Optimal Design of Energy Systems (M2794.003400)

Chapter 11. Geometric Programming

Min Soo KIM

Department of Mechanical and Aerospace Engineering Seoul National University

Chapter 11. Geometric Programming

11.1 Introduction

- Geometric Programming : Adaptable to problems where the objective function and the constraints equations are sum of polynomials of variables
- The first stage of the solution is to find the optimum value of the function.
- In this chapter, degree of difficulty (presented at 11.3) is $\mathbf{0}$ to be suited to geometric programming.

Chapter 11. Geometric Programming

11.2 Form of The objective Function and Constraint

- It can treat both of a constrained and unconstrained objective functions. For example;
- Unconstrained

$$
\text { Minimize } y=5 x+\frac{10}{\sqrt{x}}
$$

- Constrained

$$
\begin{array}{ll}
\text { Minimize } & y=5 x_{1} \sqrt{x_{2}}+2 x_{1}^{2}+x_{2}^{3 / 2} \\
\text { Where } & x_{1} x_{2}=50
\end{array}
$$

Chapter 11. Geometric Programming

11.3 Degree of Difficulty(DOD)

- Definition;

$$
\mathrm{DoD} \equiv T-(N+1)
$$

Where T: Number of terms in objective function and constrains
N : Number of variables

- Example;

$$
\begin{array}{lll}
y=6-3 x+10 x^{0.5} & \rightarrow & N=1(x) \\
& \therefore \operatorname{DoD}=0 \\
& & T=4\left(5 x_{1} x_{2}^{0.5}, 2 x_{1}^{2}, x_{1}^{0.5}, x_{1} x_{2}\right) \\
y=5 x_{1} x_{2}^{0.5}+2 x_{1}^{2}+x_{1}^{0.5} & \rightarrow & N=2\left(x_{1}, x_{2}\right) \\
x_{1} x_{2}=50 & & \therefore \operatorname{DoD}=1
\end{array}
$$

In this chapter, however, DOD=0

Chapter 11. Geometric Programming

11.4 Mechanics of Solution for One Independent Variable, Unconstrained

- A basic mechanics of geometric programming is suggested.
- For the optimal value y^{*}

$$
y=c_{1} x^{a_{1}}+c_{2} x^{a_{2}}=u_{1}+u_{2}
$$

- Using geometric programming, y^{*} can be represented in product form. Then,

$$
\begin{gathered}
y^{*}=g^{*}=\left(\frac{c_{1} x^{a_{1}}}{w_{1}}\right)^{w_{1}}\left(\frac{c_{2} x^{a_{2}}}{w_{2}}\right)^{w_{2}} \\
y^{*}=c_{1}\left(x^{*}\right)^{a_{1}}+c_{2}\left(x^{*}\right)^{a_{2}}=u_{1}^{*}+u_{2}^{*} \quad \text { Where } u_{1}^{*}=c_{1}\left(x^{*}\right)^{a_{1}}, u_{2}^{*}=c_{2}\left(x^{*}\right)^{a_{2}}
\end{gathered}
$$

- Provided that $w_{1}+w_{2}=1 \quad$ (Optimized)

$$
\left.a_{1} w_{1}+a_{2} w_{2}=0 \quad \text { (Optimized }\right)
$$

Chapter 11. Geometric Programming

11.4 Mechanics of Solution for One Independent Variable, Unconstrained

- At the optimum value,

$$
y^{*}=g^{*}=\left(\frac{c_{1} x^{a_{1}}}{w_{1}}\right)^{w_{1}}\left(\frac{c_{2} x^{a_{2}}}{w_{2}}\right)^{w_{2}}
$$

- Provided that $w_{1}+w_{2}=1$, and $a_{1} w_{1}+a_{2} w_{2}=0$;

$$
x^{a_{1} w_{1}+a_{2} w_{2}}=1
$$

- So, from a given equation

$$
\therefore w_{1}=\frac{u_{1}^{*}}{y^{*}}=\frac{u_{1}^{*}}{u_{1}^{*}+u_{2}^{*}} \quad w_{2}=\frac{u_{2}^{*}}{y^{*}}=\frac{u_{2}^{*}}{u_{1}^{*}+u_{2}^{*}}
$$

Chapter 11. Geometric Programming

Example 11.1

- Determine the optimum pipe diameter which results in minimum first plus operating cost for 100 m of pipe.
(Given)
- The objective function, the cost $y(\$)$, in terms of pipe diameter, $D(m m)$ is then

$$
y=160 D+\frac{32 \times 10^{12}}{D^{5}}
$$

Fig. Waste-treatment system in Example 11.1 and 11.4

Chapter 11. Geometric Programming

Example 11.1

(Solution)

- For the optimum value y^{*}

$$
\begin{aligned}
& y^{*}=g^{*}=160 D^{*}+\frac{32 \times 10^{12}}{\left(D^{*}\right)^{5}} \\
& y^{*}=g^{*}=\left(\frac{160 D}{w_{1}}\right)^{w_{1}}\left(\frac{32 \times 10^{12}}{D^{5} w_{2}}\right)^{w_{2}}
\end{aligned}
$$

- Provided that $w_{1}+w_{2}=1$

$$
a_{1} w_{1}+a_{2} w_{2}=w_{1}-5 w_{2}=0
$$

- Solving gives $\quad w_{1}=\frac{5}{6}, w_{2}=\frac{1}{6}$

Chapter 11. Geometric Programming

Example 11.1

(Solution)

- By substituting w_{1} and w_{2} to the above optimizing equation,

$$
\begin{gathered}
y^{*}=g^{*}=\left(\frac{160}{5 / 6}\right)^{5 / 6}\left(\frac{32 \times 10^{12}}{1 / 6}\right)^{1 / 6}=\$ 19,200 \\
w_{1}=\frac{5}{6}=\frac{u_{1}^{*}}{y^{*}}=\frac{160 D^{*}}{19,200} \quad \rightarrow \quad \therefore D^{*}=100 \mathrm{~mm}
\end{gathered}
$$

(Answer)

- The optimum diameter : 100 mm (at minimum cost, \$19,200)

Chapter 11. Geometric Programming

Example 11.2

- Determine the maximum power of which this engine is capable and the rotative speed at which the maximum occurs.
(Given)
- The torque T $(\mathrm{N} \cdot \mathrm{m})$ is represented by

$$
T=23.6 \omega^{0.7}-3.17 \omega
$$

Where ω : the rotative speed (rad/s)

Chapter 11. Geometric Programming

Example 11.2

(Solution)

- The power P (Watt) is the product of the torque and the rotative speed.

$$
\begin{aligned}
P & =T \omega=23.6 \omega^{1.7}-3.17 \omega^{2} \\
y^{*} & =g^{*}=\left(\frac{23.6}{w_{1}}\right)^{w_{1}}\left(\frac{-3.17}{w_{2}}\right)^{w_{2}}
\end{aligned}
$$

- Provided that $w_{1}+w_{2}=1$, and $a_{1} w_{1}+a_{2} w_{2}=1.7 w_{1}+2 w_{2}=0$
- Solving gives $w_{1}=6.667, \quad w_{2}=-5.667$

Chapter 11. Geometric Programming

Example 11.2

(Solution)

$$
\begin{gathered}
y^{*}=g^{*}=\left(\frac{23.6}{6.667}\right)^{6.667}\left(\frac{-3.17}{-5.667}\right)^{-5.667}=122,970 \mathrm{~W} \\
w_{1}=6.667=\frac{u_{1}^{*}}{y^{*}}=\frac{23.6\left(\omega^{*}\right)^{1.7}}{122,970} \quad \rightarrow \quad \omega^{*}=469 \mathrm{rad} / \mathrm{s}
\end{gathered}
$$

- If we focus on w_{2} instead of w_{1}, then the result is also

$$
w_{2}=-5.667=\frac{u_{2}^{*}}{y^{*}}=\frac{-3.17\left(\omega^{*}\right)^{2}}{122,970} \quad \rightarrow \quad \omega^{*}=469 \mathrm{rad} / \mathrm{s}
$$

(Answer)

- The maximum power : 122,970 W (at the rotative speed, $469 \mathrm{rad} / \mathrm{s}$)

Chapter 11. Geometric Programming

11.5 Why Geometric Programming Works; One Independent Variable

- Substantiation :

$$
\begin{array}{r}
y=c_{1} x^{a_{1}}+c_{2} x^{a_{2}}=u_{1}+u_{2} \quad \text { Where } u_{1}=c_{1} x^{a_{1}}, u_{2}=c_{2} x^{a_{2}} \\
g=\left(\frac{u_{1}}{w_{1}}\right)^{w_{1}}\left(\frac{u_{2}}{w_{2}}\right)^{w_{2}}=\left(\frac{c_{1} x^{a_{1}}}{w_{1}}\right)^{w_{1}}\left(\frac{c_{2} x^{a_{2}}}{w_{2}}\right)^{w_{2}} \quad \text { Where } w_{1}+w_{2}=1
\end{array}
$$

- Using logarithm, it can be represented as

$$
\ln g=w_{1}\left(\ln u_{1}-\ln w_{1}\right)+w_{2}\left(\ln u_{2}-\ln w_{2}\right)
$$

Subject to $\varnothing=w_{1}+w_{2}-1=0$

Chapter 11. Geometric Programming

11.5 Why Geometric Programming Works; One Independent Variable

- To find a combination w_{1}, w_{2} at which function g has the maximum value, Lagrange multiplier is used

$$
\begin{aligned}
\nabla(\ln g)-\lambda \nabla \emptyset & =0 \\
\emptyset & =0
\end{aligned}
$$

- which provide the three equations:

$$
\begin{array}{rr}
w_{1}: & \ln u_{1}-1-\ln w_{1}-\lambda
\end{array}=0
$$

- The unknowns are w_{1}, w_{2}, λ, and the solutions for w_{1} and w_{2} are

$$
w_{1}=\frac{u_{1}}{u_{1}+u_{2}} \quad w_{2}=\frac{u_{2}}{u_{1}+u_{2}}
$$

$\therefore \boldsymbol{g}=\left(\frac{\boldsymbol{u}_{\mathbf{1}}}{\boldsymbol{w}_{\mathbf{1}}}\right)^{\boldsymbol{w}_{\mathbf{1}}}\left(\frac{\boldsymbol{u}_{\mathbf{2}}}{\boldsymbol{w}_{\mathbf{2}}}\right)^{\boldsymbol{w}_{\mathbf{2}}}=\left(\frac{u_{1}}{u_{1} /\left(u_{1}+u_{2}\right)}\right)^{\frac{u_{1}}{\left(u_{1}+u_{2}\right)}}\left(\frac{u_{2}}{u_{2} /\left(u_{1}+u_{2}\right)}\right)^{\frac{u_{2}}{\left(u_{1}+u_{2}\right)}}=\boldsymbol{u}_{\mathbf{1}}+\boldsymbol{u}_{\mathbf{2}}=\boldsymbol{y}$

Chapter 11. Geometric Programming

11.5 Why Geometric Programming Works; One Independent Variable

- To get optimum value x^{*}, y^{*}, g^{*}, the derivative of y is used.

$$
y^{\prime}=a_{1} c_{1} x^{\left(a_{1}-1\right)}+a_{2} c_{2} x^{\left(a_{2}-1\right)}=0
$$

- Multiplying by x and so,

$$
\begin{gathered}
x y^{\prime}=a_{1} c_{1} x^{a_{1}}+a_{2} c_{2} x^{a_{2}}=0 \\
a_{1} u_{1}^{*}+a_{2} u_{2}^{*}=0
\end{gathered}
$$

- Where u_{1}^{*} and u_{2}^{*} are the values of u_{1} and u_{1} at the optimum value of y

$$
u_{1}^{*}=-\frac{a_{2} u_{2}^{*}}{a_{1}}
$$

Chapter 11. Geometric Programming

11.5 Why Geometric Programming Works; One Independent Variable

- When substituting u_{1}^{*} and u_{2}^{*} into w_{1} and w_{2},
$w_{1}=\frac{u_{1}^{*}}{u_{1}^{*}+u_{2}^{*}}=\frac{-\frac{a_{2} u_{2}^{*}}{a_{1}}}{-\frac{a_{2} u_{2}^{*}}{a_{1}}+u_{2}^{*}}=\frac{-a_{2}}{a_{1}+a_{2}} \quad w_{2}=\frac{u_{2}^{*}}{u_{1}^{*}+u_{2}^{*}}=\frac{u_{2}^{*}}{-\frac{a_{2} u_{2}^{*}}{a_{1}}+u_{2}^{*}}=\frac{a_{1}}{a_{1}+a_{2}}$
- When these values of w_{1} and w_{2} are substituted into the solution for g,

$$
\begin{gathered}
g^{*}=\left(\frac{c_{1} x^{a_{1}}}{w_{1}}\right)^{\frac{-a_{2}}{a_{1}+a_{2}}}\left(\frac{c_{2} x^{a_{2}}}{w_{2}}\right)^{\frac{a_{1}}{a_{1}+a_{2}}}=\left(\frac{c_{1}}{w_{1}}\right)^{\frac{-a_{2}}{a_{1}+a_{2}}}\left(\frac{c_{2}}{w_{2}}\right)^{\frac{a_{1}}{a_{1}+a_{2}}} \quad \because x^{\frac{-a_{2} a_{1}}{a_{1}+a_{2}}+\frac{a_{2} a_{1}}{a_{1}+a_{2}}}=1 \\
\therefore \boldsymbol{g}^{*}=\left(\frac{\boldsymbol{c}_{\mathbf{1}}}{\boldsymbol{w}_{\mathbf{1}}}\right)^{\boldsymbol{w}_{1}}\left(\frac{\boldsymbol{c}_{2}}{\boldsymbol{w}_{2}}\right)^{w_{2}}=\boldsymbol{y}^{*}
\end{gathered}
$$

Chapter 11. Geometric Programming

11.7 Unconstrained, Multivariable Optimization

- The solving procedure for one variable extend to multivariable optimizations.
- If $\mathbf{D o D = 0}$, a two variable problem have an objective function containing 3 terms.
- An example 11.4 represents a detailed solution for two variable problem.

Chapter 11. Geometric Programming

Example 11.4

- Use geometric programming to optimize the total system.
(Given)
- The objective function, the cost $y(\$)$, in terms of pipe diameter, $D(\mathrm{~mm})$ and flow rate, $\mathrm{Q}\left(\mathrm{m}^{3} / \mathrm{s}\right)$ is then

$$
y=160 D+\frac{32 \times 10^{15} Q^{2}}{D^{5}}+\frac{150}{Q}
$$

Fig. Waste-treatment system in Example 11.1 and 11.4

Chapter 11. Geometric Programming

Example 11.4

(Solution)

$$
\begin{gathered}
y=160 D+\frac{32 \times 10^{15} Q^{2}}{D^{5}}+\frac{150}{Q} \\
y^{*}=g^{*}=\left(\frac{160}{w_{1}}\right)^{w_{1}}\left(\frac{220 \times 10^{15}}{w_{2}}\right)^{w_{2}}\left(\frac{150}{w_{3}}\right)^{w_{3}}
\end{gathered}
$$

- Provided that $w_{1}+w_{2}+w_{3}=1$

D:

$$
\mathrm{Q}:
$$

$$
\begin{aligned}
& w_{1}-5 w_{2}=0 \\
& 2 w_{2}-w_{3}=0
\end{aligned}
$$

- Solving gives $\quad w_{1}=\frac{5}{8} \quad, \quad w_{2}=\frac{5}{8^{\prime}} \quad w_{3}=\frac{2}{8}$

Chapter 11. Geometric Programming

Example 11.4

(Solution)

$$
\begin{array}{rlrl}
\left(\frac{160}{5 / 8}\right)^{5 / 8}\left(\frac{220 \times 10^{15}}{1 / 8}\right)^{1 / 8}\left(\frac{150}{1 / 4}\right)^{1 / 4} & =\$ 30,224 \\
u_{1}^{*} & =160 D=\frac{5}{8}(30,224) \quad \rightarrow & D^{*} & =118 \mathrm{~mm} \\
u_{3}^{*}=\frac{150}{Q^{*}}=\frac{2}{8}(30,224) & \rightarrow & Q^{*} & =0.0198 \mathrm{~m}^{3} / \mathrm{s}
\end{array}
$$

(Answer)

- The optimum diameter : 118 mm
- The optimum flow rate : $0.0198 \mathrm{~m}^{3} / \mathrm{s}$
- The minimum cost : $\$ 30,224$

Chapter 11. Geometric Programming

11.8 Constrained Optimization with Zero Degree of Difficulty

- Suppose that the objective function to be minimized and its constraint is

$$
\begin{array}{ll}
y= & u_{1}+u_{2}+u_{3} \\
& u_{4}+u_{5}=1 \quad \text { Where } u_{i}=f_{i}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{array}
$$

- The objective function can be rewritten

$$
y=g=\left(\frac{u_{1}}{w_{1}}\right)^{w_{1}}\left(\frac{u_{2}}{w_{2}}\right)^{w_{2}}\left(\frac{u_{3}}{w_{3}}\right)^{w_{3}}
$$

- Provided that

$$
\begin{aligned}
& w_{1}+w_{2}+w_{3}=0 \\
& w_{i}=\frac{u_{i}}{u_{1}+u_{2}+u_{3}}
\end{aligned}
$$

Chapter 11. Geometric Programming

11.8 Constrained Optimization with Zero Degree of Difficulty

- The constraint equation can also be rewritten as

$$
u_{4}+u_{5}=1=\left(\frac{u_{4}}{w_{4}}\right)^{w_{4}}\left(\frac{u_{5}}{w_{5}}\right)^{w_{5}}
$$

- Provided that

$$
w_{4}+w_{5}=1
$$

$$
w_{4}=\frac{u_{4}}{u_{4}+u_{5}}=u_{4} \quad w_{5}=\frac{u_{5}}{u_{4}+u_{5}}=u_{5} \quad \because u_{4}+u_{5}=1
$$

- The above equation can be raised to the M th power

$$
1=\left(\frac{u_{4}}{w_{4}}\right)^{M w_{4}}\left(\frac{u_{5}}{w_{5}}\right)^{M w_{5}} \quad \mathrm{M} \text { is an arbitrary constant }
$$

- When multiplying the transformed objective function by the transformed constraint equation

$$
y=g=\left(\frac{u_{1}}{w_{1}}\right)^{w_{1}}\left(\frac{u_{2}}{w_{2}}\right)^{w_{2}}\left(\frac{u_{3}}{w_{3}}\right)^{w_{3}}\left(\frac{u_{4}}{w_{4}}\right)^{M w_{4}}\left(\frac{u_{5}}{w_{5}}\right)^{M w_{5}}
$$

Chapter 11. Geometric Programming

11.8 Constrained Optimization with Zero Degree of Difficulty

- Return to the original equation and solve by Lagrange multipliers

$$
\begin{gathered}
\nabla\left(u_{1}+u_{2}+u_{3}\right)-\lambda\left[\nabla\left(u_{4}+u_{5}\right)\right]=0 \\
u_{4}+u_{5}=1
\end{gathered}
$$

- For u_{i} 's variable $x_{1}, x_{2}, x_{3}, x_{4}$, the number of possible equations is 4

$$
\left\{\begin{array}{l}
a_{11} u_{1}^{*}+a_{21} u_{2}^{*}+a_{31} u_{3}^{*}-\lambda a_{41} u_{4}^{*}-\lambda a_{51} u_{5}^{*}=0 \\
a_{12} u_{1}^{*}+a_{22} u_{2}^{*}+a_{32} u_{3}^{*}-\lambda a_{42} u_{4}^{*}-\lambda a_{52} u_{5}^{*}=0 \\
a_{13} u_{1}^{*}+a_{23} u_{2}^{*}+a_{33} u_{3}^{*}-\lambda a_{43} u_{4}^{*}-\lambda a_{53} u_{5}^{*}=0 \\
a_{14} u_{1}^{*}+a_{24} u_{2}^{*}+a_{34} u_{3}^{*}-\lambda a_{44} u_{4}^{*}-\lambda a_{54} u_{5}^{*}=0
\end{array}\right.
$$

Chapter 11. Geometric Programming

11.8 Constrained Optimization with Zero Degree of Difficulty

- Dividing the combinations of 4 equations by $y^{*}, \frac{u_{i}^{*}}{\boldsymbol{y}^{*}} \rightarrow \boldsymbol{w}_{\boldsymbol{i}}$
- Since M was arbitrary, let it equal; $\boldsymbol{M}=\frac{-\lambda}{\boldsymbol{y}^{*}}$

$$
\left\{\begin{array}{c}
a_{11} w_{1}+a_{21} w_{2}+a_{31} w_{3}-M a_{41} w_{4}-M a_{51} w_{5}=0 \\
a_{12} w_{1}+a_{22} w_{2}+a_{32} w_{3}-M a_{42} w_{4}-M a_{52} w_{5}=0 \\
a_{13} w_{1}+a_{23} w_{2}+a_{33} w_{3}-M a_{43} w_{4}-M a_{53} w_{5}=0 \\
a_{14} w_{1}+a_{24} w_{2}+a_{34} w_{3}-M a_{44} w_{4}-M a_{54} w_{5}=0 \\
w_{1}+w_{2}+w_{3}=1 \\
M w_{4}+M w_{5}=M
\end{array}\right.
$$

- These 6 equations can be solved for the 6 unknowns $w_{1}, w_{2}, w_{3}, M w_{4}, M w_{5}, M$

Chapter 11. Geometric Programming

11.8 Constrained Optimization with Zero Degree of Difficulty

- Because u_{i} is a polynomials of x_{i}, all of the x terms in u can be cancelled
- So the y equation can be simplified as

$$
\therefore y=g=\left(\frac{c_{1}}{w_{1}}\right)^{w_{1}}\left(\frac{c_{2}}{w_{2}}\right)^{w_{2}}\left(\frac{c_{3}}{w_{3}}\right)^{w_{3}}\left(\frac{c_{4}}{w_{4}}\right)^{M w_{4}}\left(\frac{c_{5}}{w_{5}}\right)^{M w_{5}}
$$

Chapter 11. Geometric Programming

Example 11.5

- A water pipeline extends 30 km . Select the number of pumps and the pipe diameter that results in the minimum total cost for the system.

(Given)

Cost of each pump $=2500+0.00032 \Delta p^{1.2}(\$)$
Cost of 30 km of pipe $=2,560,000 D^{1.5}(\$)$
Δp : pressure drop in each pipe, Pa
D : diameter of pipe, m

- A friction factor : 0.02
- A flow rate : $0.16 \mathrm{~m}^{3} / \mathrm{s}$

Fig. Water pipeline in Example 11.5

Chapter 11. Geometric Programming

Example 11.5

(Solution)

$$
y=n\left(2500+0.00032 \Delta p^{1.2}\right)+2,560,000 D^{1.5} \quad n=\frac{30,000 m}{L}
$$

- Where L is the length of each pipe section (m)

$$
\Delta p=f \frac{L}{D} \frac{V^{2}}{2} \rho=(0.02) \frac{L}{D}\left(\frac{0.16}{\frac{\pi D^{2}}{4}}\right)^{2} \frac{1}{2}\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right) \quad \rightarrow \quad \frac{\Delta p D^{5}}{L}=0.4150
$$

- The statement of the problem is

$$
\begin{aligned}
& y=\frac{75,000,000}{L}+\frac{9.6 \Delta p^{1.2}}{L}+2,560,000 D^{1.5} \\
& \frac{2.410 \Delta p D^{5}}{L}=1
\end{aligned}
$$

Chapter 11. Geometric Programming

Example 11.5

(Solution)

$$
y^{*}=\left(\frac{75,000,000}{w_{1}}\right)^{w_{1}}\left(\frac{9.6}{w_{2}}\right)^{w_{2}}\left(\frac{2,560,000}{w_{3}}\right)^{w_{3}}\left(\frac{2.41}{w_{4}}\right)^{w_{4}}
$$

- Provided that

$$
\therefore w_{1}=0.0385, w_{2}=0.1923, w_{3}=0.7692, M=-0.2308, M w_{4}=-0.2308
$$

$$
\begin{aligned}
& L: \quad-w_{1}-w_{2} \quad-M w_{4}=0 \\
& \Delta p \text { : } \\
& D \text { : } \\
& 1.2 w_{2} \quad+M w_{4}=0 \\
& 1.5 w_{3}+5 M w_{4}=0 \\
& w_{1}+w_{2}+w_{3} \quad=1 \\
& M w_{4}=M
\end{aligned}
$$

Chapter 11. Geometric Programming

Example 11.5

(Answer)

$$
\begin{aligned}
y^{*}=\left(\frac{75,000,000}{0.0385}\right)^{0.0385}\left(\frac{9.6}{0.1923}\right)^{0.1923}\left(\frac{2,560,000}{0.7692}\right)^{0.7692}\left(\frac{2.41}{1}\right)^{-0.2308}=\$ 410,150 \\
u_{1}^{*}=(410,150)(0.0385)=\frac{75,000,000}{L^{*}} \rightarrow L^{*}=4750 \mathrm{~m} \\
u_{3}^{*}=(410,150)(0.769)=2,560,000 D^{1.5} \rightarrow D^{*}=0.246 \mathrm{~m} \\
\Delta p^{*}=\frac{L^{*}}{2.410 D^{* 5}}=2,188,000 P a=2188 \mathrm{kPa}
\end{aligned}
$$

