation (Continued)
$\therefore \pi_{p}$
$=\frac{1}{2} \iiint_{V}\{d\}^{T}[B]^{T}[D\}[B]\{d\} d V-\iiint_{V}\{d\}^{T}[N]^{T}\{X\} d V-\{d\}^{T}\{P\}-\iint_{S}\{d\}^{T}[N]^{T}\{T\} d S$
$=\frac{1}{2}\{d\}^{T} \iiint_{V}[B]^{T}[D\}[B] d V\{d\}-\{d\}^{T} \iiint_{V}[N]^{T}\{X\} d V-\{d\}^{T}\{P\}-\{d\}^{T} \iint_{S}[N]^{T}\{T\} d S$
$=\frac{1}{2}\{d\}^{T} \iiint_{V}[B]^{T}[D\}[B] d V\{d\}--\{d\}^{T}\{f\}$
where

$$
\{f\}=\iiint_{V}[N]^{T}\{X\} d V+\{P\}+\iint_{S}[N]^{T}\{T\} d S
$$

Condition having the minimum is $\frac{\partial \pi_{p}}{\partial\{d\}}=\left[\iiint_{V}[B]^{T}[D\}[B] d V\right]\{d\}-\{f\}=0$

General Steps of Formulation Process for Plane Triangular Element

Step4: Derivation of element stiffness matrix and equation (Continued)

Condition having the minimum is

$$
\frac{\partial \pi_{p}}{\partial\{d\}}=\left[\iiint_{V}[B]^{T}[D\}[B] d V\right]\{d\}-\{f\}=0 \quad \rightarrow \iiint \int_{V}[B]^{T}[D\}[B] d V\{d\}=\{f\}
$$

So, the element stiffness matrix is (Case of an element having constant thickness t)

$$
[k]=\iiint_{V}[B]^{T}[D\}[B] d V \quad\left(=t \iint_{A}[B]^{T}[D\}[B] d x d y=t A[B]^{T}[D\}[B]\right)
$$

Matrix [k] is a 6 x 6 matrix, and the element equation is as below

$$
\left\{\begin{array}{l}
f_{1 x} \\
f_{1 y} \\
f_{2 x} \\
f_{2 y} \\
f_{3 x} \\
f_{3 y}
\end{array}\right\}=\left[\begin{array}{cccc}
k_{11} & k_{12} & \ldots & k_{16} \\
k_{21} & k_{22} & & k_{26} \\
\vdots & & \ddots & \vdots \\
k_{61} & k_{62} & \cdots & k_{66}
\end{array}\right]\left\{\begin{array}{c}
u_{1} \\
v_{1} \\
u_{2} \\
v_{2} \\
u_{3} \\
v_{3}
\end{array}\right\}
$$

General Steps of Formulation Process for Plane Triangular Element

Step5: Introduction a combination of element equation and boundary conditions for obtaining a global coordinate system of equation

$$
\begin{array}{cc}
{[K]=\sum_{e=1}^{N}\left[k^{(e)}\right] \quad \text { and } \quad\{F\}=\sum_{e=1}^{N}\left\{f^{(e)}\right\}} \\
\{F\}=[K]\{d\}
\end{array}
$$

Step6: Calculation of nodal displacement

Step7: Calculation of force(stress) in an element

Transformation from the global coordinate system to the local coordinate system: (See Ch. 3)

$$
\underline{\hat{d}}=\underline{T} \underline{d} \quad \underline{\hat{f}}=\underline{T} \underline{f} \quad \underline{k}=\underline{T}^{T} \hat{k} \underline{T}
$$

Constant-strain triangle(CST) has 6 degrees of freedom.

General Steps of Formulation Process for Plane Triangular Element

$$
\underline{T}=\left[\begin{array}{cccccc}
C & S & 0 & 0 & 0 & 0 \\
-S & C & 0 & 0 & 0 & 0 \\
0 & 0 & C & S & 0 & 0 \\
0 & 0 & -S & C & 0 & 0 \\
0 & 0 & 0 & 0 & C & S \\
0 & 0 & 0 & 0 & -S & C
\end{array}\right] \quad \text { where } \quad \begin{aligned}
& C=\cos \theta \\
& S=\sin \theta \\
&
\end{aligned}
$$

A triangular element with local coordinates system not along to the global coordinate system.

Finite Element Method in a Plane Stress Problem

Find nodal displacements and element stresses in the case of the thin plate(see below figure) under surface force.

$$
\text { thickness } \mathrm{t}=1 \mathrm{in}, \mathrm{E}=30 \times 106 \text { psi, } v=0.30
$$

Finite Element Method in a Plane Stress Problem

(1) Discretization: Surface tension force is replaced by the following nodal loads.

$$
\begin{aligned}
& F=\frac{1}{2} T A \\
& F=\frac{1}{2}(1000 p s i)(1 \text { in. } \times 10 \mathrm{in} .) \\
& F=5000 \mathrm{lb}
\end{aligned}
$$

The global system of the governing equation is

$$
\{F\}=[K]\{d\} \quad \text { or } \quad\left\{\begin{array}{l}
F_{1 x} \\
F_{1 y} \\
F_{2 x} \\
F_{2 y} \\
F_{3 x} \\
F_{3 y} \\
F_{4 x} \\
F_{4 y}
\end{array}\right\}=\left\{\begin{array}{c}
R_{1 x} \\
R_{1 y} \\
R_{2 x} \\
R_{2 y} \\
5000 \\
0 \\
5000 \\
0
\end{array}\right\}=[K]\left\{\begin{array}{l}
d_{1 x} \\
d_{1 y} \\
d_{2 x} \\
d_{2 y} \\
d_{3 x} \\
d_{3 y} \\
d_{4 x} \\
d_{4 y}
\end{array}\right\}=[K]\left\{\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
d_{3 x} \\
d_{3 y} \\
d_{4 x} \\
d_{4 y}
\end{array}\right\}
$$

where $[K]$ is a 5×5 matrix.

Finite Element Method in a Plane Stress Problem

(2) A combination of stiffness matrix: $\quad[k]=t A[B]^{T}[D][B]$

- Element 1
- Calculation of matrix [B]

$$
\left[\begin{array}{l}
\text { (1) } \\
i=1 \\
\hline
\end{array}\right.
$$

where

$$
\begin{array}{rlr}
\beta_{i} & =y_{j}-y_{m}=10-10=0 & \\
\beta_{j} & =y_{m}-y_{i}=10-0=10 & A=\frac{1}{2} b h \\
\beta_{m} & =y_{i}-y_{j}=0-10=-10 \\
\gamma_{i} & =x_{m}-x_{j}=0-20=-20 & \text { and } \\
\gamma_{j} & =x_{i}-x_{m}=0-0=0 & =\left(\frac{1}{2}\right)(2 \\
\gamma_{m} & =x_{j}-x_{i}=20-0=20 &
\end{array}
$$

Finite Element Method in a Plane Stress Problem

Then [B] is

$$
[B]=\frac{1}{200}\left[\begin{array}{cccccc}
0 & 0 & 10 & 0 & -10 & 0 \\
0 & -20 & 0 & 0 & 0 & 20 \\
-20 & 0 & 0 & 10 & 20 & -10
\end{array}\right]
$$

- Matrix [D] (Plane stress)

$$
[D]=\frac{E}{1-v^{2}}\left[\begin{array}{lll}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & \frac{1-v}{2}
\end{array}\right]=\frac{30\left(10^{6}\right)}{0.91}\left[\begin{array}{ccc}
1 & 0.3 & 0 \\
0.3 & 1 & 0 \\
0 & 0 & 0.35
\end{array}\right]
$$

- Calculation of stiffness matrix

\[

\]

Finite Element Method in a Plane Stress Problem

- Element 2
- Calculation of matrix [B]

$$
[B]=\frac{1}{2 A}\left[\begin{array}{cccccc}
\beta_{i} & 0 & \beta_{j} & 0 & \beta_{m} & 0 \\
0 & \gamma_{i} & 0 & \gamma_{j} & 0 & \gamma_{m} \\
\gamma_{i} & \beta_{i} & \gamma_{j} & \beta_{j} & \gamma_{m} & \beta_{m}
\end{array}\right]
$$

where

$$
\begin{array}{cl}
\beta_{i}=y_{j}-y_{m}=0-10=-10 & \\
\beta_{j}=y_{m}-y_{i}=10-0=10 & A=\frac{1}{2} b h \\
\beta_{m}=y_{i}-y_{j}=0-0=0 & \text { and } \\
\gamma_{i}=x_{m}-x_{j}=20-20=0 & =\left(\frac{1}{2}\right)(20)(10)=100 \mathrm{in}^{2} \\
\gamma_{j}=x_{i}-x_{m}=0-20=-20 &
\end{array}
$$

Finite Element Method in a Plane Stress Problem

Then [B] is

$$
[B]=\frac{1}{200}\left[\begin{array}{cccccc}
-10 & 0 & 10 & 0 & 0 & 0 \\
0 & 0 & 0 & -20 & 0 & 20 \\
0 & -10 & -20 & 10 & 20 & 0
\end{array}\right]
$$

- Matrix [D] (Plane stress)

$$
[D]=\frac{30\left(10^{6}\right)}{0.91}\left[\begin{array}{ccc}
1 & 0.3 & 0 \\
0.3 & 1 & 0 \\
0 & 0 & 0.35
\end{array}\right]
$$

- Calculation of stiffness matrix

$$
\begin{gathered}
\mathrm{i}=1 \\
{[k]=\frac{\mathrm{j}=4}{} \frac{\mathrm{j}, 000}{0.91}\left[\begin{array}{cccccc}
100 & 0 & -100 & 60 & 0 & -60 \\
0 & 35 & 70 & -35 & -70 & 0 \\
-100 & 70 & 240 & -130 & -140 & 60 \\
60 & -35 & -130 & 435 & 70 & -400 \\
0 & -70 & -140 & 70 & 140 & 0 \\
-60 & 0 & 60 & -400 & 0 & 400
\end{array}\right]}
\end{gathered}
$$

Finite Element Method in a Plane Stress Problem

Element 1: $\quad[k]=\frac{375,000}{0.91}\left[\right.$| | 1 | 2 | | | 3 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 28 | 0 | -28 | 14 | 0 | -14 | 0 | 0 |
| 0 | 80 | 12 | -80 | -12 | 0 | 0 | 0 |
| -28 | 12 | 48 | -26 | -20 | 14 | 0 | 0 |
| 14 | -80 | -26 | 87 | 12 | -7 | 0 | 0 |
| 0 | -12 | -20 | 12 | 20 | 0 | 0 | 0 |
| -14 | 0 | 14 | -7 | 0 | 7 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |$]$

Element 2: $\quad[k]=\frac{375,000}{0.91}\left[\right.$| c | | | | | 2 | | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 0 | 0 | 0 | 0 | -12 | -20 | 12 |
| 0 | 7 | 0 | 0 | -14 | 0 | 14 | -7 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | -14 | 0 | 0 | 28 | 0 | -28 | 14 |
| -12 | 0 | 0 | 0 | 0 | 80 | 12 | -80 |
| -20 | 14 | 0 | 0 | -28 | 12 | 48 | -26 |
| 12 | -7 | 0 | 0 | 14 | -80 | -26 | 87 |$]$

Finite Element Method in a Plane Stress Problem

(3) Calculation of displacement: Superpositioning element stiffness matrix, global system of stiffness matrix is obtained as below.

$$
[K]=\frac{375,000}{0.91}\left[\right]
$$

Finite Element Method in a Plane Stress Problem

Substituting $[K]$ to $\{F\}=[K]\{d\}$

$$
\left\{\begin{array}{c}
R_{1 x} \\
R_{1 y} \\
R_{2 x} \\
R_{2 y} \\
5000 \\
0 \\
5000 \\
0
\end{array}\right\}=\frac{375,000}{0.91}\left[\begin{array}{cccccccc}
48 & 0 & -28 & 14 & 0 & -26 & -20 & 12 \\
0 & 87 & 12 & -80 & -26 & 0 & 14 & -7 \\
-28 & 12 & 48 & -26 & -20 & 14 & 0 & 0 \\
14 & -80 & -26 & 87 & 12 & -7 & 0 & 0 \\
0 & -26 & -20 & 12 & 48 & 0 & -28 & 14 \\
-26 & 0 & 14 & -7 & 0 & 87 & 12 & -80 \\
-20 & 14 & 0 & 0 & -28 & 12 & 48 & -26 \\
12 & -7 & 0 & 0 & 14 & -80 & -26 & 87
\end{array}\right]\left\{\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
d_{3 x} \\
d_{3 y} \\
d_{4 x} \\
d_{4 y}
\end{array}\right\}
$$

Applying given boundary conditions with elimination of columns and rows.

$$
\left\{\begin{array}{c}
5000 \\
0 \\
5000 \\
0
\end{array}\right\}=\frac{375,000}{0.91}\left[\begin{array}{cccc}
48 & 0 & -28 & 14 \\
0 & 87 & 12 & -80 \\
-28 & 12 & 48 & -26 \\
14 & -80 & -26 & 87
\end{array}\right]\left\{\begin{array}{l}
d_{3 x} \\
d_{3 y} \\
d_{4 x} \\
d_{4 y}
\end{array}\right\}
$$

Finite Element Method in a Plane Stress Problem

Transposing the displacement matrix to the left side

$$
\left\{\begin{array}{l}
d_{3 x} \\
d_{3 y} \\
d_{4 x} \\
d_{4 y}
\end{array}\right\}=\frac{0.91}{375,000}\left[\begin{array}{cccc}
48 & 0 & -28 & 14 \\
0 & 87 & 12 & -80 \\
-28 & 12 & 48 & -26 \\
14 & -80 & -26 & 87
\end{array}\right]^{-1}\left\{\begin{array}{c}
5000 \\
0 \\
5000 \\
0
\end{array}\right\}=\left\{\begin{array}{c}
609.6 \\
4.2 \\
663.7 \\
104.1
\end{array}\right\} \times 10^{-6} \text { in. }
$$

The solution of 1-D beam under tension force is

$$
\delta=\frac{P L}{A E}=\frac{(10,000) 20}{10\left(30 \times 10^{6}\right)}=670 \times 10^{-6} \mathrm{in} .
$$

Therefore, x -component of the displacement at nodes in the equation $\iiint_{V}[B]^{T}[D\}[B] d V\{d\}=\{f\}$ of 2-D plane is quite accurate when considering the coarse grids.

Finite Element Method in a Plane Stress Problem

(4) Stresses at each node: $\{\sigma\}=[D][B]\{d\}$

Element 1

$$
\{\sigma\}=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & \frac{1-v}{2}
\end{array}\right] \times\left(\frac{1}{2 A}\right)\left[\begin{array}{cccccc}
\beta_{1} & 0 & \beta_{4} & 0 & \beta_{3} & 0 \\
0 & \gamma_{1} & 0 & \gamma_{4} & 0 & \gamma_{3} \\
\gamma_{1} & \beta_{1} & \gamma_{4} & \beta_{4} & \gamma_{3} & \beta_{3}
\end{array}\right]\left\{\begin{array}{l}
d_{1 x} \\
d_{1 y} \\
d_{4 x} \\
d_{4 y} \\
d_{3 x} \\
d_{3 y}
\end{array}\right\}
$$

Calculating,

$$
\left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}=\left\{\begin{array}{c}
1005 \\
301 \\
2.4
\end{array}\right\} p s i
$$

THANK YOU FOR LISTENING

