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Final exam. 

• June 15, 2020 (Monday) 

• 3:30 pm to 6:15pm

• Eng. Building #33, Rooms: 225,226,228,229,230,231

• Chapters 1 – 7, 10

• About 10 questions with sub-questions

• Excludes optional chapters, but includes one taught in the class

• Absolute evaluation

Classroom of each student will be notified before test.

* 수강생이 강의실(기말시험 고사장) 입장 전, 개인방역(손 소독, 마스크) 필수, 체온측정, 문진표 작성 후 문제가 없을 시
입장 가능.(마스크 미 착용시 강의실 입장 불가).
* 수강생 강의실 입장 시 비치되어 있는 손소독 티슈로 책상 및 의자 소독
* 체온 측정 시, 발열증상이 있는 학생은 고사실 입장 불가 (즉시 귀가 조치. 발열 증상이 있는 학생은 선별진료소
혹은 1339로 연락하도록 안내)



Chapter 8

Transformation of stress



Objectives of the chapter

- The most common problems in engineering mechanics involve 
“transformation of axes”

- Question: stresses are known in x-y plane (or x-y coordinate). 
Then, what is the stress in the coordinate rotated about q degrees?

- Stress (and strain) is not coordinate dependent, but they have 
different components if the coordinates are different!
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Objectives of the chapter

Wood

Wood Glue

PP

Two pieces of wood, cut at an angle, and glued together. The wood 
is being pulled apart by a tensile force P. 

How do we know if the glued joint can sustain the resultant stress 
that this force produces?

(Assume that we know the tensile and shear properties of the glue)



Objectives of the chapter

Maximal principal stress distribution observed 
in three gorilla teeth of an unworn (left), a 

lightly worn (middle) and a worn (right) 
condition

Researchers at the Max Planck Institute for 
Evolutionary Anthropology in Leipzig, 
Germany, and the Senckenberg Research 
Institute in Frankfurt am Main, Germany, 
have conducted stress analyses on gorilla 
teeth of differing wear stages. Their 
findings show that different features of the 
occlusal surface antagonize tensile stresses 
in the tooth to tooth contact during the 
chewing process. They further show that 
tooth wear with its loss of dental tissue 
and the reduction of the occlusal relief 
decreases tensile stresses in the tooth. The 
result, however, is that food processing 
becomes less effective. Thus, when the 
condition of the occlusal surface changes 
during an individual’s lifetime due to tooth 
wear, the biomechanical requirements on 
the existing dental material change as well 
– an evolutionary compromise for longer 
tooth preservation.



Transformation of Stresses: 2D
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Plane stress

• A plane stress condition exists in 2D when the stress in the third 
direction is not very significant

- Example: sx, sy and txy may be non-zero, while sz, txz and tyz are zero
- For plane stress problems, however, the strains in all the three directions 
are non-zero (i.e., ex, ey and ez are non-zero)

• Applications: pressure vessels, thin sheets under stretch

• Special cases of plane stress conditions

- Uniaxial stress state (ex: sy = 0, txy = 0)

- Pure shear state (sx = sy = 0)

- Biaxial stress state (txy = 0)



Transformation of Stresses: 2D
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Plane stress

FIGURE 8.1 (a) Thin plate with in-plane loads; (b) element in plane 
stress; (c) two-dimensional presentation of plane stress.



Transformation of Stresses: 2D
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Consideration of static equilibrium 



Transformation of Stresses: 2D 
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1D uniaxial tension
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Force equilibrium in the y’ direction

(normal to the y’ plane)
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Transformation of Stresses: 2D, Direct approach 

2D plane stress

Force equilibrium in the x’ direction

qt cos sinθ2θsinσθcosσσ xy
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Transformation of Stresses: 2D, Direct approach 

2D plane stress

Force equilibrium in the y’ direction

qt cos sinθ2θcosσθsinσσ xy
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Transformation of Stresses: 2D, Direct approach 

2D plane stress: summary
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Transformation of Stresses: 2D

( ) ( ) θsincoscosθsinθσσ
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Transformation of Stresses: Example



Transformation of Stresses: 2D, Mohr Circle
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Transformation of Stresses: 2D, Mohr Circle

Steps to draw Mohr’s circle: illustration

sx= 5

txy

txy= 4

sy=-3 Step 1:

- Consider a shear stress acting in a 
clockwise-rotation sense as being 
positive (+), and counter-clockwise 
as negative (-)

- The shear stresses on the x and y 
faces have opposite signs

- The normal stresses are positive 
in tension and negative in 
compression as usual
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Positive Negative Positive Negative



Transformation of Stresses: 2D, Mohr Circle

Steps to draw Mohr’s circle: illustration

Step 2: 

- Construct a graph with t as the ordinate 
(y axis) and s as abscissa (x axis). 

- Plot the stresses on the x and y faces of 
the stress as two points on this 
graph(follow the sign convention before)

Step 3: 

- Connect these two points with a straight 
line

- Draw as circle with the line as a 
diameter
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Transformation of Stresses: 2D, Mohr Circle

Steps to draw Mohr’s circle: illustration

Step 4: 

- Determine stresses on a 
square that has been 
rotated through an angle q
with respect to the original 
square

- Rotate the line in the 
same direction through 2q. 
This new end points of the 
line are labeled as x’ and 
y’. 
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Transformation of Stresses: Principal stress

- Normal stresses become 
maximum values and the 
shear stresses are zero

- These normal stresses 
are called “principal” 
stresses, sp1 and sp2
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Transformation of Stresses: Principal stress
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By Pythagorean construction

Principal stresses

Maximum shear stress

“The maximum shear are 90 o away from the 

principal stress points on the Mohr’s circle”



Transformation of Stresses: 2D, Mohr Circle

Maximum shear stress and its plane 
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Maximum shear stress

“ In the tensile specimen, the maximum 

shear are 45 o away from the loading 

direction which is the direction of principal 

stress”



Transformation of Stresses: Invariant
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Transformation of Stresses: 2D, Mohr Circle

Pure shear

0=
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When normal stresses vanish on 

the plane of maximum shear

Example: the stress state by the 

simple torsion
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Transformation of Stresses: 2D, Mohr Circle

Under Pure shear
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Principal strain is related to the principal stress

From the Mohr’s circle



Thin-Walled Pressure Vessels

• A thin-walled vessel is one in which the 

distribution of stress is essentially constant

• through the thickness, whereas in thick-walled 

vessels, the normal stress varies over the wall 

thickness. 

• If the ratio of the wall thickness t to the inner 

radius r is equal or less than about 1/10 (or r/t ≥

10), the vessel is classified as thin-walled. In fact, 

in thin-walled vessels, there is often no distinction 

made between the inside and outside radii 

because they are nearly equal.



Real life examples of cylindrical and spherical 

pressure vessels (Courtesy CB&I.)



Model of a cylindrical pressure vessel and equations

tangential stress:



Model of a cylindrical pressure vessel and equations

axial 

(longitudinal) 

stress:

tangential stress:



Strain due to internal pressure

Circumferential strain due to internal pressure:

Extension of the radius of the cylinder:



Spherical pressure vessels



Spherical pressure vessels

Tangential stress due to internal pressure:

Radial extension of the sphere:



MAXIMUM SHEAR STRESS IN VESSELS

Spherical vessel:

Cylindrical vessel:


