457.646 Topics in Structural Reliability In-Class Material: Class 02

Recommended reading material:

Der Kiureghian, A., and Ditlevsen, O. (2009)

Aleatory or epistemic? Does it matter? Structural Safety, 31:105-112

Set Operations \rightarrow useful for (

) reliability analysis

 E_i

- ① "Union" of events: $E_1 \qquad E_2$
 - An event that contains all the sample points that are in E_1 E_2

- e.g., Concrete mixing
- E_1 : shortage of water E (concrete can't be produced) =
- E_2 : shortage of sand
- E_3 : shortage of gravel
- E_4 : shortage of cement
- e.g., Wind
- E_1 : blown off due to pressure $E = E_1$ E_2
- E_2 : missile-like flying objects
- e.g., Bridge pier under EQ
- E_1 : reaches displacement capacity $E = E_1 \qquad E_2$
- E_2 : reaches shear capacity

 $A \cup S =$

$$\begin{split} A \cup \phi &= \\ A \cup A &= \\ \text{If } A \subset B \text{ , then } A \cup B = \end{split}$$

(2) "intersection" of events $E_1 = E_2$ or

: an event that contains all the sample points that are both in $E_1 - E_2$

 $\mathbf{X} \quad A \cdot S =$

$$A \cdot \phi =$$

$$A \cdot A =$$

If $A \subset B$, then $AB =$

e.g.,

No evacuation by freeway E =

Exposed to pollutant E =

Operation Rules

Commutative Rule	$E_1 \cup E_2 =$
	$E_1E_2 =$
Associativo Pulo	$(E_1 \cup E_2) \cup E_3 = =$
Associative Rule	$(E_1 E_2) E_3 = =$
Dietrikutive Dule	$(E_1 \cup E_2)E_3 =$
Distributive Rule	$(E_1 E_2) \cup E_3 =$
	$\overline{(,,,,,)} =$
De Morgan's Rule	
	$(\bigcap_{i=1}^{i} E_i) =$

Relationship between events

① Mutually Exclusive events: $E_1E_2 =$

- Cannot occur together
- e.g. E_1 and $\overline{E_1}$
- $E_1 \cdots E_n$ and $\overline{E_i}$, $i \in \{1, \cdots, n\}$

S

E

E2

(2) Collectively Exhaustive events: $\bigcup_{i=1}^{n} E_i =$

■ The union constitutes the sample space

* <u>MECE:</u>

2. Mathematics of Probability (measure of likelihood of event)

Approach	Description	Example : Prob. (a "Yut" stick shows the flat side)
Notion of	Relative frequency based on empirical	
Relative	data, Prob. = (# of occurrences) / (# of	
Frequency	observations)	
On a Priori	Derived based on elementary	
Basis	assumptions on likelihood of events	
On		
Subjective Basis	Expert opinion ("degree of belief")	
Based on Mixed Information	Mix the information above to assign probability	

© Four approaches for assigning probability of events

Axioms of Probability

"Axioms": Statements or ideas which people <u>accept</u> as being the foundation of theory

I. P(E) = 0II. P(S) = 1III. M.E $E_1 \& E_2 : P(E_1 \cup E_2) =$

As a result,

1	$\leq P(E) \leq$	$(\because P(S) = P(\bigcup) = +$	=)
2	$P(\phi) =$	$(\because P(S \cup \phi) = + =$)
3	$P(\overline{E}) =$	$(\because P(E \cup \overline{E}) =$)
4	$P(E_1 \cup E_2) = P(E_1)$	$P(E_2) \qquad P(E_1E_2)$	
"A	ddition Rule" ■ Venn Diagram ■ Formal Proof	$F_{1} \xrightarrow{\mathbf{S}} \overline{\mathbf{E}_{2}}$ $P(E_{1} \cup E_{2}) = P(E_{1} \cup \overline{E}_{1}E_{2}) = P(E_{1}) + P(\overline{E}_{1}E_{2})$ $P(E_{2}) = P(E_{1}E_{2}) + P(\overline{E}_{1}E_{2})$	

"Inclusion-Exclusion Rule"

$$P(\bigcup_{i=1}^{n} E_{i}) = \sum_{i=1}^{n} P(E_{i}) - \sum \sum P(E_{i}E_{j}) + \sum \sum P(E_{i}E_{j}E_{k}) + \dots + (-1)^{n-1} \times P(E_{1}\cdots E_{n})$$

© Conditional Probability & Statistical Independence

① Conditional Probability

■ C.P of given

 $P(E_1 \mid E_2) \equiv$

- ③ "Multiplication Rule": $P(E_1E_2) =$

$$(:: P(E_1 | E_2) =$$

- $P(E_1 E_2 E_3) =$

-
$$P(E_1 \cdots E_n) =$$

- ④ All the other prob. rules should be applicable to conditional probabilities as long as all the prob. are defined within the same space
 - $P(E_1 \cup E_2 | E_3) =$
 - $P(E_1E_2|E_3) =$
 - $P(\overline{E_1}|E_3) =$
- 5 **Statistical Independence:** The occurrence of one event does not affect the likelihood of the other event
 - $P(E_1|E_2) =$
 - $P(E_2|E_1) =$
 - $P(E_1E_2) =$
 - cf. Mutually Exclusive $P(E_1E_2) = 0$

Total Prob. Theorem

 $P(E) \rightarrow$ Not easy to get directly $P(E | E_i) \rightarrow$ Easier to get $P(E) = \sum_{i=1}^{n}$

Proof:

Examples:

(1) Seismic hazard analysis:

P(E) =

FIG. 3.1 TYPE 1 SOURCE (BASIC CASE)

Der Kiureghian, A. (1976). *A line source-model for seismic risk analysis*, Ph.D. dissertation, University of Illinois at Urbana-Champaign, Urbana, USA.

(2) Probability of structural failure under an uncertain input intensity: Fragility

Bayes Theorem

$$P(E_i | E) = \frac{P(E | E_i)}{E_i}$$

- Decision making •
- Parameter estimation •
- Inference

Example)

purified

Measure of cleanness, X (0 : contaminated ~ 100 : clean)

	$P(E_i)$	$P(X \le 20 E_i)$
1	0.1	0.9
2	0.3	0.2
3	0.6	0.01

 $X \le 20 \Rightarrow$ Which one failed?

$$P(E_i | X \le 20) =$$