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457.646 Topics in Structural Reliability

In-Class Material: Class 27

Basic formulation of RS models

Two approaches: = use assumed mathematical model & fit it to data

p
e.g. n(x)=) 6x"
i=1

s iy e.g. K-nearest points

Regression

True response of ¢g(X): Z(X)

p )

Z(x) = n(6,-,0,;x)+ ¢
N

N\
Model Input  Zero mean
parameters (random) error term

> Elz-n]=E[s]=0
“unbiased” model
How to find 0 ? What do data tell us?
Ref: Tipping, M.E. (2004)

“Bayesian inference: an introduction to principles and practice in machine learning”
Advanced lectures on machine learning, pp.41-62

(Free codes and papers at miketipping.com)

n=6exp(x)+6,Inx+6,---
Linear models (Linear in )

Find Z =7n(x;0)+¢

p
:z g q(x) +e
i:1 ;l PERE b
Model Basis. / =
Parameter Function x® x(+D

Shape function )
(Shap ) e.g. g;(x)oc PDF of N(x¥,rl)

from {x©,Z"}, i=1---,m
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Z=Q0+¢

z9 | ()

zZ™ ] ] (x™)

mx1 mx p

Five approaches (Tipping 2004)
@ “Least-Square” Approximation (classic)
= Minimize sum of squared errors
1570 (i) 2
By =5 2.2 -n(x",0)
i=1
1 -
=§(Z—Q9) (Z-Q6)
1 T 1 T T

OE,(0) ot T =
0 Z'Q+(Q6) Q=0

Solve for 0,

8,=(Q'Q"'Q'Z

% over-fitting?

e.g. Z=sinx+¢

sin X —true model, & —noise Figure 1 in Tipping (2004)

~ ~

N [v\ overfitting

“ideal” fit

underfitting
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(2 Regularization (by giving penalty on large 0)

E(0)=E,(0)+1 E,(0)
Standard choice
HOEIW

regularization O | | o
parameter iscourage large value o

= Smooth function

E; (6)

20 =0 :’GPLS:(Q Q@_Q Z

¥ Appropriate value of A?

A common approach: Use “validation” data

available Find 0, foragiven 4, 0,(41)
data train data ;
. PLS
Construct surrogate 77(X; A) = E 67~ (A)q;(x)
data

Compute error against validation data
e=7Z-n ateach x" e validation data set

and choose A that makes %Z(Z—n)2 minimum

Normalised error
o
o
T

04r 1
1 Validation
-
03r e .
-
02f Se=ma- g
01r 1
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Fig. 3. Plots of error computed on the separate 15-example training and validation
sets, along with ‘test’ error measured on a third noise-free set. The minimum test
and validation errors are marked with a triangle, and the intersection of the best A
computed via validation is shown.
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% Probabilistic Regression

Z=n +@!
e.g. €¢~N(0,6°) . Z~N(n,0c%)
Using this information one can construct likelihood function

L(Z|x,0,02) = H f(z® |X(i),9,0'2)
i=1

20

@ Maximum Likelihood Estimation

Find 0 that maximizesL() < Find 0 that minimizes —InL()

g ()
n ) 1 & . _ ; = error measure
—InL( ):E|n(27m' ) ; Z{Z(I) —U(X('),O)} for 8¢
i-1

Therefore, MLE based on s.i. error assumption (i.e. e ~N( ))

Gives Oue =0

(cf. Assuming errors are dependent? &~ N(0,X)

||x") X(J)”
P =exp R = “Kriging” Method (Satner et al. 2003)

¥ Bayesian Methods f =c-L-p

Introduce a prior distribution

p010) =TT 1= exp{—%ef}

0i2
H degree of belief about smooth model
»2r y \/_ 2 ) (deg )

O
al Variability reduces /\ = certain that @ is around 0O
0

=Become smooth

T axc A
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@ Maximum a posteriori (MAP) estimation (a Bayesian “shortcut”)

P(®|Z,2,0%) = ¢ - L(Z|0,6%) - p(8]a)
Posterior Likelihood function prior

Find @ where P(0|Z,a,o-2) is maximum

e.g. Normal s.ierrors ¢, Z ~ N(n,07)

(1) =5 S -0 + 5 26

=qao
—o’In(f) = —Z{Z(" n(x(') 0)) '
‘lv/a,(e) \/Ew(e)
the same as
X, o? 2 no need to bother w/ Bayesian?
(& Full Bayesian (“Marginalization”) integrate P(Z|0,,07)
overall 0

P(Z)=[P(Z|0)-P(0)do

Focus on
Total probability theorem

P(Z]a.o®) = [P(Z]0]a.07)-P(8 2,57 ) simplified to

:jp(zw,az)- P(0]a)d0
~ Closed-form available:

f,(Z,a,0%) (Eq. 23 in Tipping, 2004)

P P(Z|a,02):ProbabiIity that you will observe Z for given «,c”

P(Z|a,0?)

= Find a &0’ that maximizes P(Z|a,02)

(i.e. Let data Ztell us the optimal point o ,c”")
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overfit

Normalised error
(=]
(4]
T

Marginal likelihood: —In P(Z|a, o%)

0Er Too compl‘c»(:\

Too simple
1 (smooth):

underfit
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Fig. 5. Plots of the training, validation and test errors of the model as shown in Figure
3 (with the horizontal scale adjusted appropriately to convert from A to «) along with
the negative log marginal likelihood evaluated on the training data alone for that same

model. The values of « and test error achieved by the model with highest marginal
likelihood (smallest negative log) are indicated.

¢ Okham’s Razar (or the law of parsimony):

“model should be no more complex than is sufficient to explain the data”

CRC CH.19 RS
—DOE

—;(X)

Other RS or UQ methods
@ Kriging (Santner et al. 2003)
(Dubourg et al. 2010 IFIP)
e~N(0,X)

”X(i) —x”)”

€. py=exp| ——

* coincides at each point
* Interpolate b/w each point
» Can quantify confidence

* Regularization

M(z)

12

10+

M(z) ==z sin(x)

— M)

*  Observations

95% confidence interval

x
(Dubourg etal. 2011)
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(2 Dimension Reduction (Rahman & Xu, 2004; Xu & Rahman 2004)
g(X) - g(s\() :zg(:uiv"",uiflvXi11ui+17"",un)_(n_l)g(/*ﬁ""uun)
i=1

U

E[Q0)"I=EIGCN"T 7 mig(x)
= [(GO)™ £, (x)dx

Transform to s.i. space; Multivariate Integral = Multiple univariate Integral

@ Polynomials chaos (a good review by Eldred et al. 2008)
R= aoBo +Zai151(§i1)
=1

+iiail,i282(§i1§i2)+"'

=1 ip=1

p
- Z“;W] © - Orthogonal bases for given types of r.v's distribution

i=0

_<Ry;>_ IRl/lj f(§)dS — Important sampling, etc.

a; =

2 2
<yi> <y > _
— closed form available



