457.646 Topics in Structural Reliability

In-Class Material: Class 27

Basic formulation of RS models

Two approaches regression ⇒ use assumed mathematical model & fit it to data

e.g.
$$\eta(\mathbf{x}) = \sum_{i=1}^{p} \theta_i x_i^m$$

Interpolation ⇒ Interpolate using nearby data points

Instructor: Junho Song

junhosong@snu.ac.kr

e.g. K-nearest points

Regression

True response of $g(\mathbf{x})$: $Z(\mathbf{x})$

$$Z(\mathbf{x}) = \eta(\underbrace{\theta_1, \cdots, \theta_p}_{\text{py}}; \mathbf{x}) + \varepsilon$$

$$\text{Model Input } \underbrace{\text{Zero mean}}_{\text{(random) error term}}$$

$$\Rightarrow E[z-\eta] = E[\varepsilon] = 0$$

"unbiased" model

How to find θ ? What do data tell us?

Ref: Tipping, M.E. (2004)

"Bayesian inference: an introduction to principles and practice in machine learning" Advanced lectures on machine learning, pp.41-62

(Free codes and papers at miketipping.com)

$$\eta = \theta_1 \exp(x) + \theta_2 \ln x + \theta_3 \cdots$$

Linear models (Linear in

Find $Z = \eta(\mathbf{x}; \boldsymbol{\theta}) + \varepsilon$

$$= \sum_{i=1}^{p} \frac{\theta_i}{\sqrt{\frac{q_i(\mathbf{x})}{\mathbf{x}}}} + \varepsilon$$
Model Basis
Parameter Function
(Shape function)

$$q_{i}(\underline{x})$$

$$q_{i+1}(\underline{x})$$

$$q_{i+1}(\underline{x})$$

$$\underline{x}^{(i)}$$

$$\underline{x}^{(i+1)}$$

e.g.
$$q_i(\mathbf{x}) \propto \text{PDF of } N(\mathbf{x}^{(i)}, r^2 \mathbf{I})$$

from $\{\mathbf{x}^{(i)}, Z^{(i)}\}, i = 1, \dots, m$

$$Z = Q\theta + \epsilon$$

$$\begin{cases} Z^{(1)} \\ Z^{(2)} \\ \vdots \\ Z^{(m)} \end{cases} = \begin{bmatrix} q_1(\mathbf{x}^{(1)}) & \cdots & \cdots & q_p(\mathbf{x}^{(1)}) \\ \vdots \\ q_1(\mathbf{x}^{(m)}) & \cdots & \cdots & q_p(\mathbf{x}^{(m)}) \end{bmatrix} \begin{cases} \boldsymbol{\theta}_1 \\ \vdots \\ \boldsymbol{\theta}_p \end{cases} + \begin{cases} \boldsymbol{\varepsilon}^{(1)} \\ \vdots \\ \boldsymbol{\varepsilon}^{(m)} \end{cases}$$

$$m \times 1 \qquad m \times p \qquad p \times 1 \qquad m \times 1$$

Five approaches (Tipping 2004)

- ① "Least-Square" Approximation (classic)
 - ⇒ Minimize sum of squared errors

$$\begin{split} E_D &= \frac{1}{2} \sum_{i=1}^m (Z^{(i)} - \eta(\mathbf{x}^{(i)}, \theta))^2 \\ &= \frac{1}{2} (\mathbf{Z} - \mathbf{Q} \boldsymbol{\theta})^T (\mathbf{Z} - \mathbf{Q} \boldsymbol{\theta}) \\ &= \frac{1}{2} \mathbf{Z} \mathbf{Z}^T + \frac{1}{2} (\mathbf{Q} \boldsymbol{\theta})^T (\mathbf{Q} \boldsymbol{\theta}) - \mathbf{Z}^T \mathbf{Q} \boldsymbol{\theta} \end{split}$$

$$\frac{\partial E_D(\mathbf{\theta})}{\partial \mathbf{\theta}} = -\mathbf{Z}^T \mathbf{Q} + (\mathbf{Q}\mathbf{\theta})^T \mathbf{Q} = 0$$

Solve for θ ,

$$\mathbf{\theta}_{LS} = (\mathbf{Q}^T \mathbf{Q})^{-1} \mathbf{Q}^T \mathbf{Z}$$

* over-fitting?

e.g.
$$Z = \sin x + \varepsilon$$

 $\sin x \rightarrow \text{true model}, \ \varepsilon \rightarrow \text{noise}$

Figure 1 in Tipping (2004)

② Regularization (by giving penalty on large θ)

$$\hat{E}(\pmb{\theta}) = E_D(\pmb{\theta}) + \lambda \quad \underline{E_W(\pmb{\theta})}$$
 Standard choice
$$E_W(\pmb{\theta}) = \frac{1}{2} \sum_{i=1}^p \theta_i^2$$

regularization parameter

 $(\lambda \uparrow)$ Discourage large value of $\, \, heta \,$

⇒ Smooth function

$$\frac{\partial E_D(\mathbf{\theta})}{\partial \mathbf{\theta}} = 0 \implies \mathbf{\theta}_{PLS} = (\mathbf{Q}^T \mathbf{Q} + \lambda \mathbf{D}^{-1} \mathbf{Q}^T \mathbf{Z})$$

***** Appropriate value of λ ?

A common approach: Use "validation" data

Instructor: Junho Song

junhosong@snu.ac.kr

Fig. 3. Plots of error computed on the separate 15-example training and validation sets, along with 'test' error measured on a third noise-free set. The minimum test and validation errors are marked with a triangle, and the intersection of the best λ computed via validation is shown.

Probabilistic Regression

$$Z = \eta + \varepsilon$$
!

e.g.
$$\varepsilon \sim N(0, \sigma^2)$$
 $\therefore Z \sim N(\eta, \sigma^2)$

Using this information one can construct likelihood function

Instructor: Junho Song

junhosong@snu.ac.kr

$$L(\mathbf{Z} | \mathbf{x}, \mathbf{\theta}, \sigma^2) = \prod_{i=1}^{n} f(Z^{(i)} | \mathbf{x}^{(i)}, \mathbf{\theta}, \sigma^2)$$
$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{\{Z^{(i)} - \eta(\mathbf{x}^{(i)}; \mathbf{\theta})\}^2}{2\sigma^2}\right]$$

3 Maximum Likelihood Estimation

Find θ that maximizes L() \Leftrightarrow Find θ that minimizes –InL()

$$-\ln L(\quad) = \frac{n}{2}\ln(2\pi\sigma^2) + \frac{1}{2\sigma^2} \sum_{i=1}^{n} \{Z^{(i)} - \eta(\mathbf{x}^{(i)}, \boldsymbol{\theta})\}^2$$
 \Rightarrow error measure for $\underline{\boldsymbol{\theta}}_{LS}$

Therefore, MLE based on s.i. error assumption (i.e. $\varepsilon \sim N()$)

Gives

$$\mathbf{\theta}_{\mathit{MLE}} = \mathbf{\theta}_{\mathit{LS}}$$

(cf. Assuming errors are dependent? $\varepsilon \sim N(0, \Sigma)$

$$\rho_{ij} = \exp\left(-\frac{\left\|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\right\|}{L}\right) \Rightarrow \text{ "Kriging" Method (Satner et al. 2003)}$$

 \divideontimes Bayesian Methods $f = c \cdot L \cdot p$

Introduce a prior distribution

$$p(\mathbf{\theta} \mid \alpha) = \prod_{i=1}^{p} \left(\frac{\alpha}{2\pi}\right)^{1/2} \exp\left\{-\frac{\alpha}{2}\theta_{i}^{2}\right\}$$

$$= \prod_{i=1}^{p} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{\alpha}} \exp\left\{-\frac{\theta_{i}^{2}}{2(\frac{1}{\alpha})}\right\}$$
 (degree of belief about smooth model)

 $\alpha \uparrow$ Variability reduces $\underbrace{\int}_{0}$ \Rightarrow certain that $\overset{\square}{\theta}$ is around 0

⇒Become smooth

$$\alpha \propto \lambda$$

Maximum a posteriori (MAP) estimation (a Bayesian "shortcut")

$$f = c \cdot L \cdot p$$

$$P(\mathbf{\theta} | \mathbf{Z}, \alpha, \sigma^2) = c \cdot L(\mathbf{Z} | \mathbf{\theta}, \sigma^2) \cdot p(\mathbf{\theta} | \alpha)$$

Posterior Likelihood function prior

Find θ where $P(\theta | \mathbf{Z}, \alpha, \sigma^2)$ is maximum

e.g. Normal s.i errors ε , $Z \sim N(\eta, \sigma^2)$

$$-\ln(f) = \frac{1}{2\sigma^2} \sum_{i=1}^n \{Z^{(i)} - \eta(\mathbf{x}^{(i)}; \boldsymbol{\theta})\}^2 + \frac{\alpha}{2} \sum_{i=1}^p \theta_i^2$$

$$-\sigma^2 \ln(f) = \frac{1}{2} \sum_{i=1}^n \{Z^{(i)} - \eta(\mathbf{x}^{(i)}; \boldsymbol{\theta})\}^2 + \underbrace{\alpha\sigma^2}_{\mathbf{E}_D(\underline{\boldsymbol{\theta}})} + \underbrace{\alpha\sigma^2}_{\mathbf{E}_D(\underline{\boldsymbol{\theta}})}$$
the same as

* α , σ^2 ? no need to bother w/ Bayesian?

5 Full Bayesian ("Marginalization") integrate $P(\mathbf{Z} | \boldsymbol{\theta}, \alpha, \sigma^2)$ $P(\mathbf{Z}) = \int P(\mathbf{Z} | \boldsymbol{\theta}) \cdot P(\boldsymbol{\theta}) d\boldsymbol{\theta}$ over all $\boldsymbol{\theta}$

Focus on

Total probability theorem

Instructor: Junho Song

junhosong@snu.ac.kr

$$P(\mathbf{Z}|\alpha,\sigma^{2}) = \int P(\mathbf{Z}|\boldsymbol{\theta},\alpha,\sigma^{2}) \cdot P(\boldsymbol{\theta}|\alpha,\sigma^{2}) d\boldsymbol{\theta}$$

$$= \int P(\mathbf{Z}|\boldsymbol{\theta},\sigma^{2}) \cdot P(\boldsymbol{\theta}|\alpha) d\boldsymbol{\theta}$$
Simplified to

→ Closed-form available:

$$f_{\scriptscriptstyle N}(\mathbf{Z},\alpha,\sigma^2)$$
 (Eq. 23 in Tipping, 2004)

 $imes P(\mathbf{Z}|\alpha,\sigma^2)$: Probability that you will observe \mathbf{Z} for given α,σ^2

Fig. 5. Plots of the training, validation and test errors of the model as shown in Figure 3 (with the horizontal scale adjusted appropriately to convert from λ to α) along with the negative log marginal likelihood evaluated on the training data alone for that same model. The values of α and test error achieved by the model with highest marginal likelihood (smallest negative log) are indicated.

☆ Okham's Razar (or the law of parsimony):

"model should be no more complex than is sufficient to explain the data"

CRC CH.19 RS \rightarrow DOE $\rightarrow q_i(\mathbf{x})$

Other RS or UQ methods

① Kriging (Santner et al. 2003)

(Dubourg et al. 2010 IFIP)

$$\varepsilon \sim N(\mathbf{0}, \mathbf{\Sigma})$$

e.g.
$$\rho_{ij} = \exp\left(-\frac{\left\|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\right\|}{L}\right)$$

- · coincides at each point
- Interpolate b/w each point
- · Can quantify confidence
- Regularization

② Dimension Reduction (Rahman & Xu, 2004; Xu & Rahman 2004)

$$g(\mathbf{x}) \to g(\hat{\mathbf{x}}) = \sum_{i=1}^{n} g(\mu_1, \dots, \mu_{i-1}, x_i, \mu_{i+1}, \dots, \mu_n) - (n-1)g(\mu_1, \dots, \mu_n)$$

Instructor: Junho Song

junhosong@snu.ac.kr

 $\downarrow \downarrow$

$$E[(g(x))^{m}] \cong E[(\hat{g}(x))^{m}] \qquad \Pi \varphi(x_{i})$$

$$= \int (\hat{g}(x))^{m} \underline{f_{\mathbf{x}}(\mathbf{x})} d\mathbf{x}$$

Transform to s.i. space; Multivariate Integral ⇒ Multiple univariate Integral

③ Polynomials chaos (a good review by Eldred et al. 2008)

$$R = a_0 B_0 + \sum_{i_1=1}^{\infty} a_{i1} B_1(\zeta_{i1})$$
$$+ \sum_{i_1=1}^{\infty} \sum_{i_2=1}^{\infty} a_{i1,i2} B_2(\zeta_{i1} \zeta_{i2}) + \cdots$$

 $= \sum_{j=0}^{p} \alpha_{j} \psi_{j}(\zeta) \rightarrow \text{Orthogonal bases for given types of r.v's distribution}$

$$\alpha_j = \frac{\langle R, \psi_j \rangle}{\langle \psi_j^2 \rangle} = \frac{\int R \psi_j f(\zeta) d\zeta}{\langle \psi_j^2 \rangle} \rightarrow \text{Important sampling, etc.}$$

$$\rightarrow \text{closed form available}$$