
Analytic examples Optimization algorithms Nonlinear Programs

Example 13.2

min 1
2xT Px + qT x + r, (13.25)

where P is a PSD matrix, q ∈ Rn, and r ∈ R.

Any x∗ satisfying Px∗ = −q is an optimal solution.

If P is invertible, x∗ = −P−1q is a unique optimal solution.

If Px = −q does not have a solution, (13.25) is unbounded below.

Example 13.3

min ‖Ax− b‖22 = xT (AT A)x− 2(AT b)T x + bT b. (13.26)

The optimality conditions AT Ax∗ = AT b are called the normal equations of
the least-square problem.
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Descent methods Descent methods Nonlinear Programs

In iterative algorithms, we generate a minimizing sequence x(k), k = 1, 2, . . .

x(k+1) = x(k) + σ(k)d(k), σ(k) > 0,

where, d(k) is called search direction at iteration k, and σ(k) step size at iteration
k.

In descent method, sequence x(k), k = 1, 2, . . . satisfies

f(x(k+1)) < f(x(k)).

Proposition 14.1

If f is convex, a method is descent if and only ∇f(x(k))T d(k) < 0.
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Gradient descent method Descent methods Nonlinear Programs

A natural choice is then d(k) = −∇f(x(k)).
Compute an initial point x(0).

Until a stopping criterion is satisfied, generate xk k = 1, 2, . . .:

x(k+1) = x(k) − σ(k)∇f(x(k)).

where, σ(k) > 0 is called the step size at iteration k.

σ(k) = σ > 0 fixed.

σ(k) = arg minσ>0 f
(
x(k) − σ∇f(x(k))

)
. Not practical!

σ(k) = σ√
k+1

, for a constant σ > 0.

In exact line search e.g. Goldstein-Armijo’s rule.
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Gradient descent method Descent methods Nonlinear Programs

Example 14.2

min f(x) = 2(x1 − 2)2 + (x2 − 2)2

Initial point: (3, 5)

Main step: x(k+1) ← x(k) + σ(k)d(k),
where dk = −∇f(xk), σ(k) =
argminσ>0 f(xk + σdk).

If f is convex around an optima solution to which initial solution is close enough,

we can show, r(k+1) ≤ qkr(k+1) for 0 < q < 1, where r(k) is the distance between

x(k) and optimal solution.
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Newton method Descent methods Nonlinear Programs

Originally proposed for finding a root of function φ : R → R: φ(t) = 0.
Relying on the linear approximation, φ(t + ∆t) = φ(t) + φ′(t)∆t +
o(∆t), a single step is given by

tk+1 = tk −
φ(tk)
φ′(tk)

.

Naturally extends to nonlinear equations: F (x) = 0 with F : Rn → Rn.
From linear approximation F (x) + DF (x)∆x = 0, called Newton system,
we get an iteration

x(k+1) = x(k) −
(
DF (x(k))

)−1
F (x(k). (14.27)
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Newton method Descent methods Nonlinear Programs

Adopting (14.27) to find a stationary point ∇f(x) = 0 of f : Rn → R, we
get

xk+1 = xk −
(
∇2f(xk)

)−1
∇f(xk). (14.28)

The step (14.28) can be recaptured as a stationary point of the quadratic
approximation of f at xk:

f(xk) +∇f(xk)(x− xk) +
1
2
(x− xk)T∇2f(xk)(x− xk). (14.29)

Therefore, Newton method is based on quadratic approximation of f .

Sung-Pil Hong 4th June 2018 56 / 65



Newton method Descent methods Nonlinear Programs

f(x) = 2(x1 − 2)2 + (x2 − 2)2 = 2x2
1 + x2

2 − 8x1 − 4x2 + 12 =
1
2

[
x1 x2

] [
4 0
0 2

] [
x1

x2

]
+

[
−8 −4

] [
x1

x2

]
+ 12 = 1

2xT Qx + bT x + c

∇f(x) =
[

4 0
0 2

] [
x1

x2

]
+

[
−8
−4

]
= 0

x = −Q−1b = [2, 2]T

Main step: xk+1 ← xk + dk, dk =
−∇2f(x(k))−1∇f(x).

Thus if f is convex quadratic function, Newton
method finds optimum in a single iteration.

Sung-Pil Hong 4th June 2018 57 / 65



Newton method Descent methods Nonlinear Programs

Advantage of Newton method.

If f is strictly convex around an optimal solution to which initial
solution is close enough, it converges to an optimal solution very fast.
Quadratic convergence: rk+1 = cr2

k.

Disadvantage of Newton method.

Breaks down in the neighborhood of x if ∇2f(x) is singular.

It may not converge at all without a local convexity.
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Projection method Descent methods Nonlinear Programs

1px ñ]j����̀¦ 0Aô�Ç ÈÒ%ò
 "é¶o�
1px ñ]j���d��s� �̂¦2�¤ K�|9�½+Ë�̀¦ ��t��9��� ���

+þAs� ÷&#Q�� ô�Ç��.

g(x) = Ax− b = 0

A_� '��s� �̧¿º ���+þA1lqwn�s����,  7�'�\�¦
Ax = 0_� /BNçß�\� ÈÒ%ò
ô�Ç  7�'���H
��6£§_� �'a>��Ð ÅÒ#Q�����:
P = I −AT (AAT )−1A. þj&h��o ë�H]j
min{||d− d′||2 : Ad = 0}_� KKT
�̧|	��̀¦ �¦�9½+É �.	כ

s��Qô�Ç ÈÒ%ò
 ~½Ó�¾Ós� "é¶o���H ���ª�ô�Ç ~½ÓZO�

\�&h�6 x |̈cÃºe����. (Projected gradient, re-
duced gradient, ... .)

Exercise 14.3

(1) P 2 = Pe���̀¦ �Ð#���. (2) d = −P∇f(x) (d 6= 0)�� ��0px 
�y©� ~½Ó�¾Óe���̀¦
�Ð#���. (3) 0A þj&h��o ë�H]j_� KKT �̧|	��̀¦ Û�¦#Q þj&h�K�\�¦ ½̈
�#���.
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Feasible direction method Descent methods Nonlinear Programs

ÂÒ1px ñ ]j����̀¦ 0Aô�Ç >h���~½Ó�¾Ó ·ú��¦o�1pu

�íl�K� x0
\�¦ ½̈ô�Ç��. k ← 0.

ìøÍ4�¤éß�>�:

>h���~½Ó�¾Ó dk
\�¦ 
��� ½̈ô�Ç��. \O�Ü¼��� 7áx«Ñ �&³F� K� xk þj&h�.

s�1lx ��o� σk
\�¦ &ñ
ô�Ç��. xk+1 ← xk + σkdk.

k ← k + 1Ü¼�Ð Z�~�¦ ìøÍ4�¤ô�Ç��.
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Feasible direction method Descent methods Nonlinear Programs

þj@/ 
�y©� (steepest descent) + ��� �ÃÐÒ�o (line search)
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Feasible direction method Descent methods Nonlinear Programs

Exercise 14.4

x2\�"f active constraints�Ð &ñ
_��)a �íî̈
��� 0A\� 6£§_� l�Ö�¦l�  7�'�\�¦ ÈÒ%ò
ô�Ç
~½Ó�¾Ó�̀¦ ½̈
���.
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Barrier method Inequality constrained cases Nonlinear Programs

The barrier method converts an inequality constrained problem (P): min{f(x) :
g(x) ≥ 0} into an unconstrained problem by using a ‘barrier’ function. We
assume g(x) ≥ 00 has an interior feasible solution.

Let I : R→ R be an indicator function: I(u) = 0 if u ≥ 0, = +∞ u < 0. Then
the problem (P) is equivalent to the unconstrained problem min f(x) +∑

i I(gi(x)).

But the reformulation is not useful as indicator function I is non-differentiable.

The idea is to approximate I with a smooth function B(·) called a barrier

function.
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Barrier method Inequality constrained cases Nonlinear Programs

Example 15.2

For a single constraint g(x) ≥ 0, B(h(x)) = −1
t ln(g(x)), for a

parameter t > 0, is called log barrier. For instance, −1
t lnx, t > 0, is

the log barrier of the constraint x ≥ 0 of single variable x. Consider a
simple single variable optimization problem, (P) min{f(x) : x ≥ 0} ≈
and corresponding barrier problem (BP) min{f(x) −1

t lnx : x ∈ R}.
We can show optimal solutions of (BP), x∗(t)→ x∗ as t→ +∞.
Intuitively, this is because the weight of the barrier term gets smaller
and the optimality of f(x) is more stressed as t grows.
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Barrier method Inequality constrained cases Nonlinear Programs

Example 15.3

Let g1(x) = x ≥ 0, g2(x) = −x + 10 ≥ 0. Then the log barrier B(g1(x)) +
B(g2(x) = − 1

t (lnx + ln(10− x)) becomes closer to the indicator function
I(g1(x)) + I(g2(x)) as t → ∞.
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