Analytic examples Optimization algorithms Nonlinear Programs

Example 13.2
min 327 Px+qTx +r, (13.25)
where P is a PSD matrix, ¢ € R”, and r € R.
@ Any x* satisfying Pz* = —q is an optimal solution.
o If P is invertible, * = —P~1¢ is a unique optimal solution.

o If Pz = —q does not have a solution, (13.25) is unbounded below.

Example 13.3
min ||Az — b||3 = 2T (AT A)z — 2(ATH) Tz + bTb. (13.26)

The optimality conditions AT Az* = ATb are called the normal equations of
the least-square problem.
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Descent methods Descent methods Nonlinear Programs

In iterative algorithms, we generate a minimizing sequence z(*), k =1,2, ...

20D = g0 | Mgk k) 5 o

where, d(*) is called search direction at iteration k, and o(¥) step size at iteration
k.

In descent method, sequence z®) k= 1,2, ... satisfies

f(x(kJrl)) < f(x(k)).

Proposition 14.1

If f is convex, a method is descent if and only V f(x*)Td*) < 0.
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Gradient descent method Descent methods Nonlinear Programs

A natural choice is then d¥) = —V f(z()).
e Compute an initial point z(%).
o Until a stopping criterion is satisfied, generate 2% k =1,2,...:
D) = z(6) _ Ry £ (),
where, 0(¥) > 0 is called the step size at iteration k.
o 0¥ = 5 > 0 fixed.

o o) = argming~o f (:L‘(k) - O'Vf(l'(k))). Not practical!

\/W' for a constant o > 0.

@ In exact line search e.g. Goldstein-Armijo’s rule.
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Gradient descent method Descent methods Nonlinear Programs

Example 14.2
Xz
5
min f(z) = 2(z; — 2)? + (22 — 2)2 al 7
@ Initial point: (3,5) 3
@ Main step: z**tD — z(*) 4 5 q(k) :2
where d¥ = —V f(z¥), ok = tl LA §
argmin, . f(z* + od"). | //
7 : R
¥

If f is convex around an optima solution to which initial solution is close enough,
we can show, r(F+1) < qkr(kﬂ) for 0 < g < 1, where r(®) is the distance between

z®) and optimal solution.
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Newton method Descent methods Nonlinear Programs

Originally proposed for finding a root of function ¢ : R — R: ¢(t) = 0.
Relying on the linear approximation, ¢(t + At) = ¢(t) + ¢'(t)At +
o(At), a single step is given by

_ o(tk)
¢'(tr)
Naturally extends to nonlinear equations: F'(z) = 0 with F': R” — R".

From linear approximation F'(x) + DF(z)Axz = 0, called Newton system,
we get an iteration

le+1 =tk

—1
2D — ) (DF(;A“)) Fz®. (14.27)
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Newton method Descent methods Nonlinear Programs

Adopting (14.27) to find a stationary point Vf(z) =0 of f: R"” — R, we
get

ot = gb — (V2f(xk)>—1 V(). (14.28)

The step (14.28) can be recaptured as a stationary point of the quadratic
approximation of f at z*:

F@*) + V(") (@ —2b) + %(m — T2 f(a®)(z —2F).  (14.29)

Therefore, Newton method is based on quadratic approximation of f.
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Newton method Descent methods Nonlinear Programs

f(z) =2(x —212
IEES

+ (22 —2)? =222 + 23 — 8z — 4z + 12 =
0 X
2}{ ]-F[S 4][$2}+12:§xTQx+bTm+c

My

o= [ 3] ][ 3]0
° x=-Q 'b=1[22"

@ Main step: z*t1 «— zF 4+ gk, ¢*F =

—V2f(z*) "1V f (). 2

Thus if f is convex quadratic function, Newton 1 j
method finds optimum in a single iteration. ! %
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Newton method Descent methods Nonlinear Programs

Advantage of Newton method.

o If f is strictly convex around an optimal solution to which initial
solution is close enough, it converges to an optimal solution very fast.
Quadratic convergence: 7441 = cr3.

Disadvantage of Newton method.
@ Breaks down in the neighborhood of z if V2f(x) is singular.

@ It may not converge at all without a local convexity.

S-Sl 4th June 2018 58 / 65



Projection method Descent methods Nonlinear Programs

SAobaol 53 UL A 4
ol = ojof Fhek,
° g(z)=Az—b=0

o A9 o] BF A= o], 1l
Az = 09] g7+ B3 WE =

P
=9 #AR Fo|Xth x\d{\ .f({}
P=1-AT(AAT)'A. A3 £ ¥ P
min{||d — d'||? : Ad = 0}2] KKT ~a

z2AL 183 A Ax=5b

2 2. s
Pgol gele oiae R

ojH g T4 FI
o] 48 = 4= 9t} (Projected gradient, re-
duced gradient, ... .)

Exercise 14.3

(1) P2 = Pgg Bojek (2) d=—PVf(z) (d#0)7 75 312 B2
Hojz]. (3) 9] F 43 BAe] KKT 2A¢ £ A A& Faboleh
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Feasible direction method

BE5T Ak 9

R o =

Descent methods

H } Sk oliﬂ%
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Feasible direction method Descent methods Nonlinear Programs

Zoj| 317} (steepest descent) + A1 B+ (line search)
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Feasible direction method Descent methods Nonlinear Programs

Exercise 14.4
229 A active constraintsZ o] ¥ ZH 1 Yof Lo 7]L 7] HEE EF
rekS 231t

S-S al  4th June 2018 62 / 65



Barrier method Inequality constrained cases Nonlinear Programs

The barrier method converts an inequality constrained problem (P): min{ f(x) :
g(x) > 0} into an unconstrained problem by using a ‘barrier’ function. We
assume g(x) > 00 has an interior feasible solution.

Let I : R — R be an indicator function: I(u) = 0if u > 0, = +00 u < 0. Then
the problem (P) is equivalent to the unconstrained problem min f(x) +

> 1(gi()).

But the reformulation is not useful as indicator function I is non-differentiable.
The idea is to approximate I with a smooth function B(-) called a barrier
function.
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Barrier method Inequality constrained cases Nonlinear Programs

Example 15.2

For a single constraint g(z) > 0, B(h(z)) = —1 In(g(x)), for a
parameter t > 0, is called log barrier. For instance, —% Inz, t >0, is
the log barrier of the constraint z > 0 of single variable z. Consider a
simple single variable optimization problem, (P) min{f(z): z > 0} ~
and corresponding barrier problem (BP) min{f(z) —+Inz: z € R}.
We can show optimal solutions of (BP), 2*(t) — z* as t — +o0.
Intuitively, this is because the weight of the barrier term gets smaller
and the optimality of f(x) is more stressed as ¢ grows.
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Barrier method Inequality constrained cases Nonlinear Programs

Example 15.3
Let gi1(x) =2 >0, go(x) = —x + 10 > 0. Then the log barrier B(g;(z)) +
B(g2(z) = —$(Inz + In(10 — z)) becomes closer to the indicator function

I(g1(z)) + I(g2(z)) as t — oo.

08t
+w° 1 t=1 +w

6% — —t=24

04f

024
0
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