Optimal Design of Energy Systems (M2794.003400)

Chapter 9. SEARCH METHODS

Min Soo KIM

Department of Mechanical and Aerospace Engineering Seoul National University

Chapter 9. SEARCH METHODS

9.1 Overview of search methods

- The major effort in the optimization was determining the values of the independent variables that provide the optimum.
- Search methods generally fall into categories;
$\left[\begin{array}{l}\text { elimination } \\ \text { hill-climbing }\end{array}\right.$
- no one systematic procedure
- ultimate approach if other optimization methods fail

Chapter 9. SEARCH METHODS

9.1 Overview of search methods

a. Exhaustive
Single variable
b. Efficient
a. Lattice

Multivariable, unconstrained
b. Univariate
c. Steepest ascent

Multivariable, constrained
a. Penalty functions
b. Search along a constraint

Chapter 9. SEARCH METHODS

9.2 Interval of uncertainty

- In search methods, the precise point at which the optimum occurs will never be known
- The best that can be achieved is to specify the interval of uncertainty

Chapter 9. SEARCH METHODS

9.3 Exhaustive search (linear search)

- The exhaustive search is most widely used
- Interval of interest is uniformly devided by (number of observation +1)

number of observation:	$n=7$
devided interval:	$\frac{1}{n+1} I_{0}$

Maximum lies : $y\left(x_{\mathrm{A}}\right)<y_{\text {max }}<y\left(x_{\mathrm{B}}\right)$ Interval of uncertainty: $\quad I=\frac{2}{(n+1)} I_{0}=\frac{2}{8} I_{0}$

Right next 2 sides of maximum y

Chapter 9. SEARCH METHODS

9.4 Unimodal functions

- Only one peak (or valley) in the interval of interest
- dichotomous search method

Fibonacci search method

Chapter 9. SEARCH METHODS

9.5 Eliminating a section based on two tests

- It can be eliminated one side at two different position of an unimodal function.

> Can be eliminated

(a)
$y\left(x_{\mathrm{A}}\right)<y\left(x_{\mathrm{B}}\right)$

(b)

Chapter 9. SEARCH METHODS

9.6 Dichotomous search

- Searching from the middle of the interval with a range, ε
- Comparing x_{A}, x_{B}, smaller part of the interval is eliminated
$1^{\text {st }}$ trial remaining interval : $\quad I=\frac{I_{0}+\varepsilon}{2}$
$2^{\text {nd }}$ trial remaining interval : $I=\frac{\frac{I_{0}+\varepsilon}{2}+\varepsilon}{2}=\frac{I_{0}}{4}+\left(\varepsilon-\frac{1}{4} \varepsilon\right)$

3 rd trial remaining interval : $I=\frac{\frac{I_{0}+\varepsilon}{2}+\varepsilon}{2}+\varepsilon I_{0}+\left(\varepsilon-\frac{1}{8} \varepsilon\right)$
I : interval of uncertainty
I_{0} : interval of interest
ε : space between two points
n trial points $(n=2,4,6, \ldots): \quad I=\frac{I_{0}}{2^{n / 2}}+\varepsilon\left(1-\frac{1}{2^{n / 2}}\right)$

Chapter 9. SEARCH METHODS

9.7 Fibonacci search

- What is Fibonacci series?

$$
\begin{aligned}
& F_{1}=1, \quad F_{2}=1, \quad F_{i}=F_{i-2}+F_{i-1} \quad(i \geq 2) \\
& F=1,1,2,3,5,8,13,21,34,55,89, \cdots
\end{aligned}
$$

- Fibonacci series in nature

Fig. Fibonacci spiral and shell*

Fig. Number of flower petals and Fibonacci series**

Chapter 9. SEARCH METHODS

9.7 Fibonacci search

- Applying Fibonacci series to search method
(1) Decide how many observations(n)
(2) Place the first observation in I_{0} at a distance of $I_{0} \frac{F_{n-1}}{F_{n}}$ from both ends
(3) Place the next observation in the interval of uncertainty at a position that is symmetric to the existing observation
(4) Interval reduces according to Fibonacci series

$$
I_{1}=I_{0} \frac{F_{n-1}}{F_{n}} \quad I_{2}=I_{1} \frac{F_{n-2}}{F_{n-1}}=I_{0} \frac{F_{n-2}}{F_{n}} \quad I_{3}=I_{2} \frac{F_{n-3}}{F_{n-2}}=I_{0} \frac{F_{n-3}}{F_{n}}
$$

Chapter 9. SEARCH METHODS

Example 9.1

Find the maximum of the function $y=-x^{2}+4 x+2$
in the interval $0<x<5$

Arbitrarily choose: $n=4, \quad I_{0}=5$

$$
\begin{aligned}
& 1^{\text {st }}: x_{1}=I_{0} \frac{F_{3}}{F_{4}}=\frac{3}{5} I_{0}=3 \\
& 2^{\text {nd }}: \text { symmetric } 0 \sim 5 \rightarrow \begin{array}{l}
x_{2}=2 \\
\text { eliminate } 3<x<5
\end{array} \\
& \begin{array}{ll}
3^{\text {rd }}: \text { symmetric } 0 \sim 3 \rightarrow & x_{3}=1 \\
\vdots \\
\text { Final }: x=2-\varepsilon & \text { eliminate } 0<x<1
\end{array}
\end{aligned}
$$

Interval of uncertainty

$$
2-\varepsilon \leq x \leq 3 \frac{I_{0}}{5}+\varepsilon=\frac{I_{0}}{F_{n}}+\varepsilon
$$

Chapter 9. SEARCH METHODS

9.8 Comparative effectiveness of search methods

Reduction Ratio (RR) $=\frac{I_{0}}{I_{n}}$
$=\left\{\begin{array}{c}\frac{n+1}{2} \\ 2^{\frac{n}{2}} \\ F_{n}\end{array}\right.$

> single variable search
good
$F_{n} \quad$ Fibonacci
good

Chapter 9. SEARCH METHODS

9.10 Multivariable, unconstrained optimization

- Single variable
$\left[\begin{array}{ll}\text { Calculus } & - \text { exhaustive } \\ \text { elimination }-\left[\begin{array}{l}\text { dichotomous } \\ \text { Finonacci }\end{array}\right.\end{array}\right.$
- Multivariable, unconstrained

Chapter 9. SEARCH METHODS

9.11 Lattice search

- Start at on point in the region of interest
- Check a number of points in a grid surrounding the central point
- Move the central point to maximum value of a grid
- If the central point is greater than other surrounding point: coarse grid \rightarrow fine grid

Chapter 9. SEARCH METHODS

9.12 Univariate search

- Optimization with respect to one variable at a time

- Failure occurs

Large interval

Chapter 9. SEARCH METHODS

9.13 Steepest-ascent method

- Decide in which direction to move along the gradient
- Decide how far to move and then move that distance

$$
\begin{aligned}
& \nabla y=\frac{\partial y}{\partial x_{1}} \widehat{i_{1}}+\frac{\partial y}{\partial x_{2}} \widehat{i_{2}} \\
& \hat{i_{1}}, \widehat{i_{2}}: \text { unit vector in the } x_{1} \text { and } x_{2}
\end{aligned}
$$

gradient vector (at A) is normal to the contour line (at A)

Chapter 9. SEARCH METHODS

9.13 Steepest-ascent method

(1) trial point as near to the optimum as possible (otherwise, arbitrarily chosen)
(2) Gradient vector is normal to the contour line or surface and therefore indicates the direction of maximum rate of change

$$
\frac{\Delta x_{1}}{\partial y / \partial x_{1}}=\cdots=\frac{\Delta x_{n}}{\partial y / \partial x_{n}}\left\langle\frac{\partial y}{\partial x_{1}}: \frac{\partial y}{\partial x_{2}}: \cdots: \frac{\partial y}{\partial x_{n}}=x_{1}: x_{2}: \cdots: x_{n}\right.
$$

(3) in the direction of gradient, move until optimum is reached

Chapter 9. SEARCH METHODS

9.14 Scales of the independent variables

- Contours should be as spherical as possible to accelerate the convergence

(a) Original scale
$\left\{\begin{array}{l}0<x_{1}<400 \\ 0<x_{2}<100\end{array}\right.$

(b) Revised scale
$\left\{\begin{array}{l}0<x_{1}<400 \\ 0<x_{2}^{\prime}<400\end{array}\right.$

Chapter 9. SEARCH METHODS

9.15 Constrained optimization

- The most frequent and most important ones encountered in the design of thermal systems

1) Conversion to unconstrained by use of penalty functions
2) Searching along the constraint
\rightarrow equality constraints only

Chapter 9. SEARCH METHODS

9.16 Penalty functions

$$
y=y\left(x_{1}, x_{2}, \cdots x_{n}\right) \quad \rightarrow \text { maximum }
$$

Subject to

$$
\begin{aligned}
& \phi_{1}=y\left(x_{1}, x_{2}, \cdots x_{n}\right)=0 \\
& \vdots \\
& \phi_{m}=y\left(x_{1}, x_{2}, \cdots x_{n}\right)=0
\end{aligned}
$$

New unconstrained function

$$
Y=y-P_{1} \phi_{1}^{2}-\cdots-P_{m} \phi_{m}^{2}
$$

$$
Y=y+P_{1} \phi_{1}^{2}+\cdots+P_{m} \phi_{m}^{2}
$$

$P_{i} \quad$ Relative weighting
too high - move very slowly
too small - terminate without satisfying the constraints

Chapter 9. SEARCH METHODS

9.17 Optimization by searching along a constraint-hemstitching

- Choose a trial point
- Driving toward the constraint(s) (fixed x 1 or x 2)
- On constraint(s), optimize along the constraint(s) (tangential move)
9.18 Driving toward the constraint(s)

```
\(m<n\)
    \(m\) : the number of constraints
    \(n\) : the number of variables
\(n-m \quad:\) the number of remaining variables which should be solved
```


Chapter 9. SEARCH METHODS

9.19 Hemstitching search when $\mathrm{n}-\mathrm{m}=1$
$\left.\begin{array}{l}\text { \# of constraints }=m \\ \# \text { of variables }=n\end{array}\right\} n-m=1$

$$
x_{1}^{2} x_{2}=8
$$

$$
\phi\left(x_{2}, x_{2}\right)=0
$$

(a)

(b)

Chapter 9. SEARCH METHODS

9.19 Hemstitching search when $n-m=1$

- constraint

$$
\begin{aligned}
& \phi\left(x_{1}, x_{2}\right)=0 \\
& \Delta \phi=\frac{\partial \phi}{\partial x_{1}} \Delta x_{1}+\frac{\partial \phi}{\partial x_{2}} \Delta x_{2}=0 \\
& \frac{\Delta x_{1}}{\Delta x_{2}}=-\frac{\partial \phi / \partial x_{1}}{\partial \phi / \partial x_{2}}
\end{aligned}
$$

- objective function

$$
\begin{array}{rlrl}
\Delta y & \approx \frac{\partial y}{\partial x_{1}} \Delta x_{1}+\frac{\partial y}{\partial x_{2}} \Delta x_{2} & & \\
& =\left(-\frac{\partial y}{\partial x_{1}} \frac{\partial \phi / \partial x_{2}}{\partial \phi / \partial x_{1}}+\frac{\partial y}{\partial x_{2}}\right) \Delta x_{2}=G \Delta x_{2} & & \text { if minimization, } \mathrm{G}>0, \Delta \mathrm{x}_{2}<0 \\
& \text { if } \mathrm{G}<0, \Delta \mathrm{x}_{2}>0 \\
& \text { In maximization, } & \text { if } \mathrm{G}>0, \Delta \mathrm{x}_{2}>0 \\
\text { if } \mathrm{G}<0, \Delta \mathrm{x}_{2}<0
\end{array}
$$

Chapter 9. SEARCH METHODS

9.19 Hemstitching search when $\mathbf{n - m}=1$

Three-variable problem where $\mathrm{n}=3, \mathrm{~m}=2$
optimize $y=y\left(x_{1}, x_{2}, x_{3}\right)$
subject to $\phi_{1}\left(x_{1}, x_{2}, x_{3}\right)=0$

$$
\phi_{2}\left(x_{1}, x_{2}, x_{3}\right)=0
$$

On the constraints, (tangential move)

$$
\left.\begin{array}{rl}
\Delta \phi_{1} & =\frac{\partial \phi_{1}}{\partial x_{1}} \Delta x_{1}+\frac{\partial \phi_{1}}{\partial x_{2}} \Delta x_{2}+\frac{\partial \phi_{1}}{\partial x_{3}} \Delta x_{3}=0 \\
\Delta \phi_{2} & =\frac{\partial \phi_{2}}{\partial x_{1}} \Delta x_{1}+\frac{\partial \phi_{2}}{\partial x_{2}} \Delta x_{2}+\frac{\partial \phi_{2}}{\partial x_{3}} \Delta x_{3}=0
\end{array}\right\} \text { Eliminate } \Delta \mathrm{x}_{1}, \Delta \mathrm{x}_{2}
$$

Chapter 9. SEARCH METHODS

9.20 Moving tangent to a constraint in three dimensions

- maximum change of y

$$
\Delta y=\frac{\partial y}{\partial x_{1}} \Delta x_{1}+\frac{\partial y}{\partial x_{2}} \Delta x_{2}+\frac{\partial y}{\partial x_{3}} \Delta x_{3}
$$

- direction (tangent to a constraint)

$$
\Delta \phi=\frac{\partial \phi}{\partial x_{1}} \Delta x_{1}+\frac{\partial \phi}{\partial x_{2}} \Delta x_{2}+\frac{\partial \phi}{\partial x_{3}} \Delta x_{3}=0
$$

- distance

$$
\Delta x_{1}^{2}+\Delta x_{2}^{2}+\Delta x_{3}^{2}=r^{2}=\text { const } .
$$

- maximum

$$
\Delta y=?
$$

Chapter 9. SEARCH METHODS

9.20 Moving tangent to a constraint in three dimensions

Lagrange Multiplier Method

$$
\begin{aligned}
& \frac{\partial y}{\partial x_{1}}-\lambda_{1}\left(2 \Delta x_{1}\right)-\lambda_{2} \frac{\partial \phi}{\partial x_{1}}=0 \\
& \frac{\partial y}{\partial x_{2}}-\lambda_{1}\left(2 \Delta x_{2}\right)-\lambda_{2} \frac{\partial \phi}{\partial x_{2}}=0 \\
& \frac{\partial y}{\partial x_{3}}-\lambda_{1}\left(2 \Delta x_{3}\right)-\lambda_{2} \frac{\partial \phi}{\partial x_{3}}=0 \\
& \begin{aligned}
(1) \times \frac{\partial \phi}{\partial x_{1}}+(2) \times \frac{\partial \phi}{\partial x_{2}}+(3) \times \frac{\partial \phi}{\partial x_{3}}
\end{aligned} \\
& \begin{array}{c}
\frac{\partial y}{\partial x_{1}} \frac{\partial \phi}{\partial x_{1}}+\frac{\partial y}{\partial x_{2}} \frac{\partial \phi}{\partial x_{2}}+\frac{\partial y}{\partial x_{3}} \frac{\partial \phi}{\partial x_{3}}-\lambda_{2}\left[\left(\frac{\partial \phi}{\partial x_{1}}\right)^{2}+\left(\frac{\partial \phi}{\partial x_{2}}\right)^{2}+\left(\frac{\partial \phi}{\partial x_{3}}\right)^{2}\right]=0 \\
\rightarrow \lambda_{2}
\end{array}
\end{aligned}
$$

Chapter 9. SEARCH METHODS

9.20 Moving tangent to a constraint in three dimensions

$$
\frac{1}{2 \lambda_{1}}=\frac{\Delta x_{1}}{\frac{\partial y}{\partial x_{1}}-\lambda_{2} \frac{\partial \phi}{\partial x_{1}}}=\frac{\Delta x_{2}}{\frac{\partial y}{\partial x_{2}}-\lambda_{2} \frac{\partial \phi}{\partial x_{2}}}=\frac{\Delta x_{3}}{\frac{\partial y}{\partial x_{3}}-\lambda_{2} \frac{\partial \phi}{\partial x_{3}}}
$$

$\Delta x_{i}=$ step size of on variable in the move

Chapter 9. SEARCH METHODS

9.21 Summary

1. Single variable
a. Exhaustive
b. Efficient $-\left[\begin{array}{l}\text { Dichotomous } \\ \text { Finonacci }\end{array}\right.$

- 2. Multivariable, unconstrained
a. Lattice
b. Univariate
c. Steepest ascent

3. Multivariable, constrained
a. Penalty functions
b. Search along a constraint
