Optimal Design of Energy Systems (M2794.003400)

#### **Chapter 7. Optimization**

#### Min Soo KIM

#### Department of Mechanical and Aerospace Engineering Seoul National University

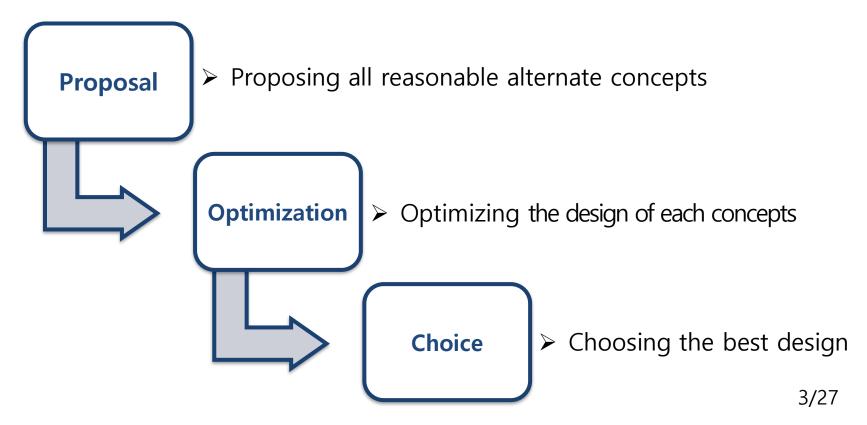


#### 7.1 Introduction

- Definition : Finding the conditions that give max. or min. values of a function
- Target : Selecting which criterion is to be optimized ex) size, weight, cost
- Components and system simulation are preliminary steps to optimization

#### 7.2 Levels of Optimization

- Two levels of optimization : comparison of alternate concepts & optimization within a concept
- A complete optimization procedure ;



#### 7.3 Mathematical Representation of Optimization Problems

- Objective function : Meaning the function to be optimized ('y' below equation)
- Independent variables : Constituting an objective function but independent with each variable (' $x_1 \cdots x_n$ ' below equation)

$$y = y(x_1, \cdots, x_n) \rightarrow \text{optimize}$$
  
 $\bigwedge$ 
Objective function Independent variables

#### 7.3 Mathematical Representation of Optimization Problems

- In many physical situations there are constraints, some of which may be **equality constraints** as well as **inequality constraints**.
- Equality constraints (등호);

$$\phi_i = \phi_i(x_1, \cdots, x_n) = 0$$

- Inequality constraints (부등호) ;

$$\psi_i = \psi_i(x_1, \cdots, x_n) \le L_j$$

#### 7.3 Mathematical Representation of Optimization Problems

- An additive constant in the objective function does not affect the values of independent variables at which the optimum occurs.

if 
$$y = a + Y(x_1, \dots, x_n)$$
  
Additive constant

then 
$$\min y = a + \min Y$$

- The maximum of a function occurs at the same state point at which the minimum of the negative of the function occurs

$$\max[y(x_1, \cdots, x_n)] = -\min[-y(x_1, \cdots, x_n)]$$

#### 7.4 A Water-Chilling System

- A water-chilling system, shown schematically in the figure, will be used to illustrate the mathematical statement.
- Task : Minimize the first cost to satisfy the cooling system's requirements

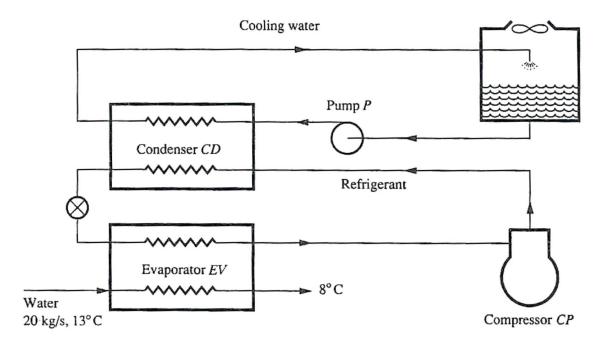


Fig. Water-chilling unit being optimized for minimum first cost 7/27

#### 7.4 A Water-Chilling System

#### (Given)

- System's requirements

mass flow rate : 20 kg/s of water inserted

cooling temperature : from 13°C to 8 °C

Rejecting the heat to the atmosphere through cooling tower

- Target : **total cost y**  $\Rightarrow$  objective function
- Variables :  $x_{CP}$ ,  $x_{EV}$ ,  $x_{CD}$ ,  $x_P$ ,  $x_{CT} \Rightarrow$  individual variables

(meaning the size of the compressor, evaporator, condenser, pump, cooling tower, respectively)

#### 7.4 A Water-Chilling System

#### (Optimization)

- The total cost y ;  $y = y(x_{CP}, x_{EV}, x_{CD}, x_P, x_{CT}) \Rightarrow$  minimize
- Prior to optimization, the water-chilling assignment can be calculated as below;

$$20 \text{ kg/s} \times (13 - 8)^{\circ}\text{C} \times \left[\frac{4.19 \text{ kJ}}{\text{kg} \cdot \text{K}}\right] = 419 \text{ kW}$$

- The cooling capacity  $\varphi$ ;  $\varphi = \varphi(x_{CP}, x_{EV}, x_{CD}, x_P, x_{CT}) \ge 419 \, kW$
- $t_{ev}$  is above 0°C to prevent water from freezing on the tube surface.
- The evaporating temperature  $t_{ev}$ ;  $t_{ev}(x_{CP}, x_{EV}, x_{CD}, x_{P}, x_{CT}) \ge 0^{\circ}C$
- There may be other inequality constraints, such as limiting the condenser cooling water flow, discharge temperature of the refrigerant leaving the compressor.

#### 7.5 Optimization Procedures

- The objective function is dependent upon more than one variable.
- Some thermal systems may have many variables which demand sophisticated **optimization techniques**.
- Several optimization methods will be listed in the next sections.

#### 7.6 Calculus Methods : Lagrange Multipliers (Ch.8 & 16)

- Using derivatives to indicate the optimum. (presented in Ch.8 and Ch.16)
- The method of Lagrange multipliers performs an optimization where equality constraints exist.

#### 7.7 Search Methods (Ch.9 & 17)

- These method involve examining many combinations of the independent variables
- Then, drawing conclusions from the magnitude of **the objective function at these combinations** (presented in Ch.9 & 17)
- Usually inefficient, but it can be proper when optimizing systems where the components are available only **in finite steps** of sizes.

#### 7.8 Dynamic Programming (Ch.10 & 18)

- Not meaning computer programming, but optimization technique
- The result of this method is **an optimum function**, relating several variables, rather than an optimum state point. (covered in Ch.10 & 18)
- E.g. the best route of a gas pipeline

#### 7.9 Geometric Programming (Ch.11)

- Optimizing a function that consists of **a sum of polynomials** wherein the variables appear to integer and non-integer exponents. (covered in Ch.11)

#### 7.10 Linear Programming (Ch.12)

- Widely used and well-developed discipline applicable when a given equation is linear. (covered in Ch.12)

#### 7.11 Setting up the Mathematical Statement of optimization Problem

- Strategy
  - 1) Specify all direct constraints e.g. capacity, temperature, pressure
  - 2) Describe in equation form the component characteristics
  - 3) Write mass and energy balances

#### **Example 7.1 : Equations for Optimizing Air-Cooling System**

- Hot air is cooled by two-stage water cooling system. Develope (a) the objective function and (b) the constraint equations for an optimization to provide **minimum first cost.** 

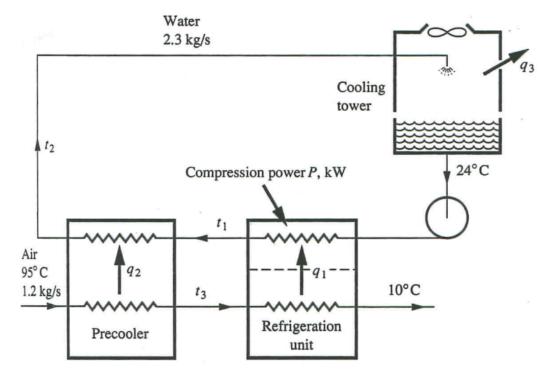


Fig. Air-cooling system in Example 7.1

# Example 7.1 : Setting up equations for optimizing cooling system (Variables)

- Cost of refrigeration unit, pre-cooler, cooling tower :  $x_1, x_2, x_3$  [\$] (respectively)
- Rate of heat transfer of refrigeration unit, pre-cooler, cooling tower :  $q_1$ ,  $q_2$ ,  $q_3$  [kW]
- Compression power required by refrigeration unit : P [kW]
- Local temperature :  $t_1, t_2, t_3$  (covered in Fig.)

#### (Given)

- Air :  $\dot{m}_a = 1.2 \text{ kg/s}$  and  $C_{p,a} = 1.0 \text{ kJ/(kg \cdot K)}$  95°C  $\rightarrow 10$ °C (cooled down)
- Water :  $\dot{m}_w = 2.3 \text{ kg/s}$  and  $C_w = 4.19 \text{ kJ/(kg \cdot K)}$
- Cooling tower :  $t_c = 24^{\circ}$ C (leaving from)

# Example 7.1 : Setting up equations for optimizing cooling system (Given)

- Relation between variables :

Refrigeration unit :  $x_1 = 48q_1$ 

Precooler :  $x_2 = \frac{50q_2}{t_3 - t_1}$  (applicable when  $t_3 > t_1$ ) Cooling tower :  $x_3 = 25q_3$ Compression power :  $P = 0.25q_1$ 

- $q_1$  and P must be absorbed by the condenser cooling water passing through the refrigeration unit
- Pipelines, which consist of the system, are adiabatic.

# Example 7.1 : Setting up equations for optimizing cooling system (Solution)

(a) Total cost (objective function) :  $y = x_1 + x_2 + x_3$ 

- However it can be also written in terms of **Rate of heat transfer** (the q 's) or even **The temperature** (the t 's), not only by the individual costs (the x 's)

# Example 7.1 : Setting up equations for optimizing cooling system (Solution)

(b) Refrigeration unit :

1) 
$$q_1 + P = (2.3 \text{ kg/s})[4.19 \text{ kJ/(kg} \cdot \text{K})](t_1 - 24)$$
 (water side)

2) 
$$q_1 = \dot{m}_a C_p \Delta T = (1.2 \text{ kg/s})[1.0 \text{ kJ/(kg} \cdot \text{K})](t_3 - 10)$$
 (air side)

Pre-cooler :

3) 
$$(1.2)(1.0)(95 - t_3) = (2.3)(4.19)(t_2 - t_1)$$
 (from energy balance)  
4)  $q_2 = \dot{m_a}C_p\Delta T = (1.2kg/s)[1.0 \text{ kJ}/(\text{kg} \cdot \text{K})](95 - t_3)$ 

Cooling tower :

5) 
$$q_3 = m_w C_w \Delta T = (2.3 \text{ kg/s})[4.19 \text{ kJ/(kg} \cdot \text{K})](t_2 - 24)$$

# Example 7.1 : Setting up equations for optimizing cooling system (Solution)

(b) The given relations :

6) Refrigeration unit :  $x_1 = 48q_1$ 7) Precooler :  $x_2 = \frac{50q_2}{t_3 - t_1}$  (applicable when  $t_3 > t_1$ ) 8) Cooling tower :  $x_3 = 25q_3$ 9) Compression power :  $P = 0.25q_1$ 

Unknowns : 
$$q_1 \cdots q_3$$
,  $x_1 \cdots x_3$ ,  $t_1 \cdots t_3$ , P

 $\Rightarrow$  There are 9 equations in the set and 10 unknowns

# Example 7.1 : Setting up equations for optimizing cooling system (Solution)

- (b) The number of equations : 9  $\Rightarrow$  2 (one less than the # of equations)
  - The number of unknowns : 10  $\Rightarrow$  3 (the individual costs,  $x_1 \cdots x_3$ )
  - Eliminating the variables, two equations finally remain as follows;  $\phi_1(x_1, x_2, x_3) = 0.01466x_1x_2 - 14x_2 + 1.042x_1 - 5100 = 0$   $\phi_2(x_1, x_2, x_3) = 7.69x_3 - x_1 - 19,615 = 0$

# Example 7.1 : Setting up equations for optimizing cooling system (Answer)

Minimize

(a)  $y = x_1 + x_2 + x_3$ 

Subject to

(b) 
$$\emptyset_1(x_1, x_2, x_3) = 0.01466x_1x_2 - 14x_2 + 1.042x_1 - 5100 = 0$$
  
 $\emptyset_2(x_1, x_2, x_3) = 7.69x_3 - x_1 - 19,615 = 0$ 

#### 7.12 Discussion of Example 7.1

- The optimum value of x :

 $(x_1, x_2, x_3) = (\$1450, \$496, \$2738)$ 

With the methods in the subsequent chapters (not covered in here)

- Limitation of temperature
  - If  $t_3 < t_1$ ,  $x_2$  becomes negative, physically impossible  $(x_2 = \frac{50q_2}{t_2 t_1})$
  - From heat transfer consideration, the precooler can cool the air no lower than 24°C

#### 7.12 Discussion of Example 7.1

- The equation permits to  $x_2 \rightarrow 0$ , when all cooling is performed by the refrigeration unit  $(x_1)$ .

 $0.01466x_1x_2 - 14x_2 + 1.042x_1 - 5100 = 0$ 

#### 7.12 Discussion of Example 7.1

- The constraint equation below imposes a minimum value of the cooling tower  $x_3$ .
- The refrigeration unit  $x_1 \uparrow \rightarrow$  the cooling tower  $x_3 \uparrow$

because of the compression power associated with the refrigeration unit.

$$7.69x_3 - x_1 - 19,615 = 0$$
  
 $P = 0.25q_1$   
 $x_1 = 48q_1$ 

#### 7.13 Summary

- This chapter is to introduce procedures for **setting up the mathematical statement** of the optimization problem.
- In the next five chapters, specific optimization techniques are suggested
- The optimization is available when the characteristics of the physical system have been converted into **the equations for the objective function and constraints.**