
CHAPTER 6

GIS and the Real World Model

- The real world can be described in terms of models that delineate the concepts and procedures needed to translate real world observations into data that are meaningful in GIS.
- The process of interpreting reality by using both a real-world and a data model is called data modelling.
 - The principles involved are illustrated in Figures 6.1 and 6.2.

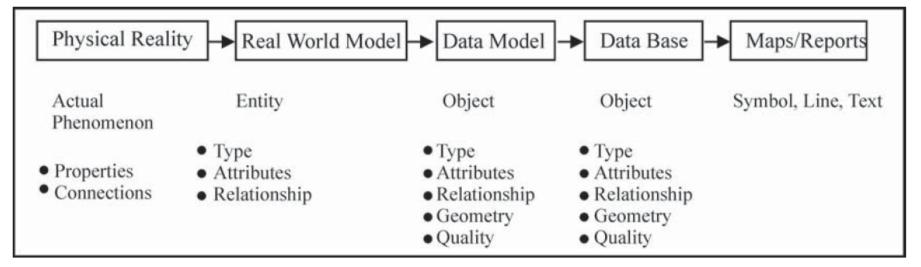


Figure 6.1: GIS makes simplified models to represent real world models. The data model is transferred to a database that can handle digital data, from which the data can be presented.

The Real World					Data Model				
	20	° 10	h	Bui	ldings				
					 Probable categories: Location: Representation: Geometric accuracy: 			Houses, industrial buildings Property no. Area (polygon) ± 10 meters	
					Vegetation				
	Dat	a Base		:	Probable Coverage Represent Geometrie	: tatio	n:	Mango, Neem Hectares Point ± 2 meters	
ID	Туре		Location	X	Y		Accuracy	Map with Symbol	
10 20	Mango Neem	1 (ALC)	orth Avenue outh Avenue	325 455	654 725		10 meters 10 meters		
ID	Туре	Area Coord		rdinate	dinates		Accuracy	78888	
1 2	House Industrial	75 50	350, 540. 350, 400. 250, 540. 175, 400 750, 820. 750, 650. 250, 820. 175, 650				± 2 meters ± 2 meters		

Figure 6.2: The transformation of the real world into GIS is achieved by means of simplification and models in the form of maps and reports.

REAL WORLD MODEL

- The arrangement of the real-world model determines which data need to be acquired.
- The basic carrier of information is the entity.
 - Entity is defined as a real-world phenomenon that is not divisible into phenomena of the same kind.
- An entity consists of:
 - Type classification
 - Attributes
 - Relationships

GEOGRAPHICAL DATA

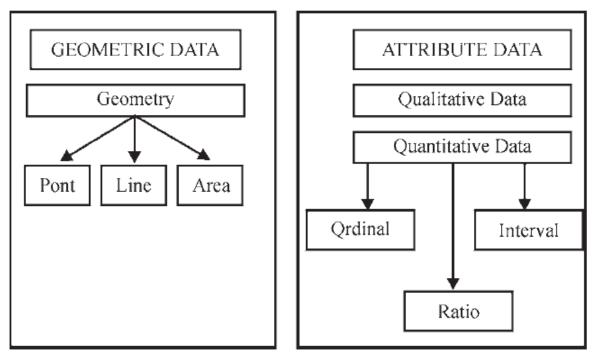


Figure 6.3: Geographical data can be divided into geometric and attribute data.

ENTITY TYPES

- The concept of entity types assumes that uniform phenomena can be classified as such.
 - Each entity type must be uniquely defined to preclude ambiguity.
- Some user organizations may need to classify entity types into categories as well as according to type.
- In geographical data an entity type is also known as the nominal scale or qualitative data (Figure 6.4).

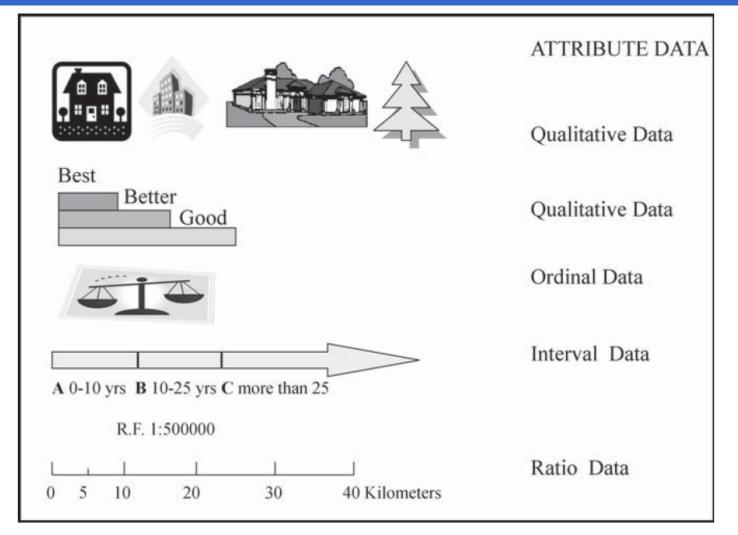


Figure 6.4: Attribute data consists of qualitative or quantitative data. Qualitative data specify the types of object, while quantitative data can be categorized into ratio data, data measured in relation to a zero starting point; interval data, data arranged into classes; and ordinal data, which specify quality by using text.

Entity Attributes

- Each entity type may incorporate one or more attributes that describe the fundamental characteristics of the phenomena involved.
 - Ex) 'buildings' with 'material' attribute, with legitimate entries 'frame' and 'masonry' and a 'number of stories' attribute with legitimate values of 1 to 10, and so on.
- An entity may have any number of attributes.
 - Ex) a lake may be described in terms of its name, depth, water quality, or fish population as well as its chemical composition, biological activity, water color, potability, or ownership.

- Attributes may also describe quantitative data, which may be ranked in three levels of accuracy: ratio, interval, and ordinal.
 - The most accurate are ratio or proportional attributes.
 - Such as length and area, which are measured with respect to an origin or starting point and on a continuous scale.
 - Interval data comprise numerical data in groups and are thus less accurate.
 - such as age and income category
 - The least accurate are ordinal data of rank.
 - such as 'good', 'better' and 'best' which describe qualitative data in text form. These could also be characterized as quality data.

ENTITY RELATIONS

Relations often exist between entities, these include (Figure 6.5)

Relation	Example				
Pertains/belongs	A depth figure pertains to a specific shoal, or a pipe belongs to a larger network of contiguous pipes.				
Comprises	A state comprises districts, which in turn comprise townships.				
Located in/on	A particular building is located on a land parcel.				
Borders on	Two properties have a common border.				

Figure 6.5: Examples of relations often exist between entities.

- Real-world models and entities cannot be realized directly in databases, partly because a single entity may comprise several objects.
 - For instance, the entity 'Marris Road' may be represented as a compilation of all the roadway sections between intersections, with each of the sections carrying object information.
 - The criteria for dividing a roadway in sections must be selected before the roadway can be described.

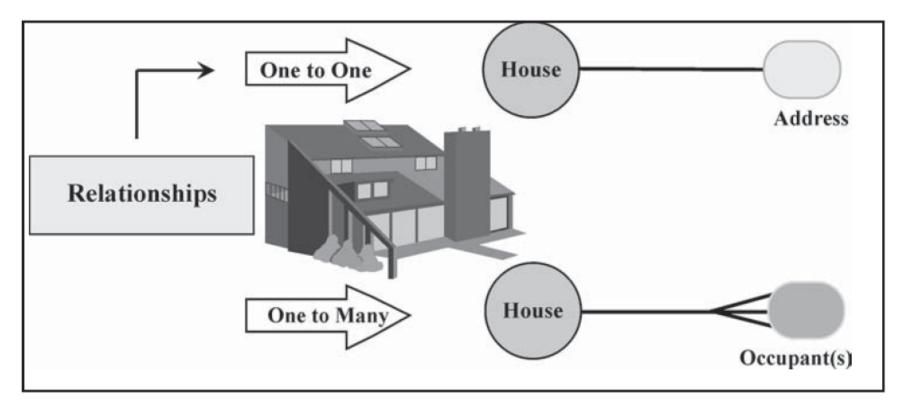


Figure 6.6: A single entity can be described by several objects (i.e., there are many relationships between entities).

Objects

- Objects are characterized by:
 - Type
 - Attributes
 - Relations
 - Geometry
 - Quality
- Identities, which may be designated by numbers, are unique: no two objects have the same identity.
- Type codes are based on object classifications, which can usually be transferred from entity classifications.
- An object may be classified under one type code only.

Figure 6.7: In a data model, objects are categorized as object classifications, geometric elements (point, line, area), attributes, relations between the entities and quality definitions of these descriptive elements.

- Data models may be designed to include:
 - Physical objects, such as roads, water mains, and properties
 - Classified objects, such as types of vegetation, climatic zones, or age groups
 - Events, such as accidents or water leaks
 - Continuously changing objects, such as temperature limits
 - Artificial objects, such as elevation contours and population density
 - Artificial objects for a selected representation and database (raster)

GEOGRAPHICAL REPRESENTATION OF OBJECTS

- Graphical information on objects may be entered in terms of:
 - Points (no dimensions)
 - Lines (one dimension)
 - Areas (two dimensions)

Points

- The simplest graphical representation of an object.
- Points are displayed by using symbols.
- The corner of a property boundary is a typical point.
- The scale of viewing determines whether an object is defined as a point or an area.
 - Ex) In a large-scale: a building may be shown as an area, whereas it may only be a point (symbol) if the scale is reduced.

Lines

- Lines connect at least two points.
- Property boundaries are typical lines, as are electric power lines and telecommunications cables.
- Road and rivers, on the other hand, may be either lines or areas, depending on the scale.

Areas

- Areas are used to represent objects defined in two dimensions.
- Physical size in relation to the scale determines whether an object is represented by an area or by a point.
- An area is delineated by at least three connecting lines, each of which comprises points.
- In databases, areas are represented by polygons
 - Therefore, the term polygon is often used instead of area.

Grid

- Physical reality is often described by dividing it into regular squares or rectangles so that all objects are described in terms of areas (Figure 6.8).
- This entire data structure is called a grid.

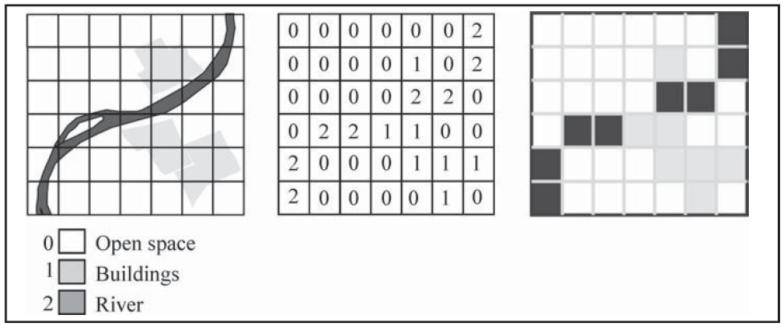
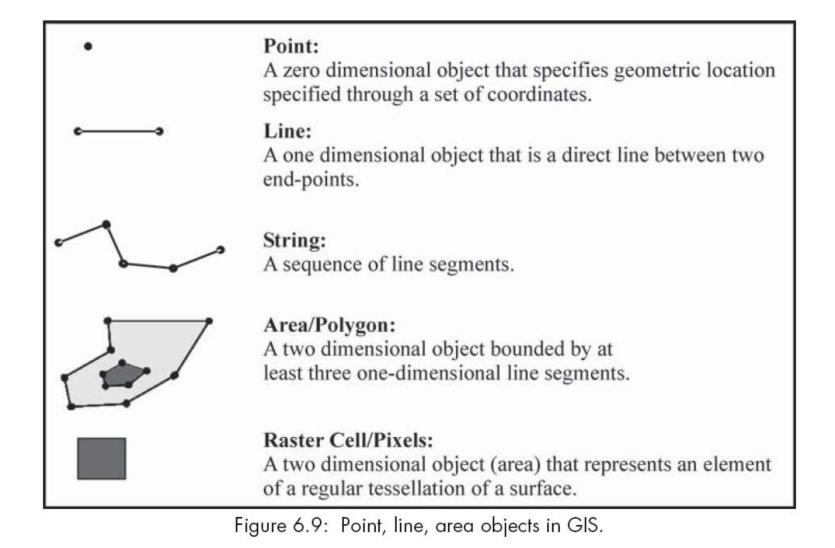



Figure 6.8: Land use/Land cover in the form of a raster map. The land use is registered in a raster system with cells. Each category is assigned its own symbol on the map.

- Each square or rectangle is known as a cell and represents a uniform density or value.
- Population density is well suited to grid representation.
- All cells of a grid in a data model or a database are of uniform size and shape but have no physical limits in the form of geometric lines.

- Heights
 - In the traditional layer based data model heights are treated as attributes to the objects, not as a part of the geometry. But the real world is three dimensional.

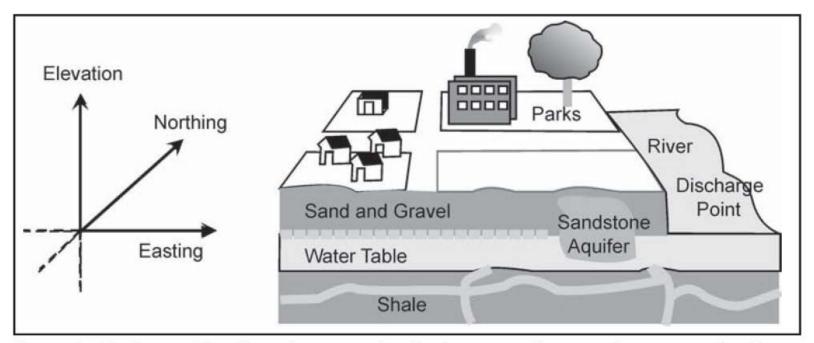


Figure 6.10: The world is three-dimensional with phenomena having a location and surface area in both elevation and ground plane.

OBJECT ATTRIBUTES

- Attributes describe an object's features and may thus be regarded as a computer's 'knowledge' of the object.
- Object attributes are stored in tables (Figure 6.11), with objects on lines and attributes in columns.
- Theoretically, attribute values connected to grid data can be presented in the same way.
 - Each grid cell corresponds to an object.

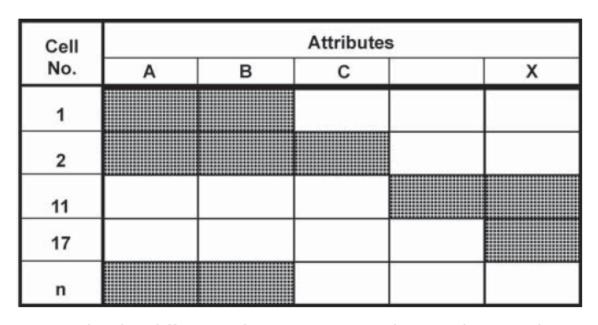


Figure 6.11: In principle, the difference between vector data and raster data is not that great. Raster data could well be arranged in tabular form with each cell number representing a line and each attribute (layer or raster) a column.

OBJECT RELATIONS

- Object relations are the same as entity relations in the real-world model.
- Differentiation is made between:
 - 1. Relations that may be calculated from:

a. The coordinates of an object: for example, which lines intersect or which areas overlap

b. Object structure (relation), such as the beginning and end points of a line, the lines that form a polygon, or the locations of polygons on either side of a line

• 2. Relations that must be entered as attributes, such as the division of a townships in to different wards or the levels of crossing roads that do not intersect.

Quality

- The true value of any description of reality depends on the quality of all the data it contains:
 - Graphics
 - Attributes
 - Relations
- Graphical data accurate to ± 0.1 meter obviously describe reality more faithfully than data accurate to ± 100 meter.
- Similarly, recently updated data are preferable to five-year-old data (which bring in temporal factors).

- In the initial data modeling stage, the assessment of the data quality should include:
 - Graphical accuracy (such as ± 1.0 meter accuracy)
 - Updating (when and how data should be updated)
 - Resolution/detailing (*e.g.*, whether roads should be represented by lines or by both road edges)
 - Extent of geographical coverage, attributes included, and so on
 - Logical consistency between geometry and attributes
 - Representation: discrete versus continuous
 - Relevance (*e.g.*, where input may be surrogate for original data that are unobtainable)
- Information on the quality of data is important to users of the database.

FROM DATABASE TO GIS TO MAP

- Once a data model is specified, the task of realizing it in a computer is technical and the task of entering data is simple and straightforward, albeit time consuming.
- Many databases compatible with GIS applications are now on the market.
- The problem at hand is more one of selecting a suitable database with regard to:
 - Acquisition and control
 - Structure
 - Storage
 - Updating and changing
 - Managing and exporting/importing
 - Processing
 - Retrieval and presentation
 - Analyses and combinations

- A well-prepared data model is vital in determining the ultimate success of the GIS application involved.
- Users view reality using GIS products in the form of maps with symbols, tables, and text reports.

SHORTCOMINGS OF THE TRADITIONAL GIS DATA MODEL

Entities and fields

- In the real world, one specific area or field may have many different characteristics; one area will in reality represent a number of entities or object types.
- However, the traditional data model allows an entity to represent only one phenomenon.
- During the 1990s, new models have been developed, known as object-oriented models, which to a certain extent can allow for the fact that the entity bearing the information can represent many phenomena.
- Object-oriented database systems are currently little used in commercial GIS but would appear to have many advantages over traditional database systems.

Uncertainty

- A traditional discrete data model does not always suit reality.
 - Difficulties arise in depicting phenomena that lack clear physical demarcation, such as soil types, population densities, or prevailing temperatures.
 - There can also be uncertainty in the attribute values to be retained; For example, coniferous forest often contains deciduous trees, population density is variable, and terrain surface changes continuously.
- Some of these problems can be partly solved by using the fuzzy set theory, which allows an object to belong only partially to a class.
- The fuzzy theory has as yet been little used in commercial GIS software; thus the significance of this type of deficiency in the data model is left to the person interpreting the results (maps and reports) of the GIS process.

Conceptual generalization

- When points, lines, and polygons are selected as the geometric representation of objects, this very often results in a generalization of the real world.
 - A town can be represented by a point rather than a polygon, and a road will frequently be represented by a center line and not two road verges.
- The need to divide objects into classes also results in a generalization.
 - An area of forest that is mainly coniferous, with some deciduous, will often be generalized and classified as coniferous, not as a combination.
- Generalization may be seen as a problem, but it is also a technique that makes it possible to obtain an overview of our complex reality.

- It can also be difficult to create data models that have a uniform and clear definition of the objects' classes.
 - For example, does a pedestrian area that is accessible to emergency vehicles classify as a road?

ROLE OF MAPS IN DATA MODELLING

- Maps always represent particular models of the real world, and GIS should represent the real world, not the maps that depict it.
 - For instance, ferry routes are often shown by dotted lines on maps, whereas in transport planning data models should form integral parts of a contiguous road network.
- As a rule of thumb, therefore, always look at a map as a data source, not as a data model.

EXTENSION OF THE REALITY CONCEPT

- The traditional data model concept has definite drawbacks when describing new real-world elements : elevation, time, traffic.
 - It only describes flat and unchanging reality.
- It is also most practical to use the same basic concept: a geometry consisting of points, lines, and polygons, and attributes that describe the objects or phenomena.
 - Elevation values can be linked to points, lines, and polygons and thereby give the objects a position in space.
 - The time factor can be accommodated by storing all historical data for the objects, such as changes in the geometry or attribute values.
 - The movement of objects (traffic) along a road network can be simulated by assigning attribute values to elements in the network.