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Final exam.

* June 15, 2020 (Monday)
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* Eng. Building #33, Rooms: 225,226,228,229,230,231

e Chapters1-7,10

* About 10 questions with sub-questions

* Excludes optional chapters, but includes one taught in the class
* Absolute evaluation

Classroom of each student will be notified before test.
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Chapter 8

Transformation of stress



Objectives of the chapter

- The most common problems in engineering mechanics involve
“transformation of axes”

- Question: stresses are known in x-y plane (or x-y coordinate).
Then, what is the stress in the coordinate rotated about 6 degrees?

- Stress (and strain) is not coordinate dependent, but they have
different components if the coordinates are different!




Objectives of the chapter

Two pieces of wood, cut at an angle, and glued together. The wood
IS being pulled apart by a tensile force P.

How do we know if the glued joint can sustain the resultant stress
that this force produces?

(Assume that we know the tensile and shear properties of the glue)



Objectives of the chapter

ZMB-31435 ZMB-31626 ZMB-83551 Researchers at the Max Planck Institute for
Evolutionary Anthropology in Leipzig,
Germany, and the Senckenberg Research
Institute in Frankfurt am Main, Germany,
have conducted stress analyses on gorilla
teeth of differing wear stages. Their
findings show that different features of the
occlusal surface antagonize tensile stresses
in the tooth to tooth contact during the
chewing process. They further show that
tooth wear with its loss of dental tissue
and the reduction of the occlusal relief
decreases tensile stresses in the tooth. The
result, however, is that food processing
becomes less effective. Thus, when the
condition of the occlusal surface changes
during an individual’s lifetime due to tooth
wear, the biomechanical requirements on
the existing dental material change as well

Maximal principal stress distribution observed —an evolutionary compromise for longer
in three gorilla teeth of an unworn (left), a tooth preservation.
lightly worn (middle) and a worn (right)
condition

Max. principal
stress (MPa)
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Transformation of Stresses: 2D

Plane stress

* A plane stress condition exists in 2D when the stress in the third

direction is not very significant
- Example: 6,, 6, and t,, may be non-zero, while ¢, 1,, and 1, are zero
- For plane stress problems, however, the strains in all the three directions
are non-zero (i.e., g,, €, and g, are non-zero)

* Applications: pressure vessels, thin sheets under stretch

* Special cases of plane stress conditions
- Uniaxial stress state (ex: 0, =0, 7,,=0)

- Pure shear state (o, = g, = 0)

- Biaxial stress state (z,, = 0)



Transformation of Stresses: 2D

Plane stress

FIGURE 8.1 (a) Thin plate with in-plane loads; (b) element in plane
stress; (c) two-dimensional presentation of plane stress.




Transformation of Stresses: 2D

Consideration of static equilibrium




Transformation of Stresses: 2D

1D uniaxial tension
Force equilibrium in the vy’ direction

o)

Y (normal to the y’ plane)
[ oy (csyA)cos@ -G, (A/cose) =0
A \]/ 6, = 6,05°0
Force equilibrium in the tangential direction
\ 7.y = 0,58 - coso

10



Transformation of Stresses: 2D, Direct approach

2D plane stress

Force equilibrium in the x’ direction

4

6, = 6,050 + 6,5in°0 + 27,,5in6 cosé
Force equilibrium in the y’ direction
o, . G, .
Ty = — 75m26 + 7s|n26 + T, C0S20




Transformation of Stresses: 2D, Direct approach

2D plane stress
Force equilibrium in the vy’ direction

r s a2 2n -
6, = 0,8IN°Y + 6,€0s°0 — 27, SINB COSH

y
AcosO '
Dxy

AsinO

GX4—




Transformation of Stresses: 2D, Direct approach

2D plane stress: summary

6,C05°0 + 6,5in°0 + 27,,Sinf cosd
6,8in°0 + 6,€05°0 — 27,,5iN6 cOsH

(6, — o, kinBcosd + 7, (c0526 - sinze)

Matrix form
c® s 2sC
s° ¢ —2sC
S I

(5 )

X

Oy

Uy )

or

¢ = Ao



Transformation of Stresses: 2D

6, = 6,05°0 + 6,5in°0 + 27, 5in6 cosd

y

6, = 6,sin°0 + 6,€05°0 — 27,,Sin6 cosé

(6, — o, kin6cosd + 7, (00520 — sinze)

Txfy' —
o, + O 6, — O )
G, = ——— + ———>C0s20 + 1, Sin20
2 2
o, + O 6, — O ]
6, = —— — ———>C0s20 — 1,,Sin20
2 2 g
6, — 0, .
T, = ———>5in20 + 1, 0520
Xy 2 Xy

Trigonometric ldentities

sin20 = 2sin0 cosO

sinZo — 1 — cos20
2
0520 — 1+ 020526



Transformation of Stresses: Example

1.09 MPa
y 10.09 MPa
\\ //x»
7 (b)
1 Ao,=2MPa T
T - 31.7°
75=5MPa
B
e & ,=7MPa
-7 y
p =X ' ';f\ﬁSMPa
e [
1 -~ o 45MP
S—el_ 133 y 5.50 MPa
(a) Tt
T » X
7\ "‘-ﬂ,_‘ix’
(c)




Transformation of Stresses: 2D, Mohr Circle

2 2
o, + 0O 2 o, — O 2
» [GX,— XZ yj + Ty =( X2 y) + 1T,




Transformation of Stresses: 2D, Mohr Circle

Steps to draw Mohr’s circle: illustration
c,=-3 Step 1.

_1_..rxy= 4 - Consider a shear stress acting in a
clockwise-rotation sense as being

I Tyy positive (+), and counter-clockwise

. as negative (-)
" - The shear stresses on the x and y

faces have opposite signs

- The normal stresses are positive
In tension and negative in

compression as usual
O'y 1Gy
O-X
ﬁ

Positive Negative Positive Negative

Tyy

ﬁ

I




Transformation of Stresses: 2D, Mohr Circle

Steps to draw Mohr's circle: illustration

Step 2.

- Construct a graph with t as the ordinate
(y axis) and ¢ as abscissa (x axis).

- Plot the stresses on the x and y faces of T
the stress as two points on this
graph(follow the sign convention before)

(34)
Step 3.
- Connect these two points with a straight \,\
line

- Draw as circle with the line as a
diameter
/(+5,-4)




Transformation of Stresses: 2D, Mohr Circle

Steps to draw Mohr's circle: illustration

Step 4: o o
- Determine stresses on a >(

sguare that has been

rotated through an angle 6 T

with respect to the original
square

- Rotate the line in the
same direction through 26.
This new end points of the
line are labeled as x’ and

Y.




Transformation of Stresses: Principal stress

N\

- Normal stresses become ‘\
maximum values and the
shear stresses are zero

- These normal stresses y
are called “principal”
stresses, c,,; and o,




Transformation of Stresses: Principal stress

T

tan20, = =
(GX - Gy)/ 2 By Pythagorean construction
(G + 0 ) G, — O 2 2 inei

G o1 pr = X v) 4 X y |y (Tx ) Principal stresses

: 2 2 y

2
G, —O 6, — O 2 Maximum shear stress
Tmax — pl p2 — [ : y) + (TX )
2 2 d

“The maximum shear are 90 © away from the
principal stress points on the Mohr’s circle”




Transformation of Stresses: 2D, Mohr Circle

Maximum shear stress and its plane

Maximum shear stress

“In the tensile specimen, the maximum
shear are 45 °© away from the loading
direction which is the direction of principal
stress”




Transformation of Stresses: Invariant

o, +0, O,—0, _
G, = + c0s26 + 1, SIn20
2 2
o, + O 6, —O -
6, = —— — ———> 0820 — 1,,Sin20
2 2
6, — 0, .
T, = ————>5in20 + t,,c0520
XYy 2 Xy

\ 4

6, +0,=0,+0,




Transformation of Stresses: 2D, Mohr Circle

Pure shear
When normal stresses vanish on

c, + G, the plane of maximum shear

= ( Example: the stress state by the

2 simple torsion
T
y —
YA
0, /
X These two stresses are equivalent




Transformation of Stresses: 2D, Mohr Circle

/2
Under Pure shear Y
T = Gy Hooke’s law for shear |
- 81
T .
€ = — From the Mohr circle
2G -
Principal strain is related to the principal stress
1 ( y
& = —\0p — 02)
E E
From the Mohr’s circle G
2(1 + v)

© L)

ell=



Thin-Walled Pressure Vessels

 Athin-walled vessel is one in which the
distribution of stress is essentially constant

» through the thickness, whereas in thick-walled
vessels, the normal stress varies over the wall
thickness.

* If the ratio of the wall thickness t to the inner
radius r is equal or less than about 1/10 (or r/t 2
10), the vessel is classified as thin-walled. In fact,
In thin-walled vessels, there is often no distinction
made between the inside and outside radii
because they are nearly equal.



Real life examples of cylindrical and spherical
pressure vessels (Courtesy CB&l.)




Model of a cylindrical pressure vessel and equations

tangential stress:

pr
O = —
" [

(D)

FIGURE 8.18 Thin-walled
cylindrical pressure vessel;
(a) entire cylinder;

(b) free-body diagram

of a segment.




Model of a cylindrical pressure vessel and equations

tangential stress:
pPr
Ot — —
[
axial
(longitudinal)
stress:
FIGURE 8.19 Free-body pPr
diagram of the portion of the Oqg — —
vessel shown 1n Fig. 8.18a. 2t




Strain due to internal pressure

Circumferential strain due to internal pressure:

5
=5 27(r + 6.) — 2mr| = ?

Ct —

& = — (0 — voy)

Extension of the radius of the cylinder:




Spherical pressure vessels

(c)

FIGURE 8.20 Thin-walled
spherical pressure vessel:
(a) entire sphere; (b, ¢)
free-body diagrams of
hemisphere.

(D)




Spherical pressure vessels

Tangential stress due to internal pressure:
Pr
2t

O —

Radial extension of the sphere:

pl"
) 1 —
> 2Ft A




MAXIMUM SHEAR STRESS IN VESSELS

Cylindrical vessel:

| 2

(Tmax)a — 5 (Ur — 0) Y

Spherical vessel.

1 _pr

(Tmax), = E(J - 0) = A7




