457.646 Topics in Structural Reliability In-Class Material: Class 24

Instructor: Junho Song

junhosong@snu.ac.kr

VIII-1. Probability-Based Structural Design Code

- → Cornell. C.A (1969) A probability-based structural code (J. ACI)
- → Ravindara & Galambos (1978) Load & resistance factor design for steel structures

Load & Resistance Factor Design (LRFD)

Replaced allowable stress design (ASD) (→safety factor)

⇒ Probability-based code

$$\phi R_n \ge \sum_{k} \gamma_k Q_{km} = \gamma_D Q_{Dm} + \gamma_L Q_{Lm}$$
(1)

Dead load Live load

- i. R_n : " resistance
 - \rightarrow code formula (e.g. $V_c = \frac{1}{6} \sqrt{f_c} b_w d$)
 - → nominal values used (material & dimension)

ii.
$$\phi$$
: "Factor ~ ϕ 1

(Dimensionless) conservatism due to the uncertainties in R

" force, e.g. bending moment, axial force, shear force

iii. Q_m : mean load effect

: given in "

- → in generalized force (structural analysis)
- iv. γ : "Load" factor~ γ 1

Conservatism due to

- Potential overload
- 2 Uncertainty in load effect calculation
- v. Limit-State

"U " limit-states

e.g. frame instability, plastic mechanism formed incremental collapse

"S "limit-states

e.g. excessive deflection, excessive vibration, premature yielding or slip

LRFD codes suggest formulas for (), methods to compute () from loads provide () & ()

Instructor: Junho Song

junhosong@snu.ac.kr

for each structural element (Q_m) from loads

to satisfy the () reliability level

Measure of (target) reliability

(or conservatism)

⇒ use

Want to split so that factors for R & Q can be determined independently

***** Lind (1971)
$$\sqrt{\delta_R^2 + \delta_Q^2} \simeq \overline{\alpha}(\delta_R + \delta_Q)$$
 where $\overline{\alpha} = 0.75$

$$\therefore$$
 \geq $\cdots \cdots (3)$

$$(\mu_R, \mu_Q, \delta_R, \delta_Q)$$
?

Uncertainties in the Resistance, R

$$R = R_n \cdot M \cdot F \cdot P \qquad \qquad \cdots \cdots \cdots \cdots (4)$$

 R_n : nominal resistance by codes

M: "M"aterial ~

F: "F"abrication ~

P: "P"rofessional ~

①
$$\mu_R \stackrel{FO}{\simeq}$$

$$Var[\ln R] = \xi_R^2 =$$

Note
$$\xi_X^2 \simeq \delta_R^2$$
 when $\delta \ll 1$

$$\delta_R \cong$$

Our Uncertainties in Loads, Q

$$Q = E(C_D AD + C_L BL) \qquad (5)$$

①
$$\mu_Q \simeq$$

$$\begin{split} \delta_{Q} &\cong \delta_{E}^{2} + \delta_{c_{DAD} + c_{L}BL}^{2} \\ &= \delta_{E}^{2} + \frac{c_{D}^{2} \mu_{A}^{2} \mu_{D}^{2} (\delta_{A}^{2} + \delta_{D}^{2}) + c_{L}^{2} \mu_{B}^{2} \mu_{L}^{2} (\delta_{B}^{2} + \delta_{L}^{2})}{(c_{D} \mu_{A} \mu_{D} + c_{L} \mu_{B} \mu_{L})^{2}} \end{split}$$

\odot Finding target reliability index β

Initially, Eq. (3) & $\mu_{\scriptscriptstyle R}, \mu_{\scriptscriptstyle Q}, \delta_{\scriptscriptstyle R}, \delta_{\scriptscriptstyle Q} \rightarrow$ existing, e.g. allowable stress code

 \rightarrow can back-calculate target reliability index β embedded in the existing code

Instructor: Junho Song

junhosong@snu.ac.kr

For example, 1969 AISC simply supported beams:

$$\beta \cong 3.0$$
 (member), $\beta \cong 4.5$ (connections)

→ Provided starting points (and calibrated later)

\odot Load & Resistance Factors for given target β

Eq. (1)
$$\phi R_n \ge \sum_k \gamma_k Q_{km} = \gamma_E (\gamma_D C_D \mu_D + \gamma_L C_L \mu_L)$$

Eq. (3)
$$\exp(-\overline{\alpha}\cdot\beta\cdot\delta_{_R})\cdot\mu_{_R}\geq \exp(\overline{\alpha}\cdot\beta\cdot\delta_{_Q})\cdot\mu_{_Q}$$
 \leftarrow expressions derived for $\mu_{_R},\mu_{_Q},\delta_{_R},\delta_{_Q}$

From the LHS of Eq. (1) and Eq. (3):
$$\phi = \exp(-\alpha\beta\delta_R)\frac{\mu_R}{R_n}$$
 where $\alpha = 0.55$

From the RHS:

$$\begin{cases} \gamma_E = \exp(\alpha\beta\delta_E) \\ \gamma_D = 1 + \alpha\beta\sqrt{\delta_A^2 + \delta_D^2} \\ \gamma_L = 1 + \alpha\beta\sqrt{\delta_B^2 + \delta_L^2} \end{cases}$$

i) If
$$\beta \uparrow \begin{cases} \phi \\ \gamma \end{cases}$$

ii)
$$\frac{\mu_R}{R_n} > 1$$
, If $\frac{\mu_R}{R_n} \uparrow$, ϕ

Instructor: Junho Song junhosong@snu.ac.kr

Review in Nguyen, Song & Paulino (2010)

VIII-2. Reliability-Based Design Optimization (RBDO)

® RBDO formulation

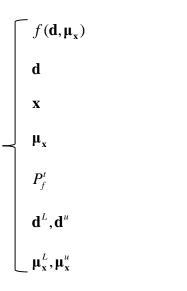
$$\min_{\mathbf{d}, \mathbf{\mu_x}} f(\mathbf{d}, \mathbf{\mu_x})$$

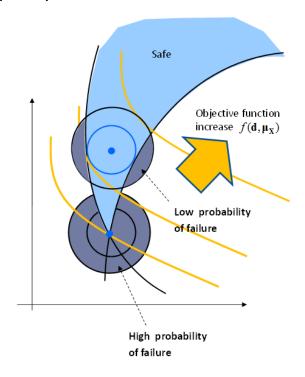
s.t. $P[g(\mathbf{d}, \boldsymbol{\mu}_{\mathbf{x}}) \leq 0] \leq P_f^t$

$$\mathbf{d}^L \leq \mathbf{d} \leq \mathbf{d}^u$$

$$\mu_{\mathbf{x}}^{L} \leq \mu_{\mathbf{x}} \leq \mu_{\mathbf{x}}^{u}$$

Where





@ Reliability Index Approach (RIA; Enevaldsen & Sorensen 1994)

$$\min_{\mathbf{d}, \mathbf{\mu_x}} f(\mathbf{d}, \mathbf{\mu_x})$$

s.t. β

 β^{t}

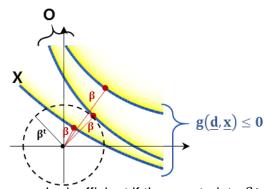
 $\beta^t \leftarrow \text{target reliability index } -\Phi^{-1}[P_f^t]$

 $\beta \leftarrow$ generalized reliability index

$$\beta = -\Phi^{-1}[$$

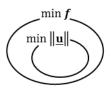
► By FORM analysis (or others)

]



 \Rightarrow compute P_f for each interation of ${\bf d}$ to check if the constraint is satisfied

⇒ double loop approach



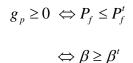
 \Rightarrow can be inefficient if the constraint $\beta \ge \beta^t$ is inactive

 \Rightarrow may not be able to provide an optimal solution if the failure does not occur in the feasible domain

$$\min_{\mathbf{d}, \mathbf{\mu}_{\mathbf{x}}} f(\mathbf{d}, \mathbf{\mu}_{\mathbf{x}})$$

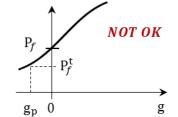
s.t.
$$g_p = F_g^{-1} \left[\Phi \left(-\beta^t \right) \right] \ge 0 \quad (\Phi^{-1} \left[-\beta^t \right] = P^t)$$

"Performance function" = quantile of g at P^t



Equivalent RBDO

How to find g_p ?



 $\begin{array}{l}
OK! \\
\left(:: P_f \leq P_f^t \right)
\end{array}$

They proposed (instead of solving FORM target β)

s.t. $\|\mathbf{u}\| = \beta^t$ \Rightarrow Minimizes g instead of $\|\mathbf{u}\|$

~ facilitates gradient-based optimization (using $\frac{\partial g}{\partial \mathbf{d}}$)

 \Rightarrow Overcomes the problems in RIA

Is this g_p really $F_g^{-1} [P_f^t]$?

Instructor: Junho Song junhosong@snu.ac.kr

contours of g $g'=g-g_p\leq 0$ $g=100\stackrel{?}{=}g_p$

Set a new limit-state function

$$g'(x) = g(\mathbf{x}) - g_p$$

$$P(g' \le 0) \cong \Phi(-\beta^{t}) = P_f^{t}$$

$$P(g' \le g_p)$$

$$\parallel$$

$$F_g(g_p)$$

$$g_p = F_g^{-1}[P_f^{t}]$$

◎ Single-Loop PMA (Liang et al., 2004)

Replace the optimization in (1) with an approximation (but non-iterative) system equation, i.e, Karush-Kuhn-Tucker (KKT) condition

$$\nabla_{\mathbf{u}} G(\mathbf{d}, \mathbf{u}) + \lambda \nabla_{\mathbf{u}} (\|\mathbf{u}\| - \beta^t) = 0$$
 ($\lambda \rightarrow \text{Lagrange Multiplier}$)

$$\|\mathbf{u}\| - \boldsymbol{\beta}^t = 0$$

- i. Solve KKT to get $\mathbf{u} = \tilde{\mathbf{u}}$
- ii. Evaluate $\hat{\alpha}$ at $\mathbf{u} = \tilde{\mathbf{u}}$
- iii. Approximate design point by

$$\mathbf{u}^t = \boldsymbol{\beta}^t \cdot \hat{\boldsymbol{\alpha}}^t$$

iv. Check
$$g(\mathbf{u}^t) \simeq g_p \ge 0$$

Single loop RBDO

$$\min_{\mathbf{d}, \mathbf{\mu_x}} \quad f(\mathbf{d}, \mathbf{\mu_x})$$

s.t.
$$g_p \simeq g(\mathbf{d}, \mathbf{x}(\mathbf{u}^t)) \ge 0$$

