457.646 Topics in Structural Reliability In-Class Material: Class 24 Instructor: Junho Song junhosong@snu.ac.kr #### VIII-1. Probability-Based Structural Design Code - → Cornell. C.A (1969) A probability-based structural code (J. ACI) - → Ravindara & Galambos (1978) Load & resistance factor design for steel structures #### Load & Resistance Factor Design (LRFD) Replaced allowable stress design (ASD) (→safety factor) ⇒ Probability-based code $$\phi R_n \ge \sum_{k} \gamma_k Q_{km} = \gamma_D Q_{Dm} + \gamma_L Q_{Lm}$$(1) Dead load Live load - i. R_n : " resistance - \rightarrow code formula (e.g. $V_c = \frac{1}{6} \sqrt{f_c} b_w d$) - → nominal values used (material & dimension) ii. $$\phi$$: "Factor ~ ϕ 1 (Dimensionless) conservatism due to the uncertainties in R " force, e.g. bending moment, axial force, shear force iii. Q_m : mean load effect : given in " - → in generalized force (structural analysis) - iv. γ : "Load" factor~ γ 1 Conservatism due to - Potential overload - 2 Uncertainty in load effect calculation - v. Limit-State "U " limit-states e.g. frame instability, plastic mechanism formed incremental collapse "S "limit-states e.g. excessive deflection, excessive vibration, premature yielding or slip ## LRFD codes suggest formulas for (), methods to compute () from loads provide () & () Instructor: Junho Song junhosong@snu.ac.kr for each structural element (Q_m) from loads to satisfy the () reliability level #### Measure of (target) reliability (or conservatism) ⇒ use Want to split so that factors for R & Q can be determined independently ***** Lind (1971) $$\sqrt{\delta_R^2 + \delta_Q^2} \simeq \overline{\alpha}(\delta_R + \delta_Q)$$ where $\overline{\alpha} = 0.75$ $$\therefore$$ \geq $\cdots \cdots (3)$ $$(\mu_R, \mu_Q, \delta_R, \delta_Q)$$? #### Uncertainties in the Resistance, R $$R = R_n \cdot M \cdot F \cdot P \qquad \qquad \cdots \cdots \cdots \cdots (4)$$ R_n : nominal resistance by codes M: "M"aterial ~ F: "F"abrication ~ P: "P"rofessional ~ ① $$\mu_R \stackrel{FO}{\simeq}$$ $$Var[\ln R] = \xi_R^2 =$$ Note $$\xi_X^2 \simeq \delta_R^2$$ when $\delta \ll 1$ $$\delta_R \cong$$ #### Our Uncertainties in Loads, Q $$Q = E(C_D AD + C_L BL) \qquad (5)$$ ① $$\mu_Q \simeq$$ $$\begin{split} \delta_{Q} &\cong \delta_{E}^{2} + \delta_{c_{DAD} + c_{L}BL}^{2} \\ &= \delta_{E}^{2} + \frac{c_{D}^{2} \mu_{A}^{2} \mu_{D}^{2} (\delta_{A}^{2} + \delta_{D}^{2}) + c_{L}^{2} \mu_{B}^{2} \mu_{L}^{2} (\delta_{B}^{2} + \delta_{L}^{2})}{(c_{D} \mu_{A} \mu_{D} + c_{L} \mu_{B} \mu_{L})^{2}} \end{split}$$ #### \odot Finding target reliability index β Initially, Eq. (3) & $\mu_{\scriptscriptstyle R}, \mu_{\scriptscriptstyle Q}, \delta_{\scriptscriptstyle R}, \delta_{\scriptscriptstyle Q} \rightarrow$ existing, e.g. allowable stress code \rightarrow can back-calculate target reliability index β embedded in the existing code Instructor: Junho Song junhosong@snu.ac.kr For example, 1969 AISC simply supported beams: $$\beta \cong 3.0$$ (member), $\beta \cong 4.5$ (connections) → Provided starting points (and calibrated later) #### \odot Load & Resistance Factors for given target β Eq. (1) $$\phi R_n \ge \sum_k \gamma_k Q_{km} = \gamma_E (\gamma_D C_D \mu_D + \gamma_L C_L \mu_L)$$ Eq. (3) $$\exp(-\overline{\alpha}\cdot\beta\cdot\delta_{_R})\cdot\mu_{_R}\geq \exp(\overline{\alpha}\cdot\beta\cdot\delta_{_Q})\cdot\mu_{_Q}$$ \leftarrow expressions derived for $\mu_{_R},\mu_{_Q},\delta_{_R},\delta_{_Q}$ From the LHS of Eq. (1) and Eq. (3): $$\phi = \exp(-\alpha\beta\delta_R)\frac{\mu_R}{R_n}$$ where $\alpha = 0.55$ From the RHS: $$\begin{cases} \gamma_E = \exp(\alpha\beta\delta_E) \\ \gamma_D = 1 + \alpha\beta\sqrt{\delta_A^2 + \delta_D^2} \\ \gamma_L = 1 + \alpha\beta\sqrt{\delta_B^2 + \delta_L^2} \end{cases}$$ i) If $$\beta \uparrow \begin{cases} \phi \\ \gamma \end{cases}$$ ii) $$\frac{\mu_R}{R_n} > 1$$, If $\frac{\mu_R}{R_n} \uparrow$, ϕ Instructor: Junho Song junhosong@snu.ac.kr Review in Nguyen, Song & Paulino (2010) #### VIII-2. Reliability-Based Design Optimization (RBDO) #### ® RBDO formulation $$\min_{\mathbf{d}, \mathbf{\mu_x}} f(\mathbf{d}, \mathbf{\mu_x})$$ s.t. $P[g(\mathbf{d}, \boldsymbol{\mu}_{\mathbf{x}}) \leq 0] \leq P_f^t$ $$\mathbf{d}^L \leq \mathbf{d} \leq \mathbf{d}^u$$ $$\mu_{\mathbf{x}}^{L} \leq \mu_{\mathbf{x}} \leq \mu_{\mathbf{x}}^{u}$$ Where #### @ Reliability Index Approach (RIA; Enevaldsen & Sorensen 1994) $$\min_{\mathbf{d}, \mathbf{\mu_x}} f(\mathbf{d}, \mathbf{\mu_x})$$ s.t. β β^{t} $\beta^t \leftarrow \text{target reliability index } -\Phi^{-1}[P_f^t]$ $\beta \leftarrow$ generalized reliability index $$\beta = -\Phi^{-1}[$$ ► By FORM analysis (or others)] \Rightarrow compute P_f for each interation of ${\bf d}$ to check if the constraint is satisfied ⇒ double loop approach \Rightarrow can be inefficient if the constraint $\beta \ge \beta^t$ is inactive \Rightarrow may not be able to provide an optimal solution if the failure does not occur in the feasible domain #### $$\min_{\mathbf{d}, \mathbf{\mu}_{\mathbf{x}}} f(\mathbf{d}, \mathbf{\mu}_{\mathbf{x}})$$ s.t. $$g_p = F_g^{-1} \left[\Phi \left(-\beta^t \right) \right] \ge 0 \quad (\Phi^{-1} \left[-\beta^t \right] = P^t)$$ "Performance function" = quantile of g at P^t **Equivalent RBDO** How to find g_p ? $\begin{array}{l} OK! \\ \left(:: P_f \leq P_f^t \right) \end{array}$ They proposed (instead of solving FORM target β) s.t. $\|\mathbf{u}\| = \beta^t$ \Rightarrow Minimizes g instead of $\|\mathbf{u}\|$ ~ facilitates gradient-based optimization (using $\frac{\partial g}{\partial \mathbf{d}}$) \Rightarrow Overcomes the problems in RIA Is this g_p really $F_g^{-1} [P_f^t]$? Instructor: Junho Song junhosong@snu.ac.kr # contours of g $g'=g-g_p\leq 0$ $g=100\stackrel{?}{=}g_p$ Set a new limit-state function $$g'(x) = g(\mathbf{x}) - g_p$$ $$P(g' \le 0) \cong \Phi(-\beta^{t}) = P_f^{t}$$ $$P(g' \le g_p)$$ $$\parallel$$ $$F_g(g_p)$$ $$g_p = F_g^{-1}[P_f^{t}]$$ #### **◎** Single-Loop PMA (Liang et al., 2004) Replace the optimization in (1) with an approximation (but non-iterative) system equation, i.e, Karush-Kuhn-Tucker (KKT) condition $$\nabla_{\mathbf{u}} G(\mathbf{d}, \mathbf{u}) + \lambda \nabla_{\mathbf{u}} (\|\mathbf{u}\| - \beta^t) = 0$$ ($\lambda \rightarrow \text{Lagrange Multiplier}$) $$\|\mathbf{u}\| - \boldsymbol{\beta}^t = 0$$ - i. Solve KKT to get $\mathbf{u} = \tilde{\mathbf{u}}$ - ii. Evaluate $\hat{\alpha}$ at $\mathbf{u} = \tilde{\mathbf{u}}$ - iii. Approximate design point by $$\mathbf{u}^t = \boldsymbol{\beta}^t \cdot \hat{\boldsymbol{\alpha}}^t$$ iv. Check $$g(\mathbf{u}^t) \simeq g_p \ge 0$$ Single loop RBDO $$\min_{\mathbf{d}, \mathbf{\mu_x}} \quad f(\mathbf{d}, \mathbf{\mu_x})$$ s.t. $$g_p \simeq g(\mathbf{d}, \mathbf{x}(\mathbf{u}^t)) \ge 0$$