
Gradient vectors Nonlinear Programs

Definition 2.1

The gradient(l�Ö�¦l�  7�'�) of a function f at x = x̄ is defined as

∇f(x̄) =


∂f
∂x1

(x̄)
...

∂f
∂xn

(x̄)

 . (2.4)
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Gradient vectors Nonlinear Programs

The gradient ∇f(x) = [1, 1]T of the linear functional f(x1, x2) = x1 + x2

is the direction into which f increases fastest. It is normal to the contour
(or level set) containing x̄. The rate of increase is given by ‖∇f(1, 1)‖2 =√

2.
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Gradient vectors Nonlinear Programs

In general, the gradient ∇f(x̄) of a real-valued function f(x) at x = x̄ is
the same as the gradient of the linear function whose graph is the plane
tangent to the graph of f(x) at (x, f(x)). The instantaneous rate of
increase of the function at x = x̄ is largest in the direction of ∇f(x̄) and
is equal to ‖∇f(x̄)‖2.
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Gradient vectors Nonlinear Programs

Level sets of f(x) = x1 + 2x2 and f(x) = x2
1 + 2x2

2.

Suppose the inner product y and f(x̄) is negative. If f is linear, it decreases at a

constant rate along the line from x̄ into the direction y. A nonlinear function

does not necessarily decreases at a constant rate. But, there is an open interval

immediately after x̄ along the line on which the function value is smaller than

f(x̄)
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Descent and ascent directions Nonlinear Programs

Definition 3.1

A vector y is said to be a descent direction from x̄ if ∃ λ̄ > 0 :
f(x̄ + λy) < f(x̄) ∀ 0 < λ < λ̄.

In the figure, we can see every direction from x̄ having a negative inner
product with ∇f(x̄) is a descent one.
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A little bit of calculus - Chain rule Nonlinear Programs

The derivative Df(x̄) of a function f : R3 → R2, x = [x1, x2, x3]
T 7→ f(x) =

[f1(x), f2(x)]T at x = x̄ is defined as

Df(x̄) =

[
∂f1
∂x1

(x̄) ∂f1
∂x2

(x̄) ∂f1
∂x3

(x̄)
∂f2
∂x1

(x̄) ∂f2
∂x2

(x̄) ∂f2
∂x3

(x̄)

]
, (4.5)

a linear transformation R3 → R2.

The derivative of linear functional cT x is cT . The derivative of a general linear
function f(x) = Ax is A.

In general Df(x̄) is the linear approximation of f around x = x̄ whose error
decreases faster than the distance from x̄: ‖f(x̄ + y) − f(x̄) −Df(x̄)y‖2 =
o(‖y‖2).

Hessian (K�r�îß�) The derivative D(∇f)(x̄) of the function x 7→ ∇f(x) at x = x̄
is called the Hessian of f at x = x̄.

∇2f(x̄) =


∂2f

∂x1∂x1
(x̄) · · · ∂2f

∂xn∂x1
(x̄)

...
...

∂2f
∂x1∂xn

(x̄) · · · ∂2f
∂xn∂xn

(x̄)

 (4.6)
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A little bit of calculus - Chain rule Nonlinear Programs

Proposition 4.1

If h : Rn → Rm and g : Rm → Rp are diffrentiable, their composition f := g ◦ h :
Rn → Rp, x 7→ g(h(x)) is also differentiable and

Df(x) = D(g ◦ h)(x) = Dg(h(x))Dh(x).

f : R3 → R, x = [x1, x2, x3]
T , Df(x) = [ ∂f

∂x1
, ∂f

∂x2
, ∂f

∂x3
] ∈ R1×3.

g : R → R3, t 7→ [g1(t), g2(t), g3(t)]
T , Dg(t) = [g′

1(t), g
′
2(t), g

′
3(t)]

T ∈ R3×1.

h := f ◦ g, t 7→ (f ◦ g)(t) = f(g1(t), g2(t), g3(t)). Then

h′(t) = Df(g(t))Dg(t)

= [ ∂f
∂x1

(g(t)), ∂f
∂x2

(g(t)), ∂f
∂x3

(g(t))]

 g′
1(t)

g′
2(t)

g′
3(t)


= ∇T f(g(t))Dg(t).

(4.7)

In the case, g(t) = x + ty (x, y ∈ R3), Dg(t) = y and h′(t) = ∇T f(x + ty)y. We
call h′(0) = ∇T f(x)y is the directional derivative of f at x into y.
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A little bit of calculus - Chain rule Nonlinear Programs

Chain rule extends to any finite number of functions:

D(f ◦ g ◦ h)(x) = Df(g(h(x)))Dg(h(x))Dh(x).

Since h′(t) = ∇T f(x + ty)y is the composition of the three maps

t 7→ x + ty︸ ︷︷ ︸
z

7→ ∇f(x + ty︸ ︷︷ ︸
z

)

︸ ︷︷ ︸
w

7→ yT∇f(x + ty)︸ ︷︷ ︸
w

,

the chain rule implies
h′′(t) = yT∇2f(x + ty)y.
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Descent direction A little bit of calculus - Chain rule Nonlinear Programs

Proposition 4.2

Every y such that ∇f(x̄)T y < 0 is a descent direction.

Proof: We take it for granted for a function in a single variable. For a function f
in x ∈ Rn, we consider g(λ) := f(x̄ + λy), a function in λ ∈ R. Then by the
chain rule,

g′(0) = ∇f(x̄)T y > 0. (4.8)

By the single-variable case, there is λ̄ > 0 such that

∀ 0 < λ ≤ λ̄, f(x̄ + λy) > f(x̄).

Exercise 4.3

(1) Define an ascent direction. Restate the proposition in ascent direction.
(2) Sketch the ascent directions of f(x) = (x1 − 2x2)2 at x = (1, 1).
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Descent direction A little bit of calculus - Chain rule Nonlinear Programs

Exercise 4.4

Compute the descent directions of the objective function from x0.

max 3
4x2

1 +x2
2

sub.to 2x1 −x2 ≥ 2,
2x1 +x2 ≥ 2,
x1 +4x2 ≤ 19,
x1 ≤ 7,
x1 +5x2 ≥ −8.
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Feasible direction Nonlinear Programs

Definition 5.1

If we can move from x ∈ F into the direction y for a positive distance
maintaining feasibility, i.e. ∃ λ̄ > 0 such that x + λy ∈ F , ∀ 0 < λ < λ̄,
y is called a feasible direction of x.

If x̄ satisfies a constraint g(x) ≤ 0, where g is differentiable, with equality,
any y such that ∇T g(x̄)y < 0 is a feasible direction of x̄.
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Feasible direction Nonlinear Programs

Exercise 5.2

Repeat for the constraint g(x) ≥ 0.
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Feasible direction Nonlinear Programs

If there are more than one constraints gi(x) ≤ 0, a direction y satisfying ∇gT
i (x̄)y

< 0, for all i, is a feasible direction of x̄.

Exercise 5.3

Compute the feasible directions of x0 in the optimization problem in Exercise 4.4.
Is x0 optimal? Explain.
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Principle of necessary opt condition Nonlinear Programs

Definition 6.1

For min problems, Improving directions = Descent directions ∩ Feasible
directions. For max problem, . . ..

Suppose our problem is max {f(x) : g1(x) ≤ 0, g2(x) ≤ 0}.
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Principle of necessary opt condition Nonlinear Programs

A necessary condition of optimality: Any (local) optimal solution should
not have an improving direction.
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Principle of necessary opt condition Nonlinear Programs

Example 6.2

max f(x) = 4x1 +2x2

sub. to g1(x) = x1 +2x2 −10 ≤ 0
g2(x) = 4x1 −x2 −4 ≤ 0
g3(x) = −x1 ≤ 0
g4(x) = −x2 ≤ 0

(6.9)

For the point (2, 4), any d: [4, 2]T d > 0 is an
ascent direction. Also any d having a negative
inner product with the gradients [1, 2]T , [4,−1]T

of active constraints is a feasible direction. If x̄ is
a local optima, the two set of directions have no
intersection.

If g1(x̄), ∇gT
2 (x̄) are linear indep. ∇gT

1 (x̄)y <
0, ∇gT

2 (x̄)y < 0 is nonempty. Then 0 ≥ sup
{∇fT (x̄)y : ∇gT

1 (x̄)y < 0, ∇gT
2 (x̄)y < 0} ⇔ 0

≥ max {∇fT (x̄)y : ∇g1(x̄)y ≤ 0, ∇g2(x̄)y ≤ 0}.
By strong duality, ⇔ ∃ y ≥ 0 : ∇f(x̄) = ∇g1(x̄)y1

+ · · · ∇gm(x̄)ym, where yi’s of the inactive con-
strains are all 0.
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Principle of necessary opt condition Nonlinear Programs

The same principle applies to any nonlinear program.

max f(x) = x1x2

sub. to g1(x) = x1 +2x2 − 10 ≤ 0
g2(x) = x2

1 −x2 ≤ 0
x ≥ 0

(6.10)

Repeat the arguments for x̄ =
(2, 4) to see that the necessary
condition of a nonlinear program is
exactly the necessary condition of
the linear program obtained by the
linear approximation of the prob-
lem.

Explain why either (0, 5) or (1, 1)
can not be an optimal solution?
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KKT necessary optimality condition Nonlinear Programs

If a constraint gi(x) ≤ 0, 1 ≤ i ≤ m is satisfied by equality gi(x̄) = 0 for a
feasible x̄, it is called an active constraint of x̄. We will denote the indices
of active constraints by A(x̄).

Proposition 7.1

Suppose x̄ is a local optimum of max{f(x)|g(x)≤0}. If {∇gi(x̄) :
i ∈ A(x̄)} are linearly independent, then there is λ ∈ Rm such that

∇f(x̄)−
∑m

i=1 λi∇gi(x̄) = 0,
λ ≥ 0,

λi = 0,∀i /∈ A(x̄).
(7.11)

Exercise 7.2

Restate the necessary optimality condition for
min{f(x)|gi(x) ≥ 0, 1 ≤ i ≤ m}.

Sung-Pil Hong 4th June 2018 25 / 65



KKT necessary optimality condition Nonlinear Programs

Remark 7.3

The following example shows that the ‘regularity condition’ is essential.
(Without it, there may be no y : ∇T gi(x̄)y < 0.

max −x1 + 2x2

s.t. −x3
1 + x2 ≤ 0

−x2 ≤ 0.

In the case of convex optimization, the regularity can be replaced by that
“ there is interior feasible solution x: gi(x) < 0 for all i,” Slater condition.
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KKT necessary optimality condition Nonlinear Programs

max f(x) = x1x2

sub. to g1(x) = x1 +2x2 − 10 ≤ 0
g2(x) = x2

1 −x2 ≤ 0
g3(x) = −3(x1 − 1)2 +x2 − 2 ≤ 0

x ≥ 0

(7.12)

The feasible (0, 5) is a local op-
timum but not an (global) op-
timum.
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Level sets and graphs Convex optimization Nonlinear Programs

Definition 8.1

For reals α, the following set is called α-sublevel set of f :

Cα = {x ∈ domf |f(x) ≤ α}.

Proposition 8.2

An sublevel set of a convex function is also convex. But the converse is not true.

Definition 8.3

(1) The graph of f : Rn → R is the set {(x, f(x))|x ∈ domf}.
(2) The epigraph of f : Rn → R is the set epif = {(x, t)|x ∈ domf, f(x) ≤ t}.
(3) The hypograph of f : Rn → R is the set hypf = {(x, t)|x ∈ domf , f(x) ≥
t}.

Remark 8.4

A function is convex (concave) if and only if its epigraph (hypograph) is
convex.

Sung-Pil Hong 4th June 2018 28 / 65



Convex optimization Nonlinear Programs

By a convex optimization (�̂¦2�¤þj&h��o) we mean an optimization problem
of minimizing a convex function or maximizing a concave function over a
convex set. A typical form of convex optimzation is

min convex f(x) or max concave f(x)
s.t. convex gi(x) ≤ 0, or

concave gi(x) ≥ 0, i = 1, . . . ,m,
affine hj(x) = 0, j = 1, . . . , p.

(8.13)
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Why convex optimization? Convex optimization Nonlinear Programs

The computational efforts for solving an optimization problem vary
significantly depending on the characteristics of the functions in the
objective or constraints. A general nonlinear program may require an
astronomical scale of time and memory to obtain an optimal solution.

A convex optimization is easy to solve, polynomially solvable.
“In fact the great watershed in optimization isn’t between linearity
and nonlinearity, but convexity and nonconvexity.” - Rockafellar

Prevalent! Many real problems can be formulated as a convex
optimization problem such as LP, QP, SDP, etc. It is important to
recognize if the given problem can be formulated or approximated by
a convex optimization problem.
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