Optimal Design of Energy Systems (M2794.003400)

Chapter 2. DESIGNING A WORKABLE SYSTEM

Min Soo KIM

Department of Mechanical and Aerospace Engineering Seoul National University

2.1 Workable and Optimum systems

- There are many possible solutions, but only one answer is the optimum
- Non-workable system < Workable system < Optimum system

Fig. Relation between workable systems and optimum system

2.2 A workable system

- Conditions for a workable system
 - Meets the requirement of the purpose of the system (power, heating, cooling, fluid flow, surrounding, etc.)
 - ② Satisfactory life and maintenance costs

③ Abides by all constraints (size, weight, temperature, pressure, noise, pollution, etc.)

2.3 Steps in arriving at a workable system

- The two major steps in achieving a workable systems
 - ① Select the concept to be used
 - ② Fix whatever parameters must be chosen

2.4 Creativity in concept selection

- To get creativity in concept selection
 - Review all the alternative concepts in some manner appropriate to the scope of the project
 - ② Old ideas that were once discarded as impractical or uneconomical should be constantly reviewed

2.5 Workable vs. optimum system

- Example : 3 kg/s of pipe water should be delivered from one location to another 250 m away from the original position and 8 m higher. A water pump and pipe type are need to be selected.

Fig. Pipe water transfer problem

2.5 Workable vs. optimum system

- Workable solution
- (1) ΔP from the elevation is $(8 \text{ m})(1000 \text{ kg/m}^3)(9.81 \text{ m/s}) = 78.5 \text{ kPa}$

⁽²⁾ **Arbitraily choose the type of pipe**, which imposes $\Delta P = 100$ kPa

③ Choose the pump which delivers 3 kg/s against a pressure difference of 178.5 kPa

2.5 Workable vs. optimum system

- Optimum solution

2.5 Hot air balloon

 F_{b}

 F_{q}

Center of buoyancy

2.5 Hot air balloon

Ideal gas law(He) : $P = \rho_{He} RT$

Buoyancy force : $F_b = \rho_{He}gV_{balloon}$

Gravitational force : $F_g = m_{balloon}g$

2.5 Soaring plane

- Motorless glider
- Towed by the towing airplane and gliding 1 km over the ground

Fig. Pipe water transfer problem

2.5 Soaring plane

https://youtu.be/ndACTilsYL8

2.6 Design of a food-freezing plant

- A food company can buy sweet corn and peas from farmers during the season and sell the vegetables as frozen food throughout the year in a city 300 km away. What are the decisions and procedures involved in designing the plant to process and freeze the crops?
- Major decisions : (1) Location (2) Size (3) Type of freezing plant
- Decision procedures

2.6 경기도 친환경 물류유통센터

위치	경기도 광주시 곤지암읍 경충대로 731
대지면적 / 연면적	68,972 m2 / 25,927 m2
건물규모	집배송장, 저온저장고, 소분포장, 안전성검사실,전처리실,교육장, 식당, 사무실 등

1. Location :

2. Freezing capacity :

Adjacent to a refrigerated warehouse operated by company

On the bias of the current availability of the crop, the potential sale in the city, and available financing.

3. Plant concept :

4. System level decision :	220 kW
----------------------------	--------

	Temperature, °C
Air, chilled supply	-30
Air return	-20
Refrigerant, evaporation	-38
Refrigerant, condensation	45
Condenser, cooling water, inlet	30
Condenser, cooling water, outlet	35

5. Component level decision : Evaporator 220 kW Compressor 80 kW 300 kW