457.646 Topics in Structural Reliability In-Class Material: Class 09

III. Structural Reliability (Component) - continued

IDENTIFY OF STREET STREET, S

- **(5)** Joint distribution models with marginal & corr. coeff (contd.)
- a) Morgenstern: $F_{X_i}(x_i), i = 1,...,n \& \alpha_{ij}$ but $|\rho_{ij}| < 0.30$
- b) Nataf model (Nataf, 1962)
 - ★ Joint PDF by Nataf model

$$f_{\mathbf{X}}(\mathbf{x}) = f_{\mathbf{Z}}(\mathbf{z}) \cdot \left| \det J_{\mathbf{Z},\mathbf{X}} \right|$$
$$= \phi_n(\mathbf{z}; \mathbf{R'}) - \int_{\mathbf{z},\mathbf{x}} \int_{\mathbf{Z},\mathbf{x}} d\mathbf{z}$$
$$= \left[\prod_{i=1}^n f_{X_i}(x_i) \right] \cdot - \int_{\mathbf{z},\mathbf{x}} \int_{\mathbf{z},\mathbf{x}} d\mathbf{z}$$

Note:

$$F_{X_i}(x_i) = \Phi(z_i)$$

$$f_{X_i}(x_i)dx_i = \varphi(z_i)dz_i$$

★ ρ'_{ij} (corr. coeff. b/w Z_i and Z_j)?

$$\rho_{ij} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(----- \right) \left(----- \right) f_{X_i X_j}(x_i, x_j) dx_i dx_j$$

$$\therefore \rho_{ij} = \int \int \left(----- \right) \left(------ \right) \phi_2(z_i, z_j; \rho'_{ij}) ----- dz_i dz_j$$

In general, $\left| \rho_{ij}^{\prime} \right| = \left| \rho_{ij} \right|$

 $\therefore \left| \rho_{ij} \right| \le A < 1$ may not cover the whole range of ρ_{ij}

 $\rho'_{ij} \cong F \cdot \rho_{ij}$ Liu & ADK (Table 4~6) for pairs of selected distribution types

Table 9: Range of ρ_{ii} ~ wider (than Morgenstern)

Later used for transformation of dependent RVs into $\mathbf{U} \sim N(\mathbf{0}, \mathbf{I})$

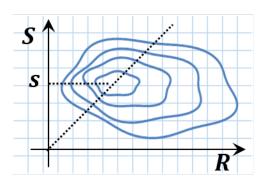
 ≤ 0

X Z U

© Elementary Structural Reliability Problem

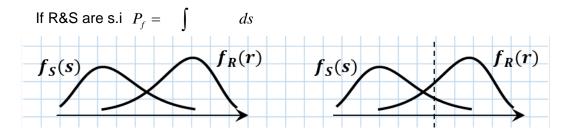
Describe the failure event in terms of _____ & _____

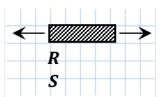
① Failure : $g(\mathbf{x}) = g(\ ,\) =$



② Failure probability : $P_f = P(\leq 0)$

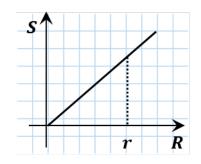
$$P_{f} = \iint f_{R,S}(r,s) dr ds$$
$$= \iint f_{R|S}(r|s) \cdot f_{s}(s) dr ds$$
$$= \iint f_{R|S}(r|s) dr f_{s}(s) ds$$
$$= \int f_{s}(s) ds$$





OR

$$P_{f} = \iint_{r \le s} f_{S|R}(s|r) f_{R}(r) ds dr$$
$$= \iint_{r \le s} f_{S|R}(s|r) ds f_{R}(r) dr$$
$$= \iint_{r \ge s} \left[\int_{r \ge s} f_{R}(r) dr \right] f_{R}(r) dr$$
if s.i =
$$\int_{r \ge s} \int_{r \ge s} f_{R}(r) dr$$



3 Reliability Index by "Safety Margin," β_{SM}

M =

: Safety Margin

Failure : $\{R - S \le 0\}$ $\Leftrightarrow \{ \le 0 \}$

$$\Leftrightarrow \{U_{_M} \le \qquad \}$$

* Standardization

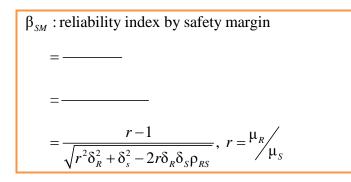
$$U_{M} = \underbrace{M}_{V_{M}} = \underbrace{E[U_{M}]}_{Var[U_{M}]} =$$

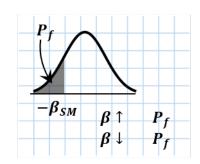
For *n* RVs,

$$\mathbf{U} = \mathbf{L}^{-1}\mathbf{D}^{-1}(\mathbf{X} - \mathbf{M})$$

$$\therefore P_f = P(U_M \le) = F_{U_M} ()$$

$$= F_{U_M} ()$$





 F_{U_M} : depends on distribution of R and S

e.g. special case ~ R and S are jointly normal

Then $U_M \sim$

Therefore $P_f = F_{U_M} (-\beta_{SM}) =$

* A. Cornell (1968. ACI codes)

Assumed R&S are jointly normal & used β_{SM} to compute P_f

④ Reliability Index by "Safety Factor"

 $F = \ln - \ln$ Failure : { ≤ 0 } (** $\Leftrightarrow \{ \leq 0\}$ $\Leftrightarrow \{u_F \leq ----\}$ $\therefore \beta_{SF} = ---- P_f = F_{u_F}(---)$ \Rightarrow special case: R & S are jointly lognormal

(* used for LRFD
$$\phi R_n \ge \sum \gamma_k Q_k$$
)

 $\mu_F =$

 $\sigma_F^2 =$

$$\begin{split} U_F \sim \\ \therefore P_f &= \Phi() \\ \mu_F^{(LN)} &= \\ \sigma_F^{(LN)} &= \\ \beta_{SF}^{(LN)} &= \frac{\ln\left(r \cdot \sqrt{\frac{1 + \delta_S^2}{1 + \delta_R^2}}\right)}{\sqrt{\ln(1 + \delta_R^2) - 2\ln(1 + \rho_{RS}\delta_R\delta_S) + \ln(1 + \delta_S^2)}}, \ r = \frac{\mu_R}{\mu_s} \end{split}$$

Safety factor-based reliability-index when R & S are jointly lognormal