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Plane Stress and Plane Strain

Fig. 7.1 Plane stress: (a), (b)
(a) (b)

Fig. 7.2 Plane strain: (a), (b)
(a) (b)

Chapter 7 : FEM – Plane stress and strain

• Finite element in 2-D: Thin plate element required 2 coordinates
• Plane stress and plane strain problems

• Constant-strain triangular element

• Equilibrium equation in 2-D

Plane stress: The stress state when normal stress, which is perpendicular to the 
plane x-y, and shear stress are both zero.
Plane strain: The strain state when normal strain    , which is perpendicular to 
the plane x-y, and shear strain are both zero.

zε
,xz yzγ γ
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Plane Stress and Plane Strain

Chapter 7 : FEM – Plane stress and strain

Stress and strain in 2-D

Stresses in 2-D Principal stress and its direction

𝜎𝜎 =
𝜎𝜎𝑥𝑥
𝜎𝜎𝑦𝑦
𝜏𝜏𝑥𝑥𝑦𝑦 𝜎𝜎1 =

𝜎𝜎𝑥𝑥 + 𝜎𝜎𝑦𝑦
2 +

𝜎𝜎𝑥𝑥 − 𝜎𝜎𝑦𝑦
2

2
+ 𝜏𝜏𝑥𝑥𝑦𝑦2 = 𝜎𝜎𝑚𝑚𝑚𝑚𝑥𝑥

𝜎𝜎2 =
𝜎𝜎𝑥𝑥 + 𝜎𝜎𝑦𝑦

2 −
𝜎𝜎𝑥𝑥 − 𝜎𝜎𝑦𝑦

2

2
+ 𝜏𝜏𝑥𝑥𝑦𝑦2 = 𝜎𝜎𝑚𝑚𝑖𝑖𝑖𝑖tan2𝜃𝜃𝑝𝑝 =

2𝜏𝜏𝑥𝑥𝑦𝑦
𝜎𝜎𝑥𝑥 − 𝜎𝜎𝑦𝑦
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Plane Stress and Plane Strain

Chapter 7 : FEM – Plane stress and strain

Stress and strain in 2-D

Displacement and rotation of plane element x y−

𝜀𝜀𝑥𝑥 =
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥 𝜀𝜀𝑦𝑦 =

𝜕𝜕𝜐𝜐
𝜕𝜕𝑦𝑦 𝛾𝛾𝑥𝑥𝑦𝑦 =

𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦 +

𝜕𝜕𝜐𝜐
𝜕𝜕𝑥𝑥

{𝜀𝜀} =
𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦
𝛾𝛾𝑥𝑥𝑦𝑦
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Plane Stress and Plane Strain

Chapter 7 : FEM – Plane stress and strain

Stress and strain in 2-D

Stress-strain matrix(or material composed matrix) of isotropic material for 
plane stress (𝜎𝜎𝑧𝑧 = 𝜏𝜏𝑥𝑥𝑧𝑧 = 𝜏𝜏𝑦𝑦𝑧𝑧 = 0) 

Stress-strain matrix(or material composed matrix) of isotropic material for 
plane deformation (𝜀𝜀𝑧𝑧 = 𝛾𝛾𝑥𝑥𝑧𝑧 = 𝛾𝛾𝑦𝑦𝑧𝑧 = 0)

𝐷𝐷 =
𝐸𝐸

1 − ν2

1 ν 0
ν 1 0

0 0
1 − ν

2

𝐷𝐷 =
𝐸𝐸

(1 + ν)(1 − 2ν)

1 − ν ν 0
ν 1 − ν 0

0 0
1 − 2ν

2

𝜎𝜎 = 𝐷𝐷 {𝜀𝜀}
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General Steps of Formulation Process for 
Plane Triangular Element

Chapter 7 : FEM – Plane stress and strain

• Step 1: Determination of element type

• Step 2: Determination of displacement function

• Step 3: Relation of deformation rate – strain and stress-strain

• Step 4: Derivation of element stiffness and equation

• Step 5: Construction of global system equations and application of boundary conditions

• Step 6: Calculation of nodal displacement

• Step 7: Calculation of force (stress) in an element
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General Steps of Formulation Process for 
Plane Triangular Element

Chapter 7 : FEM – Plane stress and strain

Considering a triangular element, the nodes i, j, m are notated in the anti-
clockwise direction.

The way to name the nodal members in an entire structure must be 
devised to avoid negative element area.

Step1: Determination of element type

𝑑𝑑 =
𝑑𝑑𝑖𝑖
𝑑𝑑𝑗𝑗
𝑑𝑑𝑚𝑚

=

𝑢𝑢𝑖𝑖
𝑣𝑣𝑖𝑖
𝑢𝑢𝑗𝑗
𝑣𝑣𝑗𝑗
𝑢𝑢𝑚𝑚
𝑣𝑣𝑚𝑚
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General Steps of Formulation Process for 
Plane Triangular Element

Chapter 7 : FEM – Plane stress and strain

Linear function gives a guarantee to satisfy the compatibility.
A general displacement function {𝜓𝜓} containing function 𝑢𝑢 and 𝑣𝑣 can be expressed 
as below.  

Step2: Determination of displacement function

Substitute nodal coordinates to the equation for obtaining the values of  a.

𝜓𝜓 =
𝑎𝑎1 + 𝑎𝑎2𝑥𝑥 + 𝑎𝑎3𝑦𝑦
𝑎𝑎4 + 𝑎𝑎5𝑥𝑥 + 𝑎𝑎6𝑦𝑦

= 1 𝑥𝑥 𝑦𝑦
0 0 0

0 0 0
1 𝑥𝑥 𝑦𝑦

𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
𝑎𝑎4
𝑎𝑎5
𝑎𝑎6

𝑢𝑢 𝑥𝑥,𝑦𝑦 = 𝑎𝑎1 + 𝑎𝑎2𝑥𝑥 + 𝑎𝑎3𝑦𝑦
𝑣𝑣 𝑥𝑥,𝑦𝑦 = 𝑎𝑎4 + 𝑎𝑎5𝑥𝑥 + 𝑎𝑎6𝑦𝑦
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General Steps of Formulation Process for 
Plane Triangular Element

Chapter 7 : FEM – Plane stress and strain

Calculation of a1, a2, a3:

Step2: Determination of displacement function (Continued)

Solving a,  𝑎𝑎 = 𝑥𝑥 −1{𝑢𝑢}

Obtaining the inverse matrix of [x], 

where, 2𝐴𝐴 = 𝑥𝑥𝑖𝑖 𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑚𝑚 + 𝑥𝑥𝑗𝑗(𝑦𝑦𝑚𝑚 − 𝑦𝑦𝑖𝑖)+𝑥𝑥𝑚𝑚(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗) : 2 times of triangle area.

or
𝑢𝑢𝑖𝑖
𝑢𝑢𝑗𝑗
𝑢𝑢𝑚𝑚

=
1 𝑥𝑥𝑖𝑖 𝑦𝑦𝑖𝑖
1 𝑥𝑥𝑗𝑗 𝑦𝑦𝑗𝑗
1 𝑥𝑥𝑚𝑚 𝑦𝑦𝑚𝑚

𝑎𝑎1
𝑎𝑎2
𝑎𝑎3

𝑥𝑥 −1 =
1
2𝐴𝐴

𝛼𝛼𝑖𝑖 𝛼𝛼𝑗𝑗 𝛼𝛼𝑚𝑚
𝛽𝛽𝑖𝑖 𝛽𝛽𝑗𝑗 𝛽𝛽𝑚𝑚
𝛾𝛾𝑖𝑖 𝛾𝛾𝑗𝑗 𝛾𝛾𝑚𝑚

𝑢𝑢𝑖𝑖 = 𝑎𝑎1 + 𝑎𝑎2𝑥𝑥𝑖𝑖 + 𝑎𝑎3𝑦𝑦𝑖𝑖
𝑢𝑢𝑗𝑗 = 𝑎𝑎1 + 𝑎𝑎2𝑥𝑥𝑗𝑗 + 𝑎𝑎3𝑦𝑦𝑗𝑗
𝑢𝑢𝑚𝑚 = 𝑎𝑎1 + 𝑎𝑎2𝑥𝑥𝑚𝑚 + 𝑎𝑎3𝑦𝑦𝑚𝑚

𝛼𝛼𝑖𝑖 = 𝑥𝑥𝑗𝑗𝑦𝑦𝑚𝑚 − 𝑦𝑦𝑗𝑗𝑥𝑥𝑚𝑚
𝛽𝛽𝑖𝑖 = 𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑚𝑚
𝛾𝛾𝑖𝑖 = 𝑥𝑥𝑚𝑚 − 𝑥𝑥𝑗𝑗

𝛼𝛼𝑗𝑗 = 𝑦𝑦𝑖𝑖𝑥𝑥𝑚𝑚 − 𝑥𝑥𝑖𝑖𝑦𝑦𝑚𝑚
𝛽𝛽𝑗𝑗 = 𝑦𝑦𝑚𝑚 − 𝑦𝑦𝑖𝑖
𝛾𝛾𝑗𝑗 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑚𝑚

𝛼𝛼𝑚𝑚 = 𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑖𝑖𝑥𝑥𝑗𝑗
𝛽𝛽𝑚𝑚 = 𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗
𝛾𝛾𝑚𝑚 = 𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖
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General Steps of Formulation Process for 
Plane Triangular Element

Chapter 7 : FEM – Plane stress and strain

Step2: Determination of displacement function (Continued)

Similarly,

Derivation of displacement function u(x, y)  (v can also be derived similarly)

𝑎𝑎1
𝑎𝑎2
𝑎𝑎3

=
1
2𝐴𝐴

𝛼𝛼𝑖𝑖 𝛼𝛼𝑗𝑗 𝛼𝛼𝑚𝑚
𝛽𝛽𝑖𝑖 𝛽𝛽𝑗𝑗 𝛽𝛽𝑚𝑚
𝛾𝛾𝑖𝑖 𝛾𝛾𝑗𝑗 𝛾𝛾𝑚𝑚

𝑢𝑢𝑖𝑖
𝑢𝑢𝑗𝑗
𝑢𝑢𝑚𝑚

𝑎𝑎4
𝑎𝑎5
𝑎𝑎6

=
1
2𝐴𝐴

𝛼𝛼𝑖𝑖 𝛼𝛼𝑗𝑗 𝛼𝛼𝑚𝑚
𝛽𝛽𝑖𝑖 𝛽𝛽𝑗𝑗 𝛽𝛽𝑚𝑚
𝛾𝛾𝑖𝑖 𝛾𝛾𝑗𝑗 𝛾𝛾𝑚𝑚

𝑣𝑣𝑖𝑖
𝑣𝑣𝑗𝑗
𝑣𝑣𝑚𝑚

𝑢𝑢 = 1 𝑥𝑥 𝑦𝑦
𝑎𝑎1
𝑎𝑎2
𝑎𝑎3

=
1
2𝐴𝐴

1 𝑥𝑥 𝑦𝑦
𝛼𝛼𝑖𝑖 𝛼𝛼𝑗𝑗 𝛼𝛼𝑚𝑚
𝛽𝛽𝑖𝑖 𝛽𝛽𝑗𝑗 𝛽𝛽𝑚𝑚
𝛾𝛾𝑖𝑖 𝛾𝛾𝑗𝑗 𝛾𝛾𝑚𝑚

𝑢𝑢𝑖𝑖
𝑢𝑢𝑗𝑗
𝑢𝑢𝑚𝑚

𝑎𝑎} = 𝑥𝑥 −1{𝑢𝑢
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General Steps of Formulation Process for 
Plane Triangular Element

Chapter 7 : FEM – Plane stress and strain

Step2: Determination of displacement function (Continued)

As the same way,

Simple expression of u and v:

Arranging by deployment: 

where

𝑢𝑢(𝑥𝑥,𝑦𝑦) =
1

2𝐴𝐴
{(𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑥𝑥 + 𝛾𝛾𝑖𝑖𝑦𝑦)𝑢𝑢𝑖𝑖 + (𝛼𝛼𝑗𝑗 + 𝛽𝛽𝑗𝑗𝑥𝑥 + 𝛾𝛾𝑗𝑗𝑦𝑦)𝑢𝑢𝑗𝑗

}+ (𝛼𝛼𝑚𝑚 + 𝛽𝛽𝑚𝑚𝑥𝑥 + 𝛾𝛾𝑚𝑚𝑦𝑦)𝑢𝑢𝑚𝑚

𝑣𝑣(𝑥𝑥,𝑦𝑦) =
1

2𝐴𝐴 {(𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑥𝑥 + 𝛾𝛾𝑖𝑖𝑦𝑦)𝑣𝑣𝑖𝑖 + (𝛼𝛼𝑗𝑗 + 𝛽𝛽𝑗𝑗𝑥𝑥 + 𝛾𝛾𝑗𝑗𝑦𝑦)𝑣𝑣𝑗𝑗
}+ (𝛼𝛼𝑚𝑚 + 𝛽𝛽𝑚𝑚𝑥𝑥 + 𝛾𝛾𝑚𝑚𝑦𝑦)𝑣𝑣𝑚𝑚

𝑢𝑢(𝑥𝑥,𝑦𝑦) = 𝑁𝑁𝑖𝑖𝑢𝑢𝑖𝑖 + 𝑁𝑁𝑗𝑗𝑢𝑢𝑗𝑗 + 𝑁𝑁𝑚𝑚𝑢𝑢𝑚𝑚
𝜐𝜐(𝑥𝑥,𝑦𝑦) = 𝑁𝑁𝑖𝑖𝜐𝜐𝑖𝑖 + 𝑁𝑁𝑗𝑗𝜐𝜐𝑗𝑗 + 𝑁𝑁𝑚𝑚𝜐𝜐𝑚𝑚

𝑁𝑁𝑖𝑖 =
1

2𝐴𝐴 (𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑥𝑥 + 𝛾𝛾𝑖𝑖𝑦𝑦)

𝑁𝑁𝑗𝑗 =
1

2𝐴𝐴 (𝛼𝛼𝑗𝑗 + 𝛽𝛽𝑗𝑗𝑥𝑥 + 𝛾𝛾𝑗𝑗𝑦𝑦)

𝑁𝑁𝑚𝑚 =
1

2𝐴𝐴 (𝛼𝛼𝑚𝑚 + 𝛽𝛽𝑚𝑚𝑥𝑥 + 𝛾𝛾𝑚𝑚𝑦𝑦)
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General Steps of Formulation Process for 
Plane Triangular Element

Chapter 7 : FEM – Plane stress and strain

Step2: Determination of displacement function (Continued)

Making the equation be simple in a form of matrix, 𝜓𝜓 = 𝑁𝑁 {𝑑𝑑}

Arranging by deployment: 

The displacement function is represented with shape functions
and nodal displacement {d} . 

, ,i j mN N N{ψ}

𝜓𝜓 = 𝑢𝑢(𝑥𝑥,𝑦𝑦)
𝑣𝑣(𝑥𝑥,𝑦𝑦) =

𝑁𝑁𝑖𝑖𝑢𝑢𝑖𝑖 + 𝑁𝑁𝑗𝑗𝑢𝑢𝑗𝑗 + 𝑁𝑁𝑚𝑚𝑢𝑢𝑚𝑚
𝑁𝑁𝑖𝑖𝑣𝑣𝑖𝑖 + 𝑁𝑁𝑗𝑗𝑣𝑣𝑗𝑗 + 𝑁𝑁𝑚𝑚𝑣𝑣𝑚𝑚

=
𝑁𝑁𝑖𝑖 0 𝑁𝑁𝑗𝑗
0 𝑁𝑁𝑖𝑖 0

0 𝑁𝑁𝑚𝑚 0
𝑁𝑁𝑗𝑗 𝑥𝑥 𝑁𝑁𝑚𝑚

𝑢𝑢𝑖𝑖
𝑣𝑣𝑖𝑖
𝑢𝑢𝑗𝑗
𝑣𝑣𝑗𝑗
𝑢𝑢𝑚𝑚
𝑣𝑣𝑚𝑚

where [𝑁𝑁] =
𝑁𝑁𝑖𝑖 0 𝑁𝑁𝑗𝑗
0 𝑁𝑁𝑖𝑖 0

0 𝑁𝑁𝑚𝑚 0
𝑁𝑁𝑗𝑗 𝑥𝑥 𝑁𝑁𝑚𝑚
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General Steps of Formulation Process for 
Plane Triangular Element

Chapter 7 : FEM – Plane stress and strain

Step2: Determination of displacement function (Continued)
Review of characteristics of shape function:
𝑁𝑁𝑖𝑖 =1, 𝑁𝑁𝑗𝑗 =0, 𝑁𝑁𝑚𝑚 =0 at nodes (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)

A change of Ni of general elements across the surface x - y



Seoul National University2019/1/4 - 15 -

General Steps of Formulation Process for 
Plane Triangular Element

Chapter 7 : FEM – Plane stress and strain

Step3: Relation of deformation rate – strain and stress-strain

Calculation of partial differential terms

Deformation rate: 𝜀𝜀 =
𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦
𝛾𝛾𝑥𝑥𝑦𝑦

=

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥
𝜕𝜕𝑣𝑣
𝜕𝜕𝑦𝑦

𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦 +

𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥 = 𝑢𝑢,𝑥𝑥 =

𝜕𝜕
𝜕𝜕𝑥𝑥 (𝑁𝑁𝑖𝑖𝑢𝑢𝑖𝑖 + 𝑁𝑁𝑗𝑗𝑢𝑢𝑗𝑗 + 𝑁𝑁𝑚𝑚𝑢𝑢𝑚𝑚) = 𝑁𝑁𝑖𝑖,𝑥𝑥𝑢𝑢𝑖𝑖 + 𝑁𝑁𝑗𝑗,𝑥𝑥𝑢𝑢𝑗𝑗 + 𝑁𝑁𝑚𝑚,𝑥𝑥𝑢𝑢𝑚𝑚

𝑁𝑁𝑖𝑖,𝑥𝑥 =
1

2𝐴𝐴
𝜕𝜕
𝜕𝜕𝑥𝑥 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑥𝑥 + 𝛾𝛾𝑖𝑖𝑦𝑦 =

𝛽𝛽𝑖𝑖
2𝐴𝐴 , 𝑁𝑁𝑗𝑗,𝑥𝑥 =

𝛽𝛽𝑗𝑗
2𝐴𝐴 , 𝑁𝑁𝑚𝑚,𝑥𝑥=

𝛽𝛽𝑚𝑚
2𝐴𝐴

∴
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥 =

1
2𝐴𝐴 (𝛽𝛽𝑖𝑖𝑢𝑢𝑖𝑖 + 𝛽𝛽𝑗𝑗𝑢𝑢𝑗𝑗 + 𝛽𝛽𝑚𝑚𝑢𝑢𝑚𝑚)
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General Steps of Formulation Process for 
Plane Triangular Element

Chapter 7 : FEM – Plane stress and strain

Step3: Relation of deformation rate – strain and stress-strain

Summarizing the deformation rate equation,

Likewise,

where,

𝜀𝜀 =
1
2𝐴𝐴

𝛽𝛽𝑖𝑖 0 𝛽𝛽𝑗𝑗
0 𝛾𝛾𝑖𝑖 0
𝛾𝛾𝑖𝑖 𝛽𝛽𝑖𝑖 𝛾𝛾𝑗𝑗

0 𝛽𝛽𝑚𝑚 0
𝛾𝛾𝑗𝑗 0 𝛾𝛾𝑚𝑚
𝛽𝛽𝑗𝑗 𝛾𝛾𝑚𝑚 𝛽𝛽𝑚𝑚

𝑢𝑢𝑖𝑖
𝑣𝑣𝑖𝑖
𝑢𝑢𝑗𝑗
𝑣𝑣𝑗𝑗
𝑢𝑢𝑚𝑚
𝑣𝑣𝑚𝑚

= 𝐵𝐵 𝑑𝑑 = 𝐵𝐵𝑖𝑖 𝐵𝐵𝑗𝑗 𝐵𝐵𝑚𝑚
𝑑𝑑𝑖𝑖
𝑑𝑑𝑗𝑗
𝑑𝑑𝑚𝑚

[𝐵𝐵𝑖𝑖] =
1
2𝐴𝐴

𝛽𝛽𝑖𝑖 0
0 𝛾𝛾𝑖𝑖
𝛾𝛾𝑖𝑖 𝛽𝛽𝑖𝑖

[𝐵𝐵𝑗𝑗] =
1
2𝐴𝐴

𝛽𝛽𝑗𝑗 0
0 𝛾𝛾𝑗𝑗
𝛾𝛾𝑗𝑗 𝛽𝛽𝑗𝑗

[𝐵𝐵𝑚𝑚] =
1
2𝐴𝐴

𝛽𝛽𝑚𝑚 0
0 𝛾𝛾𝑚𝑚
𝛾𝛾𝑚𝑚 𝛽𝛽𝑚𝑚

𝜕𝜕𝜐𝜐
𝜕𝜕𝑦𝑦

=
1

2𝐴𝐴
(𝛾𝛾𝑖𝑖𝜐𝜐𝑖𝑖 + 𝛾𝛾𝑗𝑗𝜐𝜐𝑗𝑗 + 𝛾𝛾𝑚𝑚𝜐𝜐𝑚𝑚)

𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝜐𝜐
𝜕𝜕𝑥𝑥

=
1

2𝐴𝐴
(𝛾𝛾𝑖𝑖𝑢𝑢𝑖𝑖 + 𝛽𝛽𝑖𝑖𝜐𝜐𝑖𝑖 + 𝛾𝛾𝑗𝑗𝑢𝑢𝑗𝑗 + 𝛽𝛽𝑗𝑗𝜐𝜐𝑗𝑗 + 𝛾𝛾𝑚𝑚𝑢𝑢𝑚𝑚 + 𝛽𝛽𝑚𝑚𝜐𝜐𝑚𝑚
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Chapter 7 : FEM – Plane stress and strain

Step3: Relation of deformation rate – strain and stress-strain (Continued)

 CST: Constant – Strain Triangle

Strain is constant in an element, for matrix 𝐵𝐵 regardless of x and y coordinates, 
and is influenced by only nodal coordinates in an element.

Relation of stress - strain

𝜎𝜎𝑥𝑥
𝜎𝜎𝑦𝑦
𝜏𝜏𝑥𝑥𝑦𝑦

= [𝐷𝐷]
𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦
𝛾𝛾𝑥𝑥𝑦𝑦

 𝜎𝜎} = [𝐷𝐷][𝐵𝐵]{𝑑𝑑
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Step4: Derivation of element stiffness matrix and equation

Total potential energy        𝜋𝜋𝑝𝑝 = 𝜋𝜋𝑝𝑝(𝑢𝑢𝑖𝑖 , 𝜐𝜐𝑖𝑖 ,𝑢𝑢𝑗𝑗 , . . . , 𝜐𝜐𝑚𝑚) = 𝑈𝑈 + 𝛺𝛺𝑏𝑏 + 𝛺𝛺𝑝𝑝 + 𝛺𝛺𝑠𝑠

Using minimum potential energy principle.

Strain energy 𝑈𝑈 =
1
2�

𝑉𝑉

𝜀𝜀 𝑇𝑇 𝜎𝜎 𝑑𝑑𝑑𝑑 = �
𝑉𝑉

𝜀𝜀 𝑇𝑇[𝐷𝐷] 𝜀𝜀 𝑑𝑑𝑑𝑑

Potential energy due to body force Ω𝑏𝑏 = −�
𝑉𝑉

𝜓𝜓 𝑇𝑇 𝑋𝑋 𝑑𝑑𝑑𝑑

Potential energy due to concentrated load Ω𝑝𝑝 = − 𝑑𝑑 𝑇𝑇{𝑃𝑃}

Potential energy due to distributed load (or surface force) Ω𝑆𝑆 = −�
𝑆𝑆

𝜓𝜓 𝑇𝑇 𝑇𝑇 𝑑𝑑𝑆𝑆
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Step4: Derivation of element stiffness matrix and equation (Continued)
∴ 𝜋𝜋𝑝𝑝

=
1
2
�
𝑉𝑉

𝑑𝑑 𝑇𝑇 𝐵𝐵 𝑇𝑇 𝐷𝐷 [𝐵𝐵] 𝑑𝑑 𝑑𝑑𝑑𝑑 −�
𝑉𝑉

𝑑𝑑 𝑇𝑇 𝑁𝑁 𝑇𝑇 𝑋𝑋 𝑑𝑑𝑑𝑑 − 𝑑𝑑 𝑇𝑇 𝑃𝑃 −�
𝑆𝑆

𝑑𝑑 𝑇𝑇 𝑁𝑁 𝑇𝑇 𝑇𝑇 𝑑𝑑𝑆𝑆

=
1
2
𝑑𝑑 𝑇𝑇�

𝑉𝑉

𝐵𝐵 𝑇𝑇 𝐷𝐷 𝐵𝐵 𝑑𝑑𝑑𝑑 𝑑𝑑 − 𝑑𝑑 𝑇𝑇�
𝑉𝑉

𝑁𝑁 𝑇𝑇 𝑋𝑋 𝑑𝑑𝑑𝑑 − 𝑑𝑑 𝑇𝑇 𝑃𝑃 − 𝑑𝑑 𝑇𝑇�
𝑆𝑆

𝑁𝑁 𝑇𝑇 𝑇𝑇 𝑑𝑑𝑆𝑆

=
1
2 𝑑𝑑 𝑇𝑇�

𝑉𝑉

𝐵𝐵 𝑇𝑇 𝐷𝐷 𝐵𝐵 𝑑𝑑𝑑𝑑 𝑑𝑑 − − 𝑑𝑑 𝑇𝑇 𝑓𝑓

Condition having the minimum is 

where 𝑓𝑓 = �
𝑉𝑉

𝑁𝑁 𝑇𝑇 𝑋𝑋 𝑑𝑑𝑑𝑑 + 𝑃𝑃 + �
𝑆𝑆

𝑁𝑁 𝑇𝑇 𝑇𝑇 𝑑𝑑𝑆𝑆

𝜕𝜕𝜋𝜋𝑝𝑝
𝜕𝜕{𝑑𝑑} = �

𝑉𝑉

𝐵𝐵 𝑇𝑇 𝐷𝐷 𝐵𝐵 𝑑𝑑𝑑𝑑 𝑑𝑑 − 𝑓𝑓 = 0
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Step4: Derivation of element stiffness matrix and equation (Continued)

Condition having the minimum is 

So, the element stiffness matrix is (Case of an element having constant thickness t) 

𝑘𝑘 = �
𝑉𝑉

𝐵𝐵 𝑇𝑇 𝐷𝐷 𝐵𝐵 𝑑𝑑𝑑𝑑 = 𝑡𝑡�
𝐴𝐴

𝐵𝐵 𝑇𝑇 𝐷𝐷 𝐵𝐵 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 = 𝑡𝑡𝐴𝐴 𝐵𝐵 𝑇𝑇 𝐷𝐷 𝐵𝐵

𝜕𝜕𝜋𝜋𝑝𝑝
𝜕𝜕{𝑑𝑑}

= �
𝑉𝑉

𝐵𝐵 𝑇𝑇 𝐷𝐷 𝐵𝐵 𝑑𝑑𝑑𝑑 𝑑𝑑 − 𝑓𝑓 = 0 �
𝑉𝑉

𝐵𝐵 𝑇𝑇 𝐷𝐷 𝐵𝐵 𝑑𝑑𝑑𝑑 𝑑𝑑 = {𝑓𝑓}

𝑓𝑓1𝑥𝑥
𝑓𝑓1𝑦𝑦
𝑓𝑓2𝑥𝑥
𝑓𝑓2𝑦𝑦
𝑓𝑓3𝑥𝑥
𝑓𝑓3𝑦𝑦

=

𝑘𝑘11 𝑘𝑘12
𝑘𝑘21 𝑘𝑘22

⋯ 𝑘𝑘16
𝑘𝑘26

⋮ ⋱ ⋮
𝑘𝑘61 𝑘𝑘62 ⋯ 𝑘𝑘66

𝑢𝑢1
𝑣𝑣1
𝑢𝑢2
𝑣𝑣2
𝑢𝑢3
𝑣𝑣3

Matrix [k] is a 6x6 matrix, and the element equation is as below
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Step5: Introduction a combination of element equation and boundary 
conditions for obtaining a global coordinate system of equation

Transformation from the global coordinate system to the local coordinate 
system: (See Ch. 3)

[ ] [ ]( )K k e

e

N

=
=
∑

1

{ } { }( )F f e

e

N

=
=
∑

1

{ } [ ]{ }F K d=

and

Step6: Calculation of nodal displacement

Step7: Calculation of force(stress) in an element

  d Td f T f k T kTT= = =

Constant-strain triangle(CST) has 6 degrees of freedom.
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A triangular element with local coordinates system not along to the global 
coordinate system.

where�𝑇𝑇 =

𝐶𝐶 𝑆𝑆 0 0 0 0
−𝑆𝑆 𝐶𝐶 0 0 0 0
0 0 𝐶𝐶 𝑆𝑆 0 0
0 0 −𝑆𝑆 𝐶𝐶 0 0
0 0 0 0 𝐶𝐶 𝑆𝑆
0 0 0 0 −𝑆𝑆 𝐶𝐶

𝐶𝐶 = cos𝜃𝜃
𝑆𝑆 = sin𝜃𝜃
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Find nodal displacements and element stresses in the case of the thin plate(see 
below figure) under surface force. 

thickness t = 1 in, E = 30 x 106 psi, 𝜈𝜈 =0.30
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(1) Discretization: Surface tension force is replaced by the following nodal loads.

The global system of the governing equation is

where [K] is a 5x5 matrix.

or

𝐹𝐹1𝑥𝑥
𝐹𝐹1𝑦𝑦
𝐹𝐹2𝑥𝑥
𝐹𝐹2𝑦𝑦
𝐹𝐹3𝑥𝑥
𝐹𝐹3𝑦𝑦
𝐹𝐹4𝑥𝑥
𝐹𝐹4𝑦𝑦

=

𝑅𝑅1𝑥𝑥
𝑅𝑅1𝑦𝑦
𝑅𝑅2𝑥𝑥
𝑅𝑅2𝑦𝑦

5000
0

5000
0

= 𝐾𝐾

𝑑𝑑1𝑥𝑥
𝑑𝑑1𝑦𝑦
𝑑𝑑2𝑥𝑥
𝑑𝑑2𝑦𝑦
𝑑𝑑3𝑥𝑥
𝑑𝑑3𝑦𝑦
𝑑𝑑4𝑥𝑥
𝑑𝑑4𝑦𝑦

= [𝐾𝐾]

0
0
0
0
𝑑𝑑3𝑥𝑥
𝑑𝑑3𝑦𝑦
𝑑𝑑4𝑥𝑥
𝑑𝑑4𝑦𝑦

Finite Element Method in a Plane Stress Problem

𝐹𝐹 =
1
2

(1000psi)(1in.× 10in.)

𝐹𝐹 = 5000lb

𝐹𝐹 =
1
2
𝑇𝑇𝐴𝐴

𝐹𝐹} = [𝐾𝐾]{𝑑𝑑
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(2) A combination of stiffness matrix:
- Element 1
• Calculation of matrix [B]

and

where

[𝐵𝐵] =
1
2𝐴𝐴

𝛽𝛽𝑖𝑖 0 𝛽𝛽𝑗𝑗
0 𝛾𝛾𝑖𝑖 0
𝛾𝛾𝑖𝑖 𝛽𝛽𝑖𝑖 𝛾𝛾𝑗𝑗

0 𝛽𝛽𝑚𝑚 0
𝛾𝛾𝑗𝑗 0 𝛾𝛾𝑚𝑚
𝛽𝛽𝑗𝑗 𝛾𝛾𝑚𝑚 𝛽𝛽𝑚𝑚

𝐴𝐴 =
1
2
𝑏𝑏𝑏

=
1
2

20 10 = 100 𝑖𝑖𝑖𝑖.2

Finite Element Method in a Plane Stress Problem
𝑘𝑘] = 𝑡𝑡𝐴𝐴 𝐵𝐵 𝑇𝑇[𝐷𝐷][𝐵𝐵

𝛽𝛽𝑖𝑖 = 𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑚𝑚 = 10 − 10 = 0
𝛽𝛽𝑗𝑗 = 𝑦𝑦𝑚𝑚 − 𝑦𝑦𝑖𝑖 = 10 − 0 = 10
𝛽𝛽𝑚𝑚 = 𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗 = 0 − 10 = −10
𝛾𝛾𝑖𝑖 = 𝑥𝑥𝑚𝑚 − 𝑥𝑥𝑗𝑗 = 0 − 20 = −20
𝛾𝛾𝑗𝑗 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑚𝑚 = 0 − 0 = 0
𝛾𝛾𝑚𝑚 = 𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖 = 20 − 0 = 20
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Then [B] is

• Matrix [D] (Plane stress)

• Calculation of stiffness matrix

[𝐵𝐵] =
1

200

0 0 10
0 −20 0

−20 0 0

0 −10 0
0 0 20

10 20 −10

𝐷𝐷 =
𝐸𝐸

1 − ν2

1 ν 0
ν 1 0

0 0
1 − ν

2

=
30(106)

0.91

1 0.3 0
0.3 1 0
0 0 0.35

𝑘𝑘 = 𝑡𝑡𝐴𝐴 𝐵𝐵 𝑇𝑇 𝐷𝐷 𝐵𝐵 =
75,000

0.91

140 0 0 −70 −140 70
0 400 −60 0 60 −400
0 −60 100 0 −100 60

−70 0 0 35 70 −35
−140 60 −100 70 240 −130

70 −400 60 −35 −130 435

i = 1 j = 3 m = 2

Finite Element Method in a Plane Stress Problem
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and

where

[𝐵𝐵] =
1
2𝐴𝐴

𝛽𝛽𝑖𝑖 0 𝛽𝛽𝑗𝑗
0 𝛾𝛾𝑖𝑖 0
𝛾𝛾𝑖𝑖 𝛽𝛽𝑖𝑖 𝛾𝛾𝑗𝑗

0 𝛽𝛽𝑚𝑚 0
𝛾𝛾𝑗𝑗 0 𝛾𝛾𝑚𝑚
𝛽𝛽𝑗𝑗 𝛾𝛾𝑚𝑚 𝛽𝛽𝑚𝑚

𝐴𝐴 =
1
2
𝑏𝑏𝑏

=
1
2

20 10 = 100 𝑖𝑖𝑖𝑖.2

Finite Element Method in a Plane Stress Problem

𝛽𝛽𝑖𝑖 = 𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑚𝑚 = 0 − 10 = −10
𝛽𝛽𝑗𝑗 = 𝑦𝑦𝑚𝑚 − 𝑦𝑦𝑖𝑖 = 10 − 0 = 10
𝛽𝛽𝑚𝑚 = 𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗 = 0 − 0 = 0
𝛾𝛾𝑖𝑖 = 𝑥𝑥𝑚𝑚 − 𝑥𝑥𝑗𝑗 = 20 − 20 = 0
𝛾𝛾𝑗𝑗 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑚𝑚 = 0 − 20 = −20
𝛾𝛾𝑚𝑚 = 𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖 = 20 − 0 = 20
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Then [B] is

• Matrix [D] (Plane stress)

• Calculation of stiffness matrix

[𝐵𝐵] =
1

200

−10 0 10
0 0 0
0 −10 −20

0 0 0
−20 0 20
10 20 0

𝐷𝐷 =
30(106)

0.91

1 0.3 0
0.3 1 0
0 0 0.35

𝑘𝑘 =
75,000

0.91

100 0 −100 60 0 −60
0 35 70 −35 −70 0

−100 70 240 −130 −140 60
60 −35 −130 435 70 −400
0 −70 −140 70 140 0

−60 0 60 −400 0 400

i = 1 j = 4 m = 3

Finite Element Method in a Plane Stress Problem
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Finite Element Method in a Plane Stress Problem

Element 1:

Element 2:

1 2 3 4

[𝑘𝑘] =
375,000

0.91

28 0 −28 14 0 −14 0 0
0 80 12 −80 −12 0 0 0

−28 12 48 −26 −20 14 0 0
14 −80 −26 87 12 −7 0 0
0 −12 −20 12 20 0 0 0

−14 0 14 −7 0 7 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1 2 3 4

[𝑘𝑘] =
375,000

0.91

20 0 0 0 0 −12 −20 12
0 7 0 0 −14 0 14 −7
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −14 0 0 28 0 −28 14

−12 0 0 0 0 80 12 −80
−20 14 0 0 −28 12 48 −26
12 −7 0 0 14 −80 −26 87
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(3) Calculation of displacement: Superpositioning element stiffness matrix, 
global system of stiffness matrix is obtained as below.

Finite Element Method in a Plane Stress Problem

1 2 3 4

[𝐾𝐾] =
375,000

0.91

48 0 −28 14 0 −26 −20 12
0 87 12 −80 −26 0 14 −7

−28 12 48 −26 −20 14 0 0
14 −80 −26 87 12 −7 0 0
0 −26 −20 12 48 0 −28 14

−26 0 14 −7 0 87 12 −80
−20 14 0 0 −28 12 48 −26
12 −7 0 0 14 −80 −26 87



Seoul National University2019/1/4 - 31 -

Chapter 7 : FEM – Plane stress and strain

Substituting [K] to 

Finite Element Method in a Plane Stress Problem

Applying given boundary conditions with elimination of columns and rows.

𝑅𝑅1𝑥𝑥
𝑅𝑅1𝑦𝑦
𝑅𝑅2𝑥𝑥
𝑅𝑅2𝑦𝑦

5000
0

5000
0

=
375,000

0.91

48 0 −28 14 0 −26 −20 12
0 87 12 −80 −26 0 14 −7

−28 12 48 −26 −20 14 0 0
14 −80 −26 87 12 −7 0 0
0 −26 −20 12 48 0 −28 14

−26 0 14 −7 0 87 12 −80
−20 14 0 0 −28 12 48 −26
12 −7 0 0 14 −80 −26 87

0
0
0
0
𝑑𝑑3𝑥𝑥
𝑑𝑑3𝑦𝑦
𝑑𝑑4𝑥𝑥
𝑑𝑑4𝑦𝑦

5000
0

5000
0

=
375,000

0.91

48 0 −28 14
0 87 12 −80

−28 12 48 −26
14 −80 −26 87

𝑑𝑑3𝑥𝑥
𝑑𝑑3𝑦𝑦
𝑑𝑑4𝑥𝑥
𝑑𝑑4𝑦𝑦

𝐹𝐹} = [𝐾𝐾]{𝑑𝑑
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Transposing the displacement matrix to the left side

Finite Element Method in a Plane Stress Problem

Therefore, x-component of the displacement at nodes in the equation 
∭𝑉𝑉 𝐵𝐵 𝑇𝑇 𝐷𝐷 𝐵𝐵 𝑑𝑑𝑑𝑑 𝑑𝑑 = {𝑓𝑓} of 2-D plane is quite accurate when considering the 
coarse grids.

The solution of 1-D beam under tension force is

𝑑𝑑3𝑥𝑥
𝑑𝑑3𝑦𝑦
𝑑𝑑4𝑥𝑥
𝑑𝑑4𝑦𝑦

=
0.91

375,000

48 0 −28 14
0 87 12 −80

−28 12 48 −26
14 −80 −26 87

−1 5000
0

5000
0

=

609.6
4.2

663.7
104.1

× 10−6in.

𝛿𝛿 =
𝑃𝑃𝑃𝑃
𝐴𝐴𝐸𝐸 =

(10,000)20
)10(30 × 106 = 670 × 10−6in.
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Finite Element Method in a Plane Stress Problem

Calculating,

(4) Stresses at each node:

Element 1

{𝜎𝜎} =
𝐸𝐸

1 − ν2

1 ν 0
ν 1 0

0 0
1 − ν

2

×
1
2𝐴𝐴

𝛽𝛽1 0 𝛽𝛽4
0 𝛾𝛾1 0
𝛾𝛾1 𝛽𝛽1 𝛾𝛾4

0 𝛽𝛽3 0
𝛾𝛾4 0 𝛾𝛾3
𝛽𝛽4 𝛾𝛾3 𝛽𝛽3

𝑑𝑑1𝑥𝑥
𝑑𝑑1𝑦𝑦
𝑑𝑑4𝑥𝑥
𝑑𝑑4𝑦𝑦
𝑑𝑑3𝑥𝑥
𝑑𝑑3𝑦𝑦

𝜎𝜎} = [𝐷𝐷][𝐵𝐵]{𝑑𝑑

𝜎𝜎𝑥𝑥
𝜎𝜎𝑦𝑦
𝜏𝜏𝑥𝑥𝑦𝑦

=
1005
301
2.4

psi
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