457.646 Topics in Structural Reliability In-Class Material: Class 01

)

I. Introduction

Our Contract of Contract of

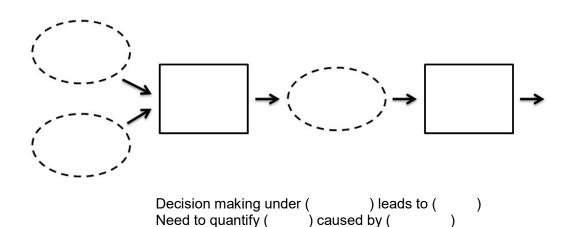
① (): Inherent randomness (or physical fluctuation)

e.g. earthquake intensity (PGA, PGV, ...), wind velocity, maximum flow rate

 \Rightarrow () be reduced

② (): uncertainty due to insufficient (

- () uncertainty: imperfect or simplified model (e.g. $3D \rightarrow 2D$)

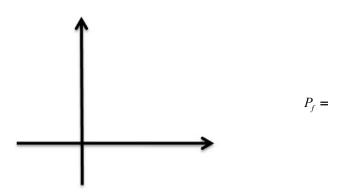

missing variables or effects

- () uncertainty: insufficient data

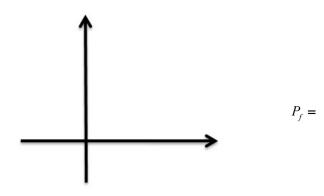
e.g. "sample mean is not the true mean"

 \Rightarrow () be reduced by investing more in knowledge and data

Our Content of Cont

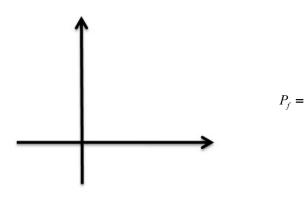


- Focus: methods for quantifying risk & applications


- Provide overview and applications of " " reliability methods

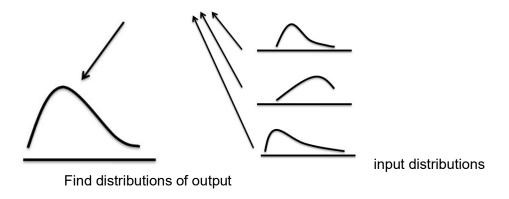
- \Rightarrow The word " " does not refer to physical structures (buildings and bridges, ...)
 - \Rightarrow in an () & () manner

- Part 2: Basic theory of probability & statistics (≤ 3 weeks) (ref. A&T textbook)
- Part 3: Structural Reliability Analysis (SRA) Component


- Reliability index: $eta_{\scriptscriptstyle MVFOSM},eta_{\scriptscriptstyle HL}$
- Reliability methods: FORM, SORM, etc. (how to integrate <)
- Part 4: Structural Reliability Analysis (SRA) System


- Reliability methods developed to handle system failure domains
- : "System" reliability methods
- Part 5: Structural Reliability under Epistemic Uncertainty

$$P_f = \int_{g(\mathbf{x}; \) \le 0} f_{\mathbf{x}}(\mathbf{x}; \) \, d\mathbf{x}$$


Part 6 : Simulation Methods

- \Rightarrow Monte Carlo simulations
- \Rightarrow Efficient Sampling methods

$$Y = g(\mathbf{x})$$

P(H)=

II. Basic theory of Probability and Statistics

1. Set Theory

Why do we need 'set theory' in uncertainty analysis?

- Uncertainty: a () of possible () e.g. toss a coin roll a dice weight of a car

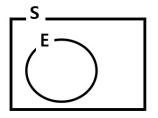
- **Probability:** numerical measure of the () of an event (i.e. a group of outcomes) of interest () the other possible outcomes
- e.g. "unfair coin"

- Uncertainty analysis starts with () the collection of all possible outcomes

H:T=

- Principles of set theory are essential tool for this task.

2. Definitions

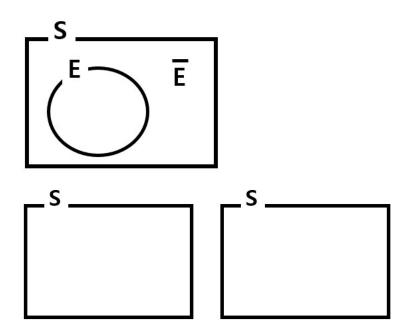

(a) **Sample space** (): the set of () possible outcomes **Sample point** (): an () outcome

e.g.

Criteria	Sample space	Examples
Continuous?	"Discrete": () quantities	# of typhoons at city A in a year S={ }
	"Continuous": () quantities	% of congested traffic in Seoul S={ }
Can count sample points?	<pre>"Finite" : () () and () "Infinite" : () () or ()</pre>	S = { } S = { } S = { }

Seoul National University Instructor: Junho Song Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr): any collection of sample ((b) **Event** () or any() of sample space e.g. Baseball: outcomes of each "at-bat" S= discrete or continuous? infinite or finite? "A hitter reaches a base" E= (c) Some notable events • () event: E= - Occurs with certainty) event: E= (• - cannot occur • **Complementary** event of *E*: () or () - An event that contains () the sample points that are () in E

- e.g. "at-bat" outcomes


E: "a hitter reaches a base"

$$\overline{E} =$$

- e.g. $\overline{S} =$, $\overline{\phi} =$

Instructor: Junho Song junhosong@snu.ac.kr

(d) **Venn diagram**: () & () representation of the sample space, sample points and events

* GUI-based interactive learning tools for Venn diagrams (and other statistical concepts) are available at http://www.stat.berkeley.edu/~stark/Java/Html/