Optimal Design of Energy Systems (M2794.003400)

Chapter 3. ECONOMICS

Min Soo KIM

Department of Mechanical and Aerospace Engineering Seoul National University

Chapter 3. ECONOMICS

3.1 Introduction

- Basis of engineering decision

Economics

- Minimum investment cost
- Minimum total lifetime cost

Non-economic factors

- Legal concerns
- Social concerns
- Environmental concerns
- Aesthetic concerns

Chapter 3. ECONOMICS

3.2. Interest

- Interest is the rental charge of the use of money
- Simple interest is calculated only on the principal amount, or on the portion of the principal amount that remains.
- Compound interest includes interest earned on the interest which was previously accumulated.

Chapter 3. ECONOMICS

Example 3.1 : Simple interest, lump sum

Simple interest of 8% per year is charged on a 5 -year loan of $\$ 500$. How much does the borrower pay to the lend?
(Solution)
Annual interest : $(\$ 500)(0.08)=\$ 40$
Total interest $=($ Annual interest $)($ year $)=(\$ 40)(5)=\$ 200$
Repayment $=\$ 200+\$ 500=\$ 700$

Chapter 3. ECONOMICS

Example 3.2 : Compound interest, lump sum

What amount must be repaid on the $\$ 500$ loan in Example 3.1, if the interest of 8% is compounded annually?
(Solution)
Repayment after n year $=(\$ 500)(1+i)^{n}$
$i=0.08 \quad n=5$
Repayment $=\$ 500(1+0.08)^{5}=\$ 734.66$

Chapter 3. ECONOMICS

Example 3.3 : Compounded more often than annually, lump sum

What amount must be repaid on a 5 -year $\$ 500$ loan at 8% annual interest compounded quarterly?
(Solution)

$$
\begin{aligned}
& \text { Repayment }=P\left(1+\frac{i}{m}\right)^{m * n} \\
& \begin{array}{l}
P=\$ 500 \quad i=0.08 \quad m=4 \quad n=5 \\
\Rightarrow \$ 500\left(1+\frac{0.08}{4}\right)^{20}=\$ 742.97
\end{array}
\end{aligned}
$$

$$
S=P\left(1+\frac{i}{m}\right)^{m \times n}
$$

Where $\mathrm{i}=$ nominal annual interest rate
$\mathrm{n}=$ number of years
$\mathrm{m}=$ number of compounding periods per year

Chapter 3. ECONOMICS

3.5 Compound-Amount Factor (f/p) and Present-Worth Factor (p/f)

- Future worth and can be mutually converted
- Compund amount factor (CAF or f/p)

$$
(\text { Future worth } S)=(\text { Present worth } P) \cdot(\mathrm{f} / \mathrm{p}) \quad \mathrm{f} / \mathrm{p}=\left(1+\frac{i}{m}\right)^{m n}
$$

- Present-worth factor (PWF or p/f)
$($ Present worth P$)=($ future worth $S) \cdot(\mathrm{p} / \mathrm{f})$
 $\mathrm{p} / \mathrm{f}=\frac{1}{(1+i / m)^{m n}}$

```
Where \(\mathrm{i}=\) nominal annual interest rate
\(\mathrm{n}=\) number of years
\(\mathrm{m}=\) number of compounding periods per year
```


Chapter 3. ECONOMICS

Example 3.4 : Compound-Amount Factor (f/p)

You invest $\$ 5000$ in a credit union which compounds 5% interest quarterly. What is the value of the investment after 5 years?
(Solution)
Future worth $=($ present worth, $\mathrm{p} / \mathrm{a})(\mathrm{f} / \mathrm{p}), \mathrm{f} / \mathrm{p}=\left(1+\frac{i}{m}\right)^{m * n}$
$p / a=\$ 5000 \quad i=0.05 \quad m=4 \quad n=5$
$\$ 5000\left(1+\frac{0.05}{4}\right)^{20}=\$ 6410$

Chapter 3. ECONOMICS

Example 3.5 : Present-Worth Factor (p/f)

You wish to invest a sum of money so that accumulated amount will be $\$ 10,00012$ years later. The money can be invested at 8%, compounded semiannually. What amount must be invested?
(Solution)
Present worth $=($ Future worth, $\mathrm{f} / \mathrm{a})(\mathrm{p} / \mathrm{f}), \mathrm{p} / \mathrm{f}=\frac{1}{\left(1+\frac{i}{m}\right)^{n * m}}$
$f / a=\$ 10,000 \quad i=0.08 \quad m=2 \quad n=12$

$$
(\$ 10,000) * \frac{1}{\left(1+\frac{0.08}{2}\right)^{24}}=\$ 3901.20
$$

Chapter 3. ECONOMICS

3.6 Future worth (f / a) of a uniform series of amounts

- Uniform amount is paid at each time period
- There are two types for a uniform series of amounts

$$
S=R(1+i)^{n-1}+R(i+i)^{n-2}+\cdots+R(1+i)+R
$$

First payment at the end of the first period

$$
\begin{gathered}
S=R(1+i)^{n}+R(i+i)^{n-1}+\cdots+R(1+i) \\
R- \\
R
\end{gathered}
$$

First payment at the start of the first period

- R : uniform amount at each time period
- S : Future worth

Chapter 3. ECONOMICS

3.6 Future worth (f / a) of a uniform series of amounts

- If first payment is at the end of the first payment
- Series compound amount factor (SCAF or f/a)

$$
(\text { Future worth } S)=(\text { Regular amount } R) \cdot(\mathrm{f} / \mathrm{a}) \mathrm{f} / \mathrm{a}=\frac{(1+i)^{n}-1}{i}
$$

- Sinking fund factor (SFF or a/f)

$$
(\text { Regular amount } R)=(\text { future worth } S) \cdot(\mathrm{a} / \mathrm{f}) \quad \mathrm{a} / \mathrm{f}=\frac{i}{(1+i)^{n}-1}
$$

Chapter 3. ECONOMICS

3.6 Future worth (f / a) of a uniform series of amounts

- If first payment is at the start of the first payment
- Series compound amount factor (SCAF or f/a)
$($ Future worth $S)=(\operatorname{Regular}$ amount $R) \cdot(\mathrm{f} / \mathrm{a})_{\text {shift }} \quad(\mathrm{f} / \mathrm{a})_{\text {shift }}=\frac{(1+i)^{n}-1}{i /(1+i)}$
- Sinking fund factor (SFF or a / f)
$($ Regular amount $R)=($ future worth $S) \cdot(\mathrm{a} / \mathrm{f})_{\text {shift }} \quad(\mathrm{a} / \mathrm{f})_{\text {shift }}=\frac{i /(1+i)}{(1+i)^{n}-1}$

Chapter 3. ECONOMICS

Example 3.6

The management to set aside equal amounts of investment each year starting 1 year from now so that $\$ 16,000$ will be available in 10 years for the replacement of the machine. The compound interest is 8% annually. How much must be provided each year?
(Solution)

$$
\begin{aligned}
& 16000=R\left[(1+0.08)^{9}+(1+0.08)^{8}+\cdots+(1+0.08)+1\right] \\
& \text { interest : } i=0.08 \quad \text { sum }: S=16000 \quad \text { year }: n=10 \\
& R=(\text { future worth })(\mathrm{SFF})=S \cdot a / f=S \frac{i}{(1+i)^{n}-1}=16000 \frac{0.08}{(1+0.08)^{10}-1} \\
& \Rightarrow R=\$ 1104.5
\end{aligned}
$$

Chapter 3. ECONOMICS

3.7 Present worth (p / a) of a uniform series of amounts

- The value of a series of uniform amounts R can be translated into the present worth

$$
R\left[\frac{1}{1+i}+\frac{1}{(1+i)^{2}}+\cdots+\frac{1}{(1+i)^{n}}\right]
$$

First payment at the end
of the first period

Chapter 3. ECONOMICS

3.7 Present worth (p / a) of a uniform series of amounts

- If first payment is at the end of the first payment
- Series present worth factor (SPWF or p/a)

$$
\mathrm{p} / \mathrm{a}=\frac{(1+i)^{n}-1}{i(1+i)^{n}}
$$

- Capital recovery factor (CRF or a/p)

$$
\mathrm{p} / \mathrm{a}=\frac{i(1+i)^{n}}{(1+i)^{n}-1}
$$

Chapter 3. ECONOMICS

Example 3.7 : Present worth (p/a) of a uniform series of amounts

You borrow $\$ 1000$ from a loan company that charges 15% nominal annual interest compounded monthly. How many month will it take to repay the loan if you pay off $\$ 38$ per month?
(Solution)

$$
\begin{aligned}
& \$ 1000=(\$ 38)(\mathrm{p} / \mathrm{a}), \mathrm{p} / \mathrm{a}=\frac{\left(1+\frac{i}{m}\right)^{n}-1}{\frac{i}{m}\left(1+\frac{i}{m}\right)^{n}} \\
& i=0.15 \mathrm{~m}=12 \\
& 1000=38 * \frac{(1.0125)^{n}-1}{0.0125(1.0125)^{n}} \\
& \square n=32.1 \text { month }
\end{aligned}
$$

Chapter 3. ECONOMICS

3.8 Gradient present worth factor (GPWF)

- Non uniform amounts in the series (ex: maintenance cost is being increased)
- No cost during the first year
- cost G at the end of the $2^{\text {nd }}$ year, and $2 G$ at the end of the $3^{\text {rd }}$ year...

$$
\begin{aligned}
(\text { Present worth } P) & =\frac{G}{(1+i)^{2}}+\frac{2 G}{(1+i)^{3}}+\cdots+\frac{(n-1) G}{(1+i)^{n}} \\
& =G\left\{\frac{1}{i}\left[\frac{(1+i)^{n}-1}{i(1+i)^{n}}-\frac{n}{(1+i)^{n}}\right\}\right. \\
\therefore G P W F & =\left\{\frac{1}{i}\left[\frac{(1+i)^{n}-1}{i(1+i)^{n}}-\frac{n}{(1+i)^{n}}\right\}\right.
\end{aligned}
$$

Chapter 3. ECONOMICS

3.10 Bonds

- Bond is an instrument of indebtedness of the bond issuer to the holders.
- Face value and its interest is paid by the issuers to holder.
- Interest is usually semiannual.
- It is possible to sell and buy the bond.

Chapter 3. ECONOMICS

3.10 Bonds

$$
P_{b}\left(1+\frac{i_{c}}{2}\right)^{2 n}=F V+F V \frac{i_{b}}{2} \frac{\left(1+i_{c} / 2\right)^{2 n}-1}{i_{c} / 2}
$$

Future worth of investment
Future worth of uniform series of the semiannual interest payment on the bond

- FV : face value
- P_{b} : price to be paid for bond now
- i_{c} : current interest rate
- $i_{b} \quad$: interest rate on bond
- n : years to maturity

Chapter 3. ECONOMICS

3.11 Shift in time of a series

- Unlike the previous examples, first payment is at the start of the first period

$$
\begin{gathered}
S=R(1+i)^{n-1}+R(i+i)^{n-2}+\cdots+R(1+i)+R \\
\\
\hline
\end{gathered}
$$

First payment at the end of the first period

$$
S=R(1+i)^{n}+R(i+i)^{n-1}+\cdots+R(1+i)
$$

Future worth

First payment at the start of the first period

- R : uniform amount at each time period
- S : Future worth

Chapter 3. ECONOMICS

3.11 Shift in time of a series

- If first payment is at the start of the first payment
- Series compound amount factor (SCAF or f/a)
$($ Future worth $S)=($ Regular amount $R) \cdot(\mathrm{f} / \mathrm{a})_{\text {shift }} \quad(\mathrm{f} / \mathrm{a})_{\text {shift }}=\frac{(1+i)^{n}-1}{i /(1+i)}$
- Sinking fund factor (SFF or a / f)
$($ Regular amount $R)=($ future worth $S) \cdot(\mathrm{a} / \mathrm{f})_{\text {shift }} \quad(\mathrm{a} / \mathrm{f})_{\text {shift }}=\frac{i /(1+i)}{(1+i)^{n}-1}$

Chapter 3. ECONOMICS

Example 3.9 : Bonds

A $\$ 1000$ bond that has 10 years to maturity pays interest semiannually at a nominal annual rate of 8%. An investor wishes to earn 9% on investment. What price could investor pay for the bond to achieve this 9% interest rate?
(Solution)

$$
\begin{aligned}
& P_{b}\left(1+\frac{i_{c}}{2}\right)^{2 n}=F V+F V \frac{i_{b}}{2} \frac{\left(1+i_{c} / 2\right)^{2 n}-1}{i_{c} / 2} \\
& P_{b}=? \quad i_{c}=0.09 \quad n=10 \quad F V=\$ 1000 \quad i_{b}=0.08 \\
& P_{b}=\$ 934.96
\end{aligned}
$$

Chapter 3. ECONOMICS

3.14 Evaluating Potential Investments

- Four elements of consideration in investment analysis
(1) first cost
(2) Income
(3) Operating expense
(4) Salvage value

Chapter 3. ECONOMICS

Example 3.12 : Evaluating Potential Investments

You have a choice of buying building A of building B to operate the building for 5 years and then sell it. Building A's expected value is to be 20% higher in 5 years, while building B is expected to drop in value of 10% in 5 years. Other data are shown in Table below. What will be the rate of return on each building?

Economic data	Building A	Building B
First cost	$\$ 800,000$	$\$ 600,000$
Annual income from rent	160,000	155,000
Annual operating and	73,000	50,300
\quad maintenance cost		
Anticipated selling price	960,000	540,000

Chapter 3. ECONOMICS

(Solution)

First cost $=($ Annual income - Annual operating and maintenance cost) $(\mathrm{p} / \mathrm{a})$ + (Anticipated selling price)(p/f)

$$
\text { Recall } p / a=\frac{(1+i)^{n}-1}{i(1+i)^{n}} \quad p / f=\frac{1}{(1+i)^{n}}
$$

Building A : $800,000=(160,000-73,000)\left(\frac{(1+i)^{5}-1}{i(1+i)^{5}}\right)+(960,000)\left(\frac{1}{(1+i)^{5}}\right)$
Building $B: 600,000=(155,000-50,300)\left(\frac{(1+i)^{5}-1}{i(1+i)^{5}}\right)+(540,000)\left(\frac{1}{(1+i)^{5}}\right)$

$$
i= \begin{cases}13.9 \% & \text { building } A \\ 16.0 \% & \text { building } B\end{cases}
$$

Chapter 3. ECONOMICS

3.18 Continuous compounding

- High frequency of compounding is quite realistic in business operation.
- Businesses control their money more on a flow basis than on a batch basis.

Chapter 3. ECONOMICS

3.18 Continuous compounding

if m approaches infinity,

$$
\mathrm{f} / \mathrm{p}=\left(1+\frac{i}{m}\right)^{m n} \quad(\mathrm{f} / \mathrm{p})_{\text {const }}=\left.\left(1+\frac{i}{m}\right)^{m n}\right|_{m \rightarrow \infty}
$$

by taking the logarithm and using tailor expansion,

$$
\ln \left((\mathrm{f} / \mathrm{p})_{\text {const }}\right)=\left.m n\left[\ln \left(1+\frac{i}{m}\right)\right]\right|_{m \rightarrow \infty}=\left.m n\left[0+\frac{i}{m}+a_{2} \frac{i^{2}}{m^{2}}\right]\right|_{m \rightarrow \infty}
$$

cancling m and letting m approaches infinity,

$$
\ln \left((\mathrm{f} / \mathrm{p})_{\text {const }}\right)=\mathrm{in} \quad \square \quad(\mathrm{f} / \mathrm{p})_{\text {const }}=e^{i n}
$$

Chapter 3. ECONOMICS

Example 3.13 : Continuous compounding

Compare the values of $(\mathrm{f} / \mathrm{p}, 8 \%, 10)$ and $\left[(\mathrm{f} / \mathrm{p})_{\text {cont }}, 8 \%, 10\right]$
(Solution)
$(f / p, 8 \%, 10)=(1+0.08)^{10}=2.1589$
$\left[(\mathrm{f} / \mathrm{p})_{\text {cont }}, 8 \%, 10\right]=e^{0.8}=2.2255$

