M2794.006900 DESIGN FOR MANUFACTURING

Week 10, November 09

Manufacturing Processes 2. Additive Processes

Fall 2017

Professor Sung-Hoon Ahn

Department of Mechanical and Aerospace Engineering Seoul National University

Outline

- 3D printing
- Cold spray
- Nano particle deposition system (NPDS)

2

- Injection molding
- Conclusions

Multi-scale fabrication

Today's class

#4 3D Printing

- Type: Additive
- Scale: 200 $\mu m \sim$ 100 mm
- Metal : polymer, composite
- Characteristics: precision stage, micro-nozzle

Composite deposition system

Micro nozzle, f 100 μm

Precision micro stage, 1 μ m resolution

Machining process

Scaffold

#5 Cold spray (저온분사적층)

- Type: Additive
- Scale: $10 \mu m \sim 100 mm$
- Material: metal, ceramic, polymer
- Characteristics:
 - Supersonic gas flow
 - Micro-sized particle deposition

Cold spray system

Thermal-spray Method unt) Cold-spray method Room temp neter 300-600°C NPDS Aerosol Deposition dian article EPID Gas Room temp. Deposition HPPD 0.01 High temp. High temp. 0 600 1000 200 800 Particle velocity (m/sec)

Comparison of particle deposition processes

Machining process

SEM image and numerical solution of bonded particle (R. C. Dykhuizen, A. Hamidi)

#6 Nano particle deposition (나노입자적층)

- Type: Additive
- Scale : several $\mu m \sim$ hundreds of μm coating
- Material : Mostly ceramic, partly metal
- Characteristics : Submicron \sim dia. 10 μm particle used

Nano particle deposition system

Machining process

Comparison of particle deposition processes

Mn-Zn ferrite coating on Al 6061 with needle

TiO₂ coating on Stainless steel

#7 Aerodynamically Focused Nanoparticle (AFN) ⁸ Printing

- Type: Additive
- Scale : several $\mu m \sim$ hundreds of μm coating
- Material : metal, ceramic
- Characteristics : Direct patterning of the solvent-free inorganic nanoparticles

Schematic diagram of the processing steps

Patterned images by AFN printing

Lee, G. Y., Park, J. I., Kim, C. S., Yoon, H. S., Jinkyu Yang, and Ahn, S. H., 2014, "Aerodynamically Focused Nanoparticle (AFN) Printing: Novel Direct Printing Technique of Solvent-free and Inorganic Nanoparticles," ACS Applied Materials and Interfaces, American Chemical Society (USA)

Presidential Issue

A once-shuttered warehouse is now a stateof-the art lab where new workers are mastering the **3D printing** that has the potential to **revolutionize** the way we make almost everything.

- B. Obama, president of USA

Speech at the State of the Union Address, USA (2013)

3D printing technology has attracted worldwide attention

From 2D to 3D printing

10

Introduction to 3D Printing

- Other name of 3DP
 - Rapid Prototyping (RP)
 - Layered Manufacturing
 - Rapid Prototyping and Manufacturing (RP&M)
 - Solid Freeform Fabrication (SFF)
 - Additive Manufacturing (AD)
- Group of related technologies that are used to fabricate physical objects directly from 3D CAD data
- Add and bond materials in layers to form 3D objects
- Offers advantages compared to subtractive fabrication methods

Magnetic Resonance Imaging

Advantages of 3D Printing

- No need to define a blank geometry
- No need to define set-ups and material handling
- No need to consider jigs, fixtures, and clamping
- No need to design mold and die

Issues in 3D Printed parts

Layered deposition inherently creates interfaces between layers

- Functional properties are not as good as bulk
 - Structural
 - Optical
 - Surface Roughness
 - Electrical
 - Thermal
 - Color

STL File

- Developed for StreoLithography
- De facto standard for RP data
- Most CAD systems support STL format

Classification of 3DP

Considering potential for industrial applications, six types of 3DP technologies have been selected (excluding sheet lamination)

1. Stereo Lithography Apparatus (SLA) (1)

- Developed by 3D Systems, Inc.
- Laser beam will scan the surface following the contours of the slice

1. Stereo Lithography Apparatus (SLA)

Stereo Lithography Apparatus (SLA)

2. Selective Laser Sintering (SLS)

- Developed by The University of Texas at Austin
- Powders are spread over a platform by a roller
- A laser sinters selected areas causing the particles to melt and then solidify

Metal 3D Printer

https://www.youtube.com/watch?v=m1ryVsmjZBY

21

3. Fused Deposition Modeling (FDM)

FDM

Fused Deposition Modeling (FDM)

Stage, moving vertically

Micro Structure of FDM

24

4. 3D Printer

- Developed at MIT
- Parts are built upon a platform situated in a bin full of powder material.

Gallery

Z- corp (3D Printer)

5. Shape Deposition Manufacturing (SDM)

- Developed by Stanford University/CMU
- Uses deposition and milling
- Provides good surface finish

Meso Structure of SDM Parts

Ceramic turbine

Miniature jet engine

Silicon nitride parts fabricated using mold SDM process

6. Polymer Jetting (PolyJet)

Multi-Material 3D Printer

7. FIB-CVD: layered process

Fig. 1. Fabrication process for three-dimensional nanostructure by FIB-CVD.

R Kometani et al. J Vac Sci Technol B 23 (2005) 298

FIG. 1. Usage of bionanomanipulator.

S Matsui, Nucl Instrum Meth B (2007)

7. FIB-CVD: layered process

https://www.youtube.com/watch?v=m1ryVsmjZBY

7. FIB-CVD: layered process

[**TEM sample preparation**] (FEI corporation newsletter, 2015)

[Microelectrode Pt pillar] (Dengji Guo et al., Procedia CIRP, 2016)

[Circuit repair] (ElectronicDesign.com, 2014)

[microscale spaceship Enterprise] (T. Hoshino et al., J VAC SCI TECHNOL B, 2003)

[fixation of NWs and tip by Pt deposition] (Y.H. Kim et al., Applied Microscopy, 2015)

Conventional 3D printing Materials

Process	Materials
Stereolithography (SLA)	PMMA
	Styrene Methyl Methacrylate Copolymer
Fused Deposition Modeling (FDM)	ABS, ABS/PC
	PVC/PMMA, PES
Selective Laser Sintering (SLS)	PMMA, Aromatic Polyamide
	Metals
Laminated Object Manufacture (LOM)	Paper (Cellulose Based)
3D Printers	ABS, ABS/PC
	PVC/PMMA, PES, Elastomers
Solid Ground Curing (SGC)	PMMA
	Styrene Methyl Methacrylate Copolymer
FIB-CVD	Carbon, platinum, tungsten, silicon oxide

Computer-aided art – sculpture

NewScientist

First flight of 3D printed plane

37
Parts for aircraft

Hinges for the Airbus A320

conventional (background) and 3D printed (foreground)

The 3D printed jet engine

Parts of the 3D printed jet engine (GE)

Mold

Rapid Tooling (RT)

DTM's RapidTool[™] process for rapid mold making

Core and cavity sets produced by RapidTool [™]

Smart Mold

NASA: 3D Printing in Space

Emergency in 2008 summer

3-D solid model representation

Automatic process planner

Material addition processes

Automated fabrication machine

FDM1600 test at zero gravity Johnson Space Center & Marshall Space Flight Center 2000

Roman arch and dome

Building Construction by 3D Printer

Architectures

A machine mounted on rails might be used to build multiple houses

Building Construction by 3D Printer

Building Construction by 3D Printer

Ram Hills **Dubai Launches World's First "Functional" 3D Printed Office Building**

Food

- Tony Cenicola/The New York Times
- **2013. 9. 22**

3D printed prosthetic

Design of the piece are fit to the individual

3D Printing: Modern Medical Applications, Devin Peek et al. (2010)

Fashion (Nari Oxman)

Car (Urbee)

Local Motors

https://www.youtube.com/watch?v=daioWlkH7ZI

3D printing for Electronic System

(a) SL part with sockets for embedding electronic components, (b) Embedded components with access holes for DW, (c) DW traces for electrical interconnects.

(a) SL part with sockets; (b) embedded components; (c) DW interconnects.

(1) Expending 3D printing for electronic systems integration of arbitrary form, Amit Lopes et al. (2006)

Biomedical

• 3D model creation process

Medical simulation and operation

Medical Domain

Before surgery

After surgery

CT Scan

3D Printed part

Virtual surgery

Tissue Engineering

Yan, et al

3D Printing part

Rehabilitated ear

CAD modeling

Skin Repairable 3D Printing

TED Presentation of Anthony Atala- Printing a human kidney (Wake Forest Institute for Regenerative Medicine)

Artificial kidney

https://www.youtube.com/watch?v=9RMx31GnNXY

н

TED talk capture, movie

Drug Delivery System

60

Drug Delivery System

- Lower doses (delivered at intended sites)
- Lower side effects for highly potent drugs
- Replacing multiple injection/oral dosing
- Improving patients' quality of life

Functional Drug Delivery System

Fabricated DDS and cross section of filament

Diffusion of drug

Composition of DDS material

Chu, Won Shik, et al. "Fabrication of bio-composite drug delivery system using 3D printing technology." Key Engineering Materials. Vol. 342. 2007.

Chu, Won-Shik, et al. "Fabrication of composite drug delivery system using nano composite deposition system and in vivo characterization." International Journal of Precision Engineering and Manufacturing 9.2 (2008): 81-83.

62

Scaffold for Bone Growth

Bio-degradable polymer

Evaluation *in vivo*

- Drug release test in vivo
 - Implantation and collection of DDS in the back of rat

(a) Anesthetize mouse

(c) Resection of back skin of rat

64

(b) Insert the scaffold

(d) Implanted DDS after in vivo test

DFM: drug release of scaffold

- Comparison of model and experiment
 - Scaffold

◇ 5% Experiment
◇ 10% Experiment
△ 15% Experiment
□ 20% Experiment
5% model eqn.
-----10% model eqn.
15% model eqn.

Hype Cycle

(Gartner)

Effect of Expired Patents

Patents	Expire Dates	Expected Effect		
SLA (USA)	Aug. 2014	First expiration of 3D printer patents: - Increase in interest - Decrease of cost	larket size of Machine Tool Jnits: 1Trillion KRW) 1 1	120 100 80
FDM (USA)	Oct. 2009	Popularization of 3D printer		60
SLS (USA)	Feb. 2014	Major Patents expiration of manufacturing process: - Further increase in interest		40 20
DMLS (USA)	Aug. 2014	Expectation of expansion of metal 3D printer		0
3DP (USA)	Sep. 2014	Expectation of expansion of true-color 3D printer]	

67

Low cost 3DP

shapeways*

DESIGN SELL

Search

Most Popular

Q

V

1

CATEGORIES

SHOP

All Categories

Gadgets Accessories Jewelry Art

For Your Home

Games

Miniatures

Customizable

Price Range \$1 - \$2,500

MATERIALS

Any Material

Strong and Flexible Stainless Steel Frosted Detail Full Color Metallic Plastic Sterling Silver Bronze Precious Plated Metal Brass Gold Platinum

Shapeways 3D Printing Marketplace

Games

For Your Home

Jewelry

Hybrid 3D printing System

- ✓ Deposition; 3D printing
- ✓ Cutting; Milling
- ✓ Hybrid; Both

Micro needle

Micro endmill

SPECIFICATIONS

3 Axes-stage Dispenser Micro needle Micro tool High speed spindle UV curing system Controller

1/m resolution 15 ~ 700 kPa ψ 140 /m ~ ψ 800 /m ϕ 100 /m ~ ϕ 1000 /m Max. 46,000rpm 0 ~ 400 W, λ = 365 nm PMAC (Multi-tasking board)

Hybrid 3D Printing System (cont.)

Bio-3D Printing

Examples of micro RP – stapes made of hydroxyapatite

Particle Deposition Methods

Nanoscale 3D Printing System

Seoul National University Nano Printing Laboratory

Director: Sung-Hoon Ahn Co-directors: Kunwoo Lee & Caroline S. Lee

Copyright(c) 2010 Seoul National University Nano Printing Laboratory ALL RIGHT RESERVED

Deposition mechanism of NPDS

(Before deposition)

(After deposition)

particle (Before deposition) particle (After deposition)

Impact of two Al₂O₃ particles on Al substrate

Movie of two Al2O3 particle impact on Al6061 substrate

Diagram of LaNPDS system

A vision of morphing structure

BMW GINI

Soft Morphing @ SNU

- Technology for flexible shape deformation
 - Soft material
 - Autonomous large deformation
 - Reversibility

Concept of soft morphing technology

Manufacturing for Soft Morphing

Manufacturing process for soft morphing

Smart Soft Composite (SSC) structure

[1] Kim, H. J., *et al.*, "A Turtle-like Swimming Robot using a Smart Soft Composite (SSC) Structure" (2012)

Turtle Swimming Robot

Inchworm-inspired Cellphone Robot

Smart device using smart materials

https://youtu.be/2DsbS9cMOAE

Injection Molding (사출성형)

Injection Molding (사출성형)

https://www.youtube.com/watch?v=b1U9W4iNDiQ https://www.youtube.com/watch?v=y1Zhpdx-XtA

DFM in Injection Molding (1)

DFM in Injection Molding (2)

Prevent undercut!

Conclusions

Additive processes were reviewed

3D Printing

Cold spray

Nano particle deposition system

Polymer processing

Undercut is manufacturable in layer-based processes except for

94

injection molding

Structures with hybrid materials are manufacturable