Lecture Note of Design Theories of Ship and Offshore Plant

Design Theories of Ship and Offshore Plant Part II. Optimum Design

Ch. 3 Applications to Design of Ship and Offshore Plant

Fall 2016

Myung-II Roh

Department of Naval Architecture and Ocean Engineering Seoul National University

esign Theories of Ship and Offshore Plant, September 2016, Myung-II Roh

ydlab 1

Contents

- ☑ Ch. 1 Introduction to Optimum Design
- ☑ Ch. 2 Unconstrained Optimization Method: Enumerative Method
- ☑ Ch. 3 Applications to Design of Ship and Offshore Plant

esign Theories of Ship and Offshore Plant, September 2016, Myung-Il Roh

Ch. 3 Applications to Design of Ship and Offshore Plant

5.1 Applications to Ship Design

5.2 Applications to Offshore Plant Design

sign Theories of Shin and Offshore Plant Sentember 2016 Myung-Il Rob

ydlab 3

3.1 Applications to Ship Design

esign Theories of Ship and Offshore Plant, September 2016, Myung-Il Roh

rydlab 4

Determination of Optimal Principal Dimensions of a Bulk Carrier

- ☑ Criteria for determining optimal principal dimensions (Objective function)
 - Minimization of shipbuilding cost or Minimization of hull structure weight or Minimization of operation cost
- ☑ Given (Ship owner's requirements)
 - Deadweight (DWT)
 - Cargo hold capacity (CC_{reg})
 - Maximum draft (T_{max})
 - Ship speed (V)

☑ Find (Design variables)

- Length (L)
- Breadth (B)
- Depth (D)
- Block Coefficient (C_B)

- Constraint about the displacement-weight equilibrium condition
- Constraint about the required cargo hold capacity
- Constraint about the required freeboard condition

Theories of Ship and Offshore Plant, September 2016, Myung-Il Ro

sydlab s

Formulation for Determining Optimal Principal Dimensions of a Bulk Carrier

Find (Design variables) L,B,D,C_B

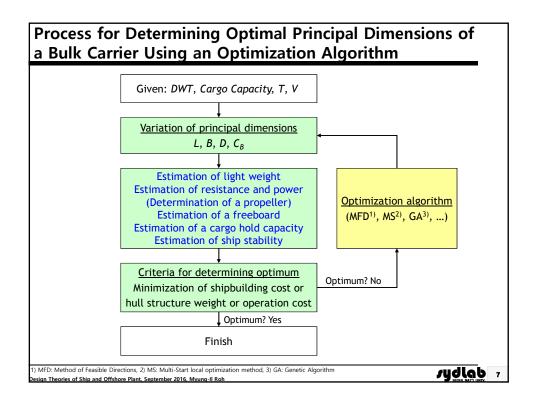
Displacement-Weight equilibrium condition (Equality constraint)

$$\begin{split} L \cdot B \cdot T \cdot C_B \cdot \rho_{sw} \cdot C_\alpha &= DWT_{given} + LWT(L, B, D, C_B) \\ &= DWT_{given} + C_s \cdot L^{1.6}(B+D) + C_o \cdot L \cdot B + C_{ma} \cdot NMCR \\ &= DWT_{given} + C_s \cdot L^{1.6}(B+D) + C_o \cdot L \cdot B \\ &+ C_{power} \cdot (L \cdot B \cdot T \cdot C_B)^{2/3} \cdot V^3 \end{split}$$

Required cargo hold capacity condition (Inequality constraint)

$$CC_{req} \le C_{CH} \cdot L \cdot B \cdot D$$

Required freeboard condition (Inequality constraint)


$$D \ge T + C_{FB} \cdot D$$

Criteria for determining optimal principal dimensions (Objective function)

Building Cost =
$$C_{PS} \cdot C_s \cdot L^{1.6}(B+D) + C_{PO} \cdot C_o \cdot L \cdot B + C_{PM} \cdot C_{ma} \cdot NMCR$$

→ Optimization problem having 4 unknowns, 1 equality and 2 inequality constraints

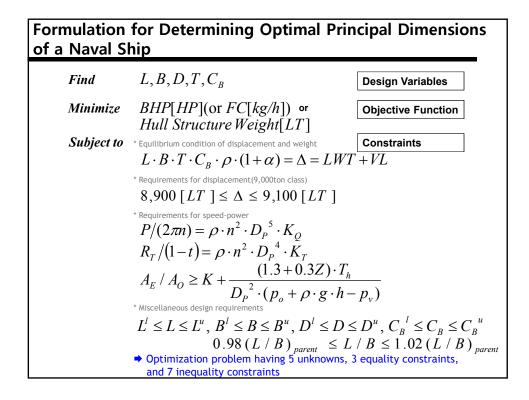
n Theories of Ship and Offshore Plant, September 2016, Myung-II Roh

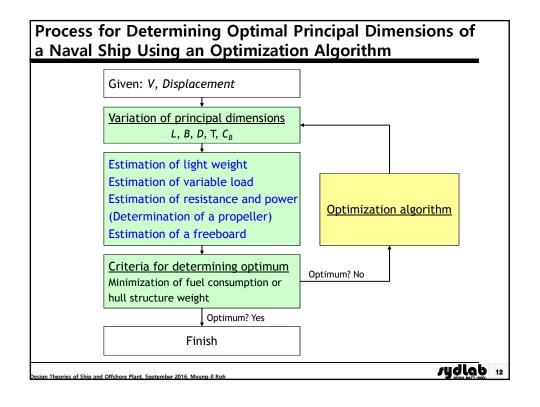
n Inf	ormatio	n for Optimal	Principal Din	nensions of
lk Ca		•	•	
				_
al particu	ars of a deadw	eight 150,000 ton bulk carri	ier (parent ship) and ship (owner's requirements
	Item	Parent Ship	Design Ship	Remark
	L _{OA}	abt. 274.00 m	max. 284.00 m	
	L _{BP}	264.00 m		7
Principal	B _{mld}	45.00 m	45.00 m	7
Dimensions	D _{mld}	23.20 m		7
	T _{mld}	16.90 m	17.20 m	7
	T _{scant}	16.90 m	17.20 m	7
De	adweight	150,960 ton	160,000 ton	at 17.20 m
Speed		13.5 kts	13.5 kts	90 % MCR (with 20 % SM)
	TYPE	B&W 5S70MC		
M /	NMCR	17,450 HP×88.0 RPM		Derating Ratio = 0.9
É	DMCR	15,450 HP×77.9 RPM		E.M = 0.9
	NCR	13,910 HP×75.2 RPM		
F	SFOC	126.0 g/HP.H		
0	TON/DAY	41.6		Based on NCR
Crui	sing Range	28,000 N/M	26,000 N/M	7
Mids	hip Section	Single Hull Double Bottom/Hopper /Top Side Wing Tank	Single Hull Double Bottom/Hopper /Top Side Wing Tank	
	Cargo	abt. 169,380 m ³	abt. 179,000 m ³	Including Hatch Coaming
[Fuel Oil	abt. 3,960 m ³		Total
Capacity	Fuel Oil	abt. 3,850 m ³		Bunker Tank Only
T I	Ballast	abt. 48,360 m ³		Including F.P and A.P Tanks

Optimization Result for Optimal Principal Dimensions of a Bulk Carrier

Minim	nization of Shipbuil	ding Cos	t				
		Unit	MFD ¹⁾	MS ²⁾	GA ³⁾	HYBRID ⁴⁾ w/o Refine	HYBRID ⁴⁾ with Refine
G	G DWT				160,000		
l V	Cargo Capacity m				179,000		
E	T _{max}	m			17.2		
N	N V knots				13.5		
	L		265.54	265.18	264.71	264.01	263.69
	В	m	45.00	45.00	45.00	45.00	45.00
	D	m	24.39	24.54	24.68	24.71	24.84
	C_B	-	0.8476	0.8469	0.8463	0.8427	0.8420
	D _P		8.3260	8.3928	8.4305	8.4075	8.3999
	P _i	m	5.8129	5.8221	5.7448	5.7491	5.7365
	A _E /A _O		0.3890	0.3724	0.3606	0.3618	0.3690
	Building Cost	\$	59,889,135	59,888,510	59,863,587	59,837,336	59,831,834
	Iteration No	-	10	483	96	63	67
	CPU Time ⁵⁾	sec	4.39	209.58	198.60	184.08	187.22

Determination of Optimal Principal Dimensions of a Naval Ship

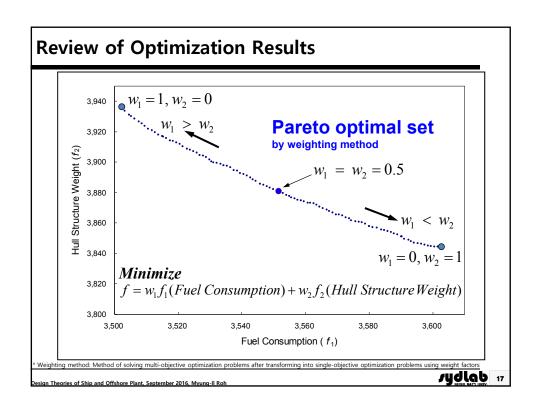

- ☑ Criteria for determining optimal principal dimensions (Objective function)
 - lacktriangle Minimization of a power (BHP) or Fuel Consumption (FC) of a main engine (f₁) or
 - Minimization of hull structure weight (f₂)
- **☑** Given (Ship owner's requirements)
 - ∆: Displacement
 - V: Speed
- ☑ Find (Design variables)
 - L: Length
 - B: Moulded breadth
 - D: Moulded depth
 - T: Draft
 - C_B: Block coefficient

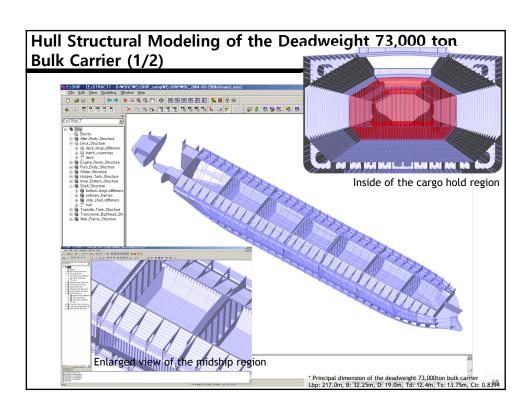


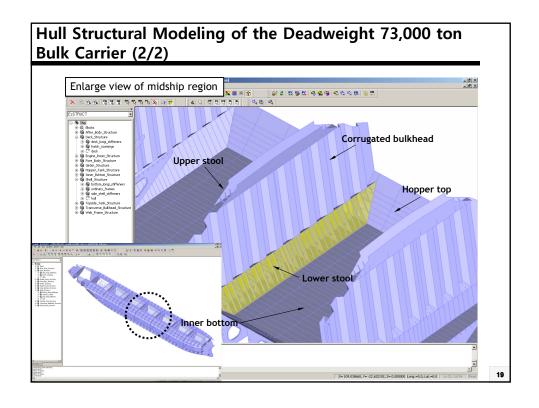
☑ Constraints

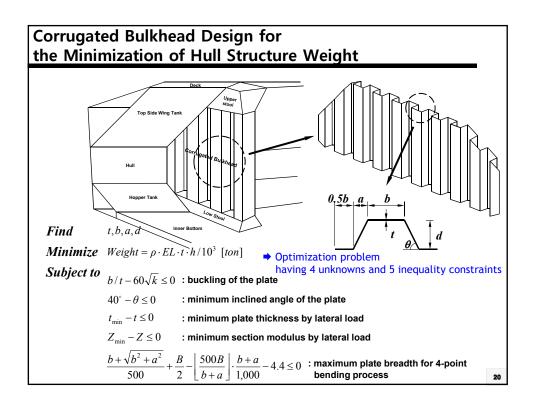
- Constraint about the displacement weight equilibrium condition
- Constraint about the required speed and power

esign Theories of Ship and Offshore Plant, September 2016, Myung-Il Roh

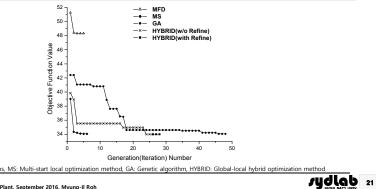



•		Result for the second s		sumptio	n		
CASE 1: Mi	nimize f	uel consum	ption (f_4)				_
	Unit	DDG-51	MFD	MS	GA	HYBRID w/o Refine	HYBRID with Refine
L	m	142.04	157.68	157.64	157.60	157.79	157.89
В	m	17.98	20.11	19.69	19.47	19.60	19.59
D	m	12.80	12.57	12.67	12.79	12.79	12.74
Т	m	6.40	5.47	5.57	5.69	5.68	5.63
C _B	-	0.508	0.520	0.506	0.506	0.508	0.512
P _i	m	8.90	9.02	9.38	9.04	9.06	9.06
A _E /A _O	-	0.80	0.80	0.65	0.80	0.80	0.80
n	rpm	88.8	97.11	94.24	96.86	96.65	96.64
F.C (f ₁)	kg/h	3,391.23	3,532.28	3,526.76	3,510.53	3,505.31	3,504.70
H.S.W	LT	3,132	3955.93	3901.83	3910.41	3942.87	3,935.39
Δ	LT	8,369	9,074	8,907	8,929	9,016	9,001
Iteration No	-	-	6	328	97	61	65
CPU Time	sec	-	3.83	193.56	195.49	189.38	192.02

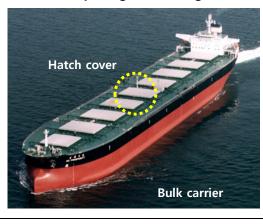

2125 2 11			(6)				
CASE 2: MI	Unit	DDG-51	MFD MFD	MS	GA	HYBRID w/o Refine	HYBRID with Refine
L	m	142.04	157.22	155.92	155.78	155.58	155.56
В	m	17.98	20.09	20.09	20.12	20.10	20.09
D	m	12.80	12.72	12.66	12.63	12.66	12.67
Т	m	6.40	5.64	5.63	5.61	5.65	5.66
C _B	-	0.508	0.510	0.506	0.508	0.508	0.508
P _i	m	8.90	8.98	9.42	9.04	9.46	9.45
A _E /A _O	-	0.80	0.80	0.65	0.80	0.65	0.65
n	rpm	88.8	97.40	94.06	97.29	93.93	93.98
F.C	kg/h	3,391.23	3,713.23	3,622.40	3,618.71	3,603.89	3,602.60
H.S.W (f ₂)	LT	3,132	3,910.29	3,855.48	3,850.56	3,844.43	3,844.24
Δ	LT	8,369	9,097	9,014	9,008	9,004	9,003
Iteration No	-	-	7	364	95	64	68
CPU Time	sec	-	3.91	201.13	192.32	190.98	192.41


-				/linimiza tructure	tion of Weight		
				null structure			* W ₁ = W ₂ =
	Unit	DDG-51	MFD	MS	GA	HYBRID w/o Refine	HYBRID with Refine
L	m	142.04	157.37	157.02	156.74	156.54	156.51
В	m	17.98	19.99	19.98	19.82	19.85	19.82
D	m	12.80	12.70	12.69	12.73	12.82	12.84
Т	m	6.40	5.61	5.62	5.67	5.77	5.80
Св	-	0.508	0.510	0.506	0.506	0.508	0.508
P _i	m	8.90	9.02	9.51	9.33	9.50	9.05
A _E /A _O	-	0.80	0.80	0.65	0.65	0.65	0.65
N	rpm	88.8	97.11	93.49	94.53	93.52	93.51
F.C (f ₁)	kg/h	3,391.23	3,589.21	3,583.56	3,556.15	3,551.98	3,551.42
H.S.W (f ₂)	LT	3,132	3,931.49	3,896.54	3,891.45	3,880.74	3,880.18
$w_1f_1 + w_2f_2$	-	3,261.62	3,760.35	3,740.05	3,723.80	3,716.36	3,715.80
Δ	LT	8,369	9,074	9,048	9,004	9,001	9,001
Iteration No	-	-	7	351	93	65	68
CPU Time	sec	-	3.99	201.63	191.28	190.74	193.22

			CASE 1	CASE 2	CASE 3
	Unit	DDG-51	Minimize f ₁ (fuel consumption)	Minimize f ₂ (hull structure weight)	Minimize w ₁ f ₁ +w ₂ f ₂
L	m	142.04	157.89	155.56	156.51
В	m	17.98	19.59	20.09	19.82
D	m	12.80	12.74	12.67	12.84
Т	m	6.40	5.63	5.66	5.80
Св	-	0.508	0.512	0.508	0.508
P _i	m	8.90	9.06	9.45	9.05
A _E /A _O	-	0.80	0.80	0.65	0.65
n	rpm	88.8	96.64	93.98	93.51
F.C	kg/h	3,391.23	3,504.70	3,602.60	3,551.42
H.S.W	LT	3,132	3,935.39	3,844.24	3,880.18
Objective	-	-	3,504.70	3,844.24	3,715.80
Δ	LT	8,369	9,001	9,003	9,001
Iteration No	-	-	65	68	68
CPU Time	sec	-	192.02	192.41	193.22



Optimization Result for Corrugated Bulkhead Design for
the Minimization of Hull Structure Weight


	Unit	MFD	MS	GA	HYE	BRID
	Offic	IVII D	IVIO	MIS OAT		with Refine
Weight	ton	48.321498	34.056518	34.056518	34.001399	34.001399
t	mm	13.780558	10.000000	10.000000	10.000000	10.000000
b	mm	748.804856	500.000000	500.000000	500.000000	500.000000
а	mm	788.425480	630.000000	630.000000	640.000000	640.000000
d	mm	848.562871	1620.000000	1,660.000000	1,720.000000	1,720.000000
Iteration No	-	5	245	48	26	28
CPU Time	sec	0.16	8.03	6.41	6.16	6.38
		52		MFD MS		

sign Theories of Ship and Offshore Plant, September 2016, Myung-Il Roh

Hatch Cover of a Bulk Carrier as Optimization Target (1/2)

- ☑ Bulk carrier: Dry cargo ship of transporting grains, ores, coals, and so on without cargo packaging
- $\ensuremath{\square}$ Hatch: Opening for loading and off-loading the cargo

esign Theories of Ship and Offshore Plant, September 2016, Myung-Il Roh

/ydlab 22

Hatch Cover of a Bulk Carrier as Optimization Target (2/2)

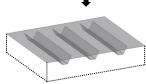
☑ Hatch cover

- Cover plate on the hatch for protecting the cargo
- Having a structure of stiffened plate which consists of a plate and stiffeners
- In general, the cost of hatch cover equipment is accounting for 5~8% of shipbuilding cost.
- In spite of the importance of the hatch cover in the B/C, it has hardly been optimized. Thus, the hatch cover was selected as an optimization target for the lightening of the ship weight in this study.

Design Theories of Ship and Offshore Plant, September 2016, Myung-II Roh

/ydlab 23

Idealization of Hatch Cover of a Bulk Carrier


- ☑ The hatch cover has a structure of stiffened plate which consists of a plate and stiffeners and looks like a corrugated plate.
- $\ensuremath{\square}$ The hatch cover can be idealized for the effective optimization.
- ☑ Thus, the idealized model will be used as the optimization target.

3D CAD model

Idealized model

sign Theories of Ship and Offshore Plant, September 2016, Myung-Il Rol

Determination of Optimal Principal Dimensions of a Hatch Cover - Problem Definition

☑ Criteria for determining optimal principal dimensions (Objective function)

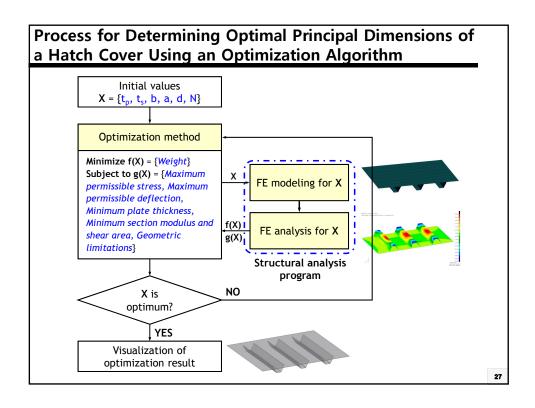
■ Minimization of the weight of hatch cover

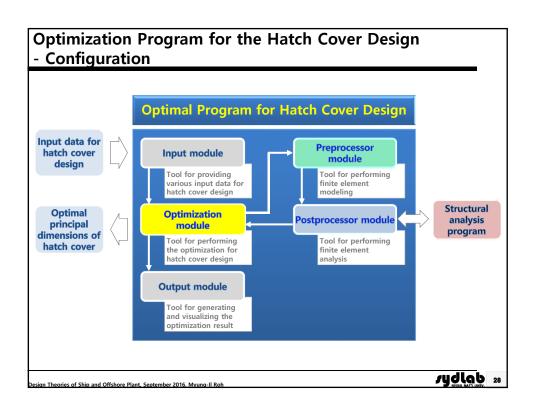
☑ Given

- Length (L), width (W), height (H) of hatch cover
- Total number of girders and transverse web frames
- Load (p_H) on the hatch cover
- The largest span of girders (la)
- Materials of the hatch cover

☑ Find (Design variables)

■ Plate thickness (tp), stiffener thickness (ts), stiffener size (b, a, d), and number of stiffeners (N)

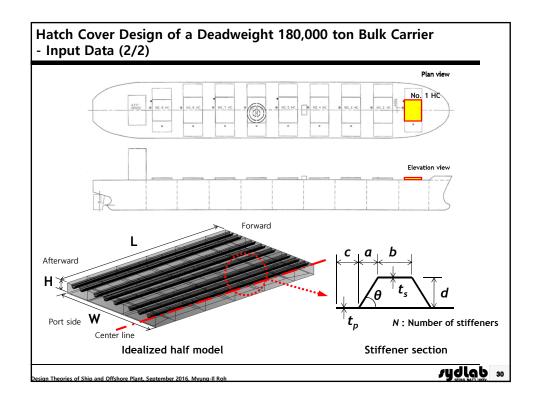

☑ Constraints


- Constraints about the maximum permissible stress and deflection
- Constraint about the minimum thickness of a top plate
- Constraints about the minimum section modulus and shear area of stiffeners
- Constrains about geometric limitations

ign Theories of Ship and Offshore Plant, September 2016, Myung-II Roh

ydlab 25

Determination of Optimal Principal Dimensions of a Hatch Cover Problem Formulation (Summary) N: Number of stiffeners Idealized model Stiffener section Find t_p, t_s, b, a, d, N **Minimize** Weight = $[\rho_p \cdot L \cdot W \cdot t_p + \rho_s \cdot L \cdot \{(2a \cdot (\cos \theta)^{-1} + b + c) \cdot N + c\} \cdot t_s] \cdot 10^{-3} [ton]$ Subject to Requirement for maximum permissible stress by CSR (Common Structural Rules) $\sigma_{v} \leq 0.8 R_{eH} \left[N / mm^2 \right]$ Requirement for maximum permissible deflection by CSR → Optimization problem having $f \le 0.0056 \cdot l_g [m]$ 6 design variables (unknowns) Requirements for minimum thickness of a top plate and 8 inequality constraints $t_{\min} \le t_p \ [mm]$ Requirements for minimum section modulus and shear area of stiffeners $M_{\min} \le M_{net} [cm^3]$ $A_{\min} \le A_{net} [cm^2]$ Limitations on geometry $N(2a+b) < W \qquad d \leq H \qquad 0^\circ \leq \theta \leq 90^\circ$



Hatch Cover Design of a Deadweight 180,000 ton Bulk Carrier - Input Data (1/2)

- ☑ Target ship: Deadweight 180,000 ton B/C
- ☑ Dimensions of the ship: Length 283.5 m, Breadth 45.0 m, Depth 24.7 m
- ☑ Input data of No. 1 HC for optimization of the hatch cover
 - Length (L) of the hatch cover: 14.929 m
 - Width (W) of the hatch cover: 8.624 m (actually, half width of No. 1 HC)
 - Height (H) of the hatch cover: 0.880 m
 - The largest span of girders (l_g) in the hatch cover: 3.138 m
 - Load (p_H) on the hatch cover by CSR: 86.28 kN/m²
 - Materials of the hatch cover: AH32
 - Specific gravity of plate and stiffeners (ρ_p, ρ_s) : 7.8 ton/m³

eories of Ship and Offshore Plant, September 2016, Myung-II Roh

Hatch Cover Design of a Deadweight 180,000 ton Bulk Carrier - Mathematical Formulation

Find
$$t_p, t_s, b, a, d, N$$

$$\begin{aligned} \textit{Minimize} \quad \textit{Weight} &= \left[\rho_p \cdot L \cdot W \cdot t_p + \rho_s \cdot L \cdot \left\{ (2a \cdot (\cos \theta)^{-1} + b + c) \cdot N + c \right\} \cdot t_s \right] \cdot 10^{-3} \; [ton] \\ &= \left[7.85 \cdot 14.929 \cdot 8.624 \cdot t_p + 7.85 \cdot 14.929 \cdot \left\{ (2a \cdot (\cos \theta)^{-1} + b + c) \cdot N + c \right\} \cdot t_s \right] \cdot 10^{-3} \; [ton] \end{aligned}$$

: weight of top plate and stiffeners

Subject to

 $\sigma_{v} \leq 0.8 \cdot 315 \left[N / mm^{2} \right]$: maximum permissible stress

 $f \leq 0.0056 \cdot 3.138 \; [m]$: maximum permissible deflection

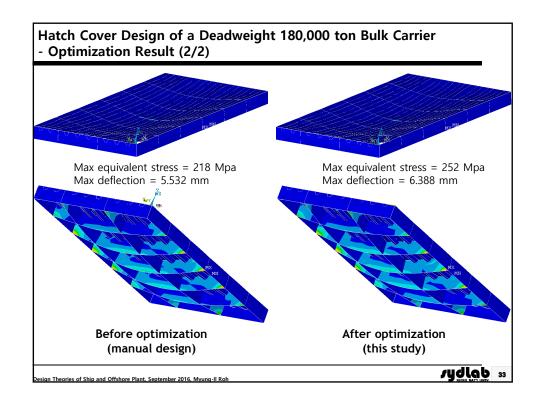
 $t_{\min} \leq t_p \; [mm]$: minimum thickness of a top plate

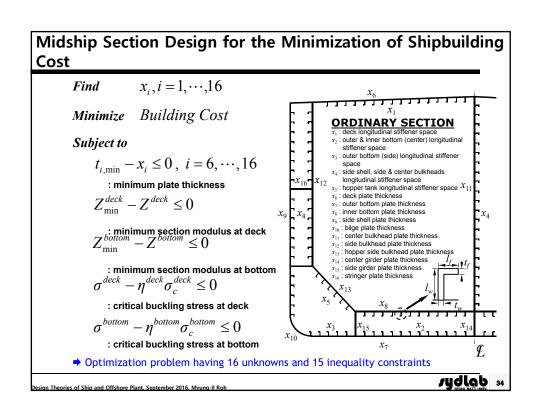
 $M_{\min} \leq M_{net} \ [cm^3]$: minimum section modulus of stiffeners

 $A_{\min} \leq A_{net} \ [cm^2]$: minimum shear area of stiffeners

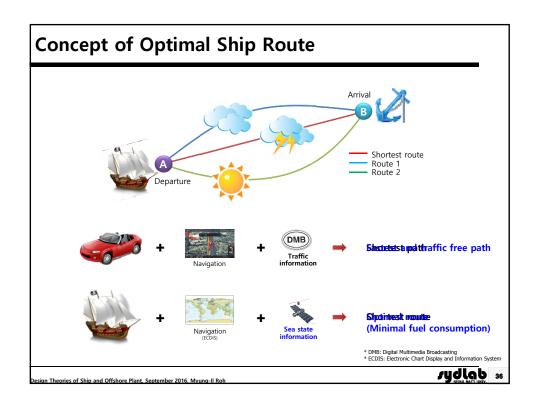
N(2a+b) < W : geometric limitation d < H : geometric limitation $0^{\circ} < \theta \le 90^{\circ}$: geometric limitation

→ Optimization problem having 6 design variables and 8 inequality constraints


esign Theories of Ship and Offshore Plant, September 2016, Myung-II Roh


ydlab 31

Hatch Cover Design of a Deadweight 180,000 ton Bulk Carrier - Optimization Result (1/2)


Item	Unit	Manual design	Optimization result
t _p	mm	16	14
t _s	mm	8	8
b	m	0.170	0.160
a	m	0.120	0.111
d	m	0.220	0.198
N	-	8	8
Weight	ton	26.225	23.975
Maximum stress	MPa	218	252
Maximum deflection	mm	5.532	6.388

esign Theories of Ship and Offshore Plant, September 2016, Myung-II Roh

			•	lding C			
						HYB	RID
	Unit	Actual Ship	MFD	MS	GA	w/o Refine	with Refine
Building Cost	\$/m	-	21,035.254748	20,637.828634	20,597.330090	20,422.478135	20,350.28689
x ₁	mm	800.0	787.038274	811.324938	780.000000	810.000000	810.3701321
x_2	mm	800.0	762.891023	799.038243	750.000000	800.000000	800.1282732
x_3	mm	780.0	743.313979	787.034954	770.000000	790.000000	789.0923943
x_4	mm	835.0	814.142029	833.909455	820.000000	830.000000	834.838424
x_5	mm	770.0	756.434513	772.349435	790.000000	780.000000	780.002092
x_6	mm	16.5	16.983723	16.203495	16.000000	16.000000	16.390923
x ₇	mm	16.0	16.829142	16.043803	16.500000	16.000000	15.989044
x_8	mm	15.5	16.020913	15.390394	16.000000	15.500000	15.432091
x_9	mm	17.0	17.329843	17.039439	16.500000	16.500000	17.139433
x ₁₀	mm	14.5	15.001923	14.324335	15.000000	15.000000	14.780908
x ₁₁	mm	13.5	14.192834	14.240495	14.000000	13.500000	13.550214
x ₁₂	mm	14.5	15.123051	15.403945	14.500000	14.500000	14.500130
x ₁₃	mm	17.0	16.902832	16.849387	16.500000	17.000000	17.010902
x ₁₄	mm	14.0	14.784034	14.739454	15.500000	14.500000	14.309324
x ₁₅	mm	14.0	15.129430	14.448504	15.500000	14.500000	14.588917
x ₁₆	mm	14.5	14.824045	14.940584	15.000000	15.000000	14.789992
Iteration No	-	-	8	912	93	64	70
CPU Time	sec	-	2.90	293.28	272.91	265.06	267.92

Determination of Optimal Ship Route

- Problem Definition
 - ☑ Criteria for determining optimal ship route (Objective function)
 - Minimization of the fuel consumption of ship
 - **☑** Given (Input)
 - Positions of departure and arrival
 - Required arrival time
 - Information on ship and sea state
 - **■** Geographic information

☑ Find (Design variables)

■ Optimal ship route

sydlab 37

Determination of Optimal Ship Route

- Problem Formulation

Find X

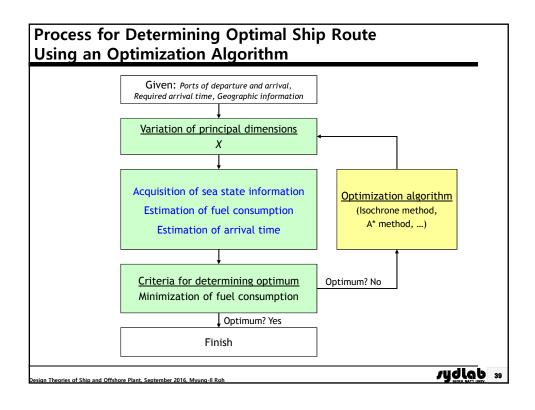
Design Variables

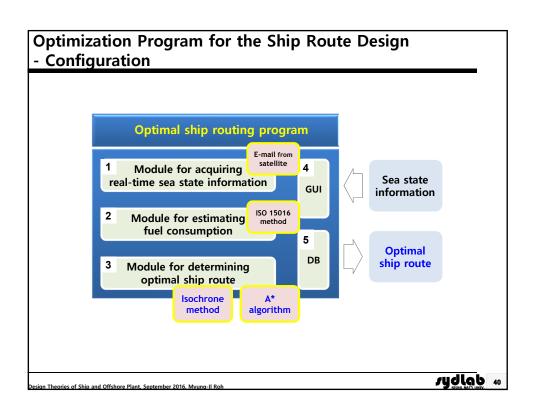
Minimize

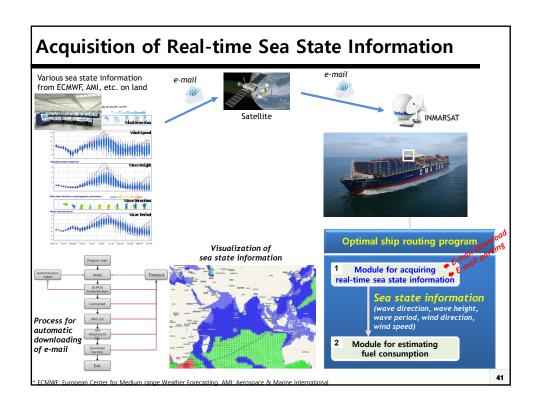
TFOC(X)Total fuel consumption **Objective Function**

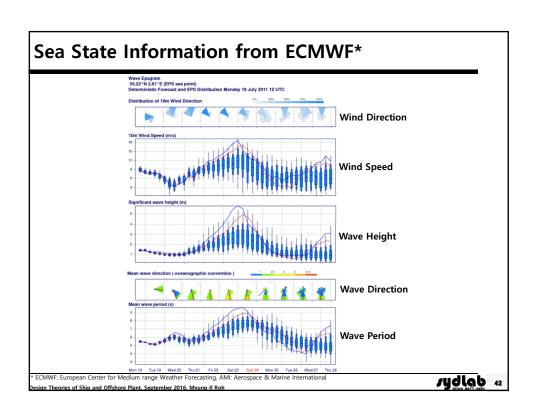
Subject to

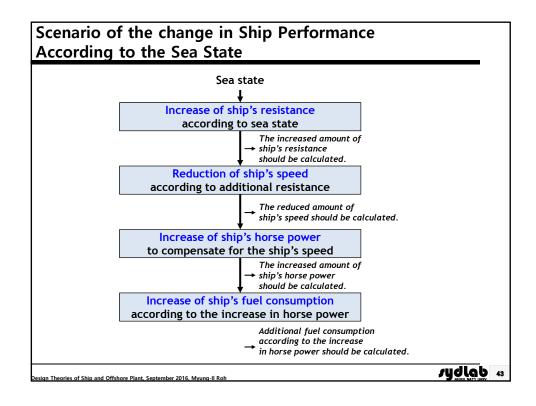
 $ETA_{\min} - ETA(\mathbf{X}) \le 0$

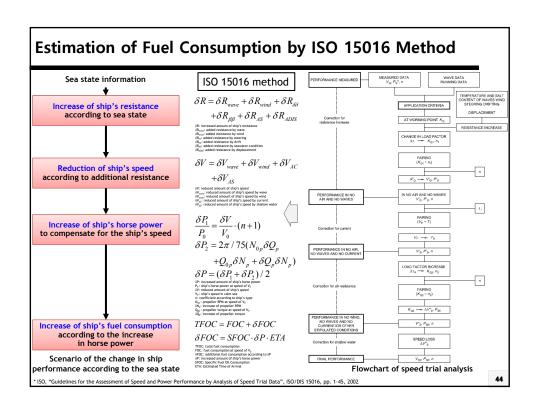

Constraints

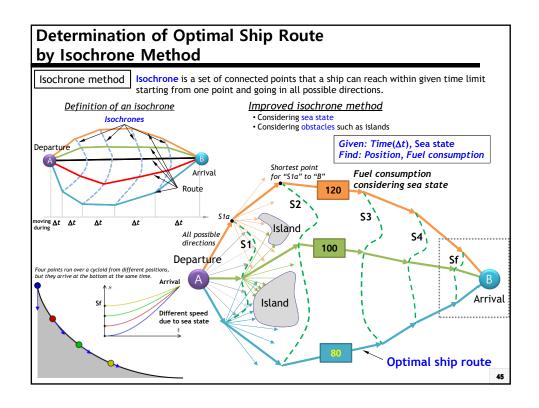

Requirement for the minimum arrival time

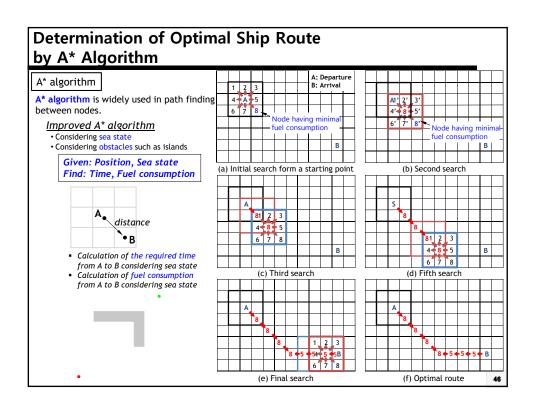

 $ETA(\mathbf{X}) - ETA_{\max} \le 0$

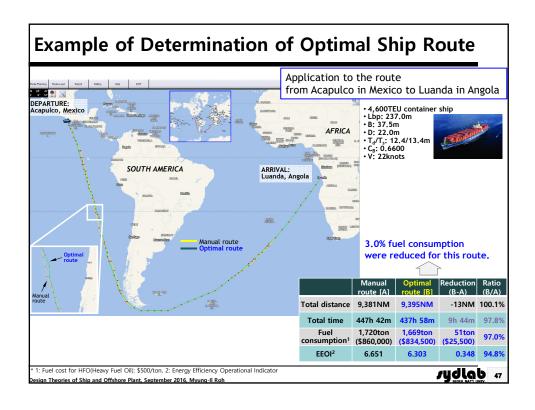

Requirement for the maximum arrival time

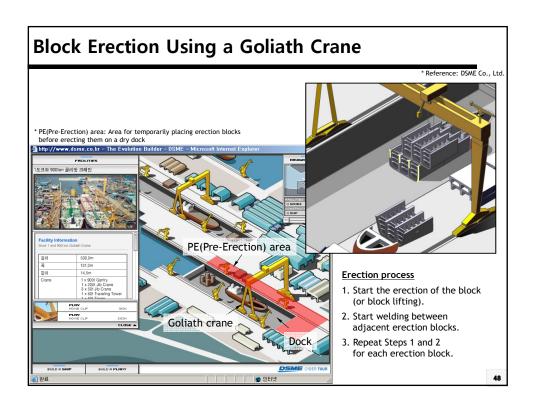

▶ Optimization problem having 1 unknown and 2 inequality constraints

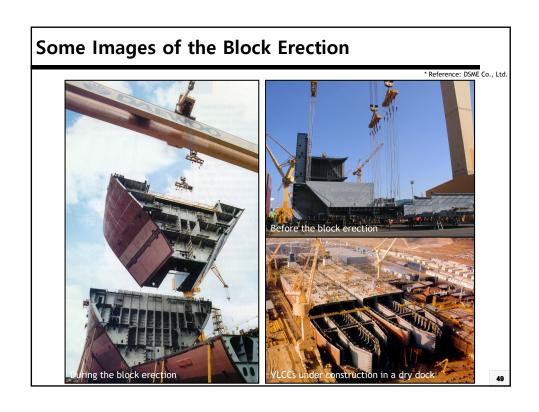


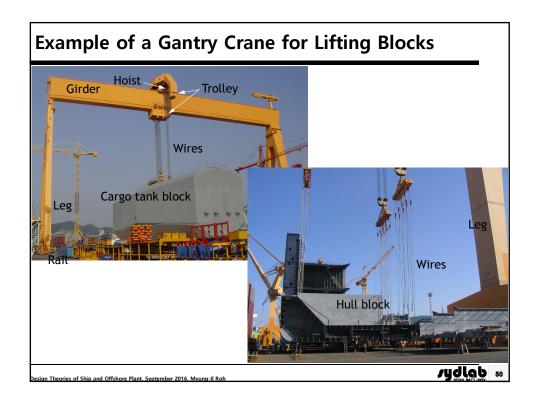


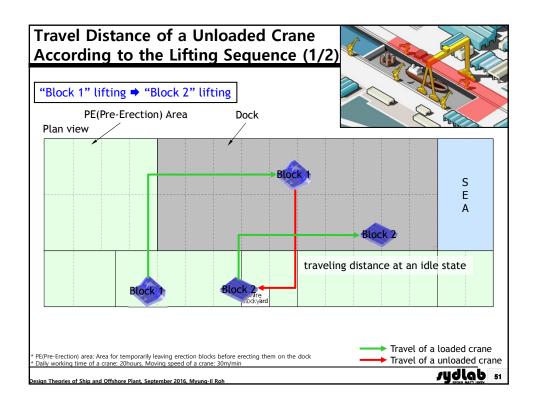


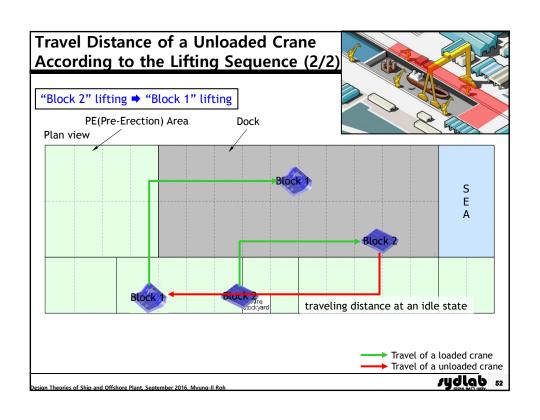


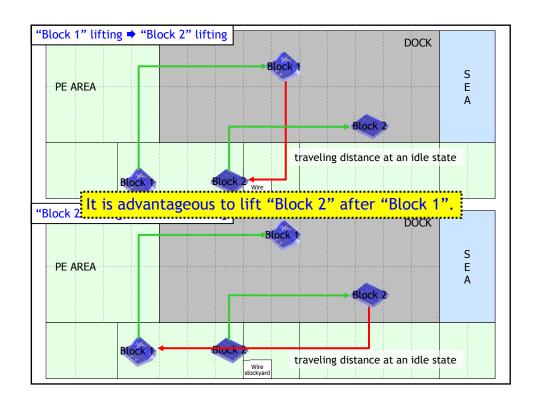


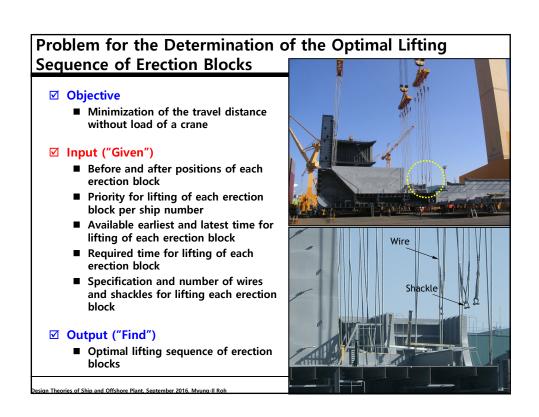












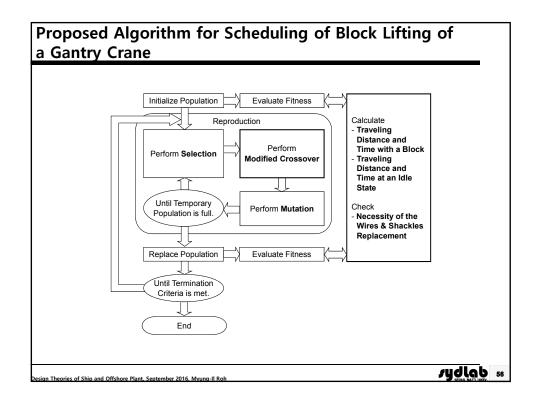
Formulation of a Problem for the Determination of the Optimal Lifting Sequence of Erection Blocks

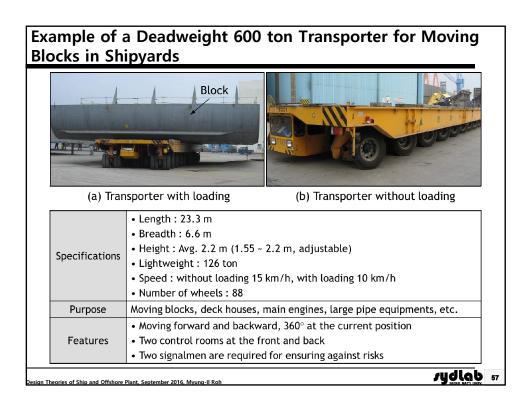
Find
$$x_i$$
 Lifting time for each block Design Variables

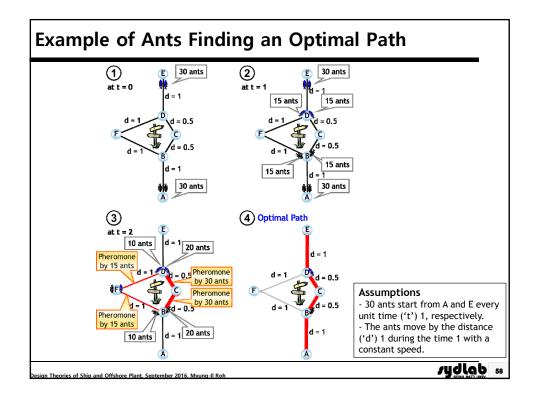
Minimize $F_1 = \sum_{i=0}^{N-1} \{(1-r_{i,i+1}) \cdot t_{i,i+1} + r_{i,i+1} \cdot (t_{i,W} + t_{W,i+1})\}$ Total travel time without block Objective Function

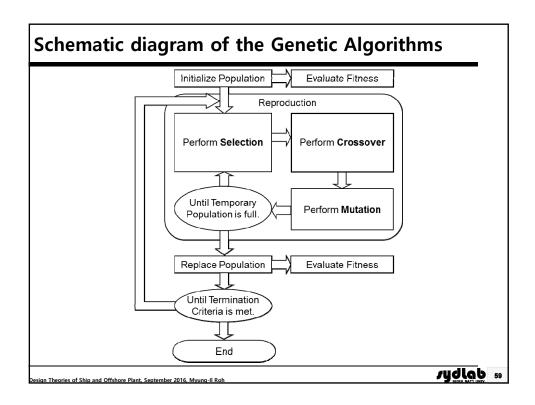
Minimize $F_2 = \sum_{i=0}^{N-1} (r_{i,i+1} \cdot T_r)$ Total time for wires and shackles replacement

Subject to Constraints


 $g_1 = l_i - s_i \le 0$ Constraints about the start of the lifting time


 $g_2 = f_i - u_i \le 0$ Constraints about the end of the lifting time


 $g_3 = p_j - p_k \le 0$ Constraints about the priority for lifting


 $g_4 = f_N - T_e \le 0$ Constraints about the total lifting time

For $i = 0, \dots, N-1$ and $j, k = 1, \dots, N$

Problem for the Determination of the Optimal Transporting Sequence of Erection Blocks

☑ Objective

■ Minimization of the travel distance without block of transporters

✓ Input ("Given")

- Total number of blocks and transporters
- Weight of each block and specifications of each transporter
- Before and after positions of each block
- Priority for transporting of blocks
- Available earliest and latest time for transporting of blocks
- Roads in shipyard for the block transportation

✓ Output ("Find")

 Optimal route and transporting sequence of blocks

esign Theories of Ship and Offshore Plant, September 2016, Myung-Il Roh

sydlab ∞

Detailed Input Data for the Determination of the Optimal Transporting Sequence of Erection Blocks

☑ Data on the transporters

- Total number and ID of the transporters
- Specifications (e.g., the speed, maximum deadweight, service time, etc.) of each transporter
- Initial position of each transporter

☑ Data on the blocks

- Total number and ID of the blocks to be moved by the transporters
- Weight of each block
- Initial position and target position after moving each block
- Transportation time limit (lower and upper bounds) of each block
- Priority for the transportation among the blocks

☑ Miscellaneous data

■ Information on the shipyard roads for the block transportation

sign Theories of Ship and Offshore Plant, September 2016, Myung-II Rol

rydlab 61

Formulation of a Problem for the Determination of the Optimal Transporting Sequence of Erection Blocks

Design Variables

Minimize $F_1 = \sum_{i=1}^{B} \sum_{k=1}^{T} x_i^k (e_i^k / V^k)$ and

otal transporting time Objective Function

Minimize $F_2 = \sum_{i=1}^{B} \sum_{j=1}^{i-1} \sum_{j=1}^{T} \sum_{k=1}^{k-1} x_i^k x_j^l c_{kl}$

Total number of interferences between transporters

Subject to

Constraints

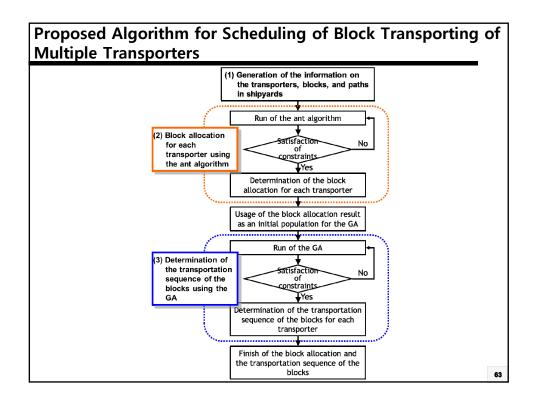
 $g_1 = w_i - t_k \le 0$

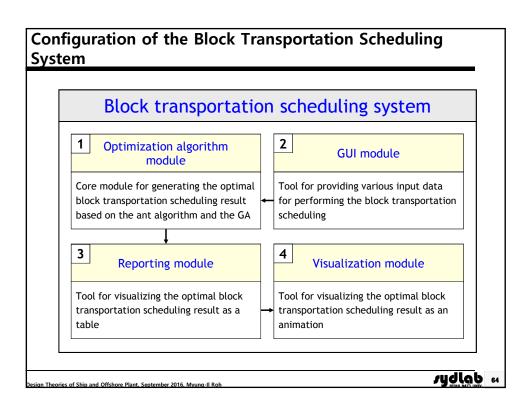
Constraints about the maximum deadweight of transporter

 $g_2 = r_i - p_i^k \le 0$

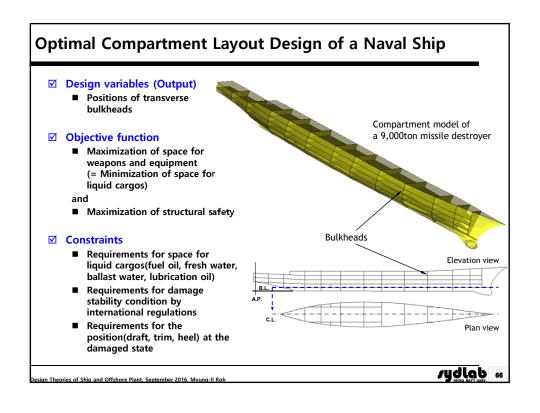
Constraints about the start of the transporting time

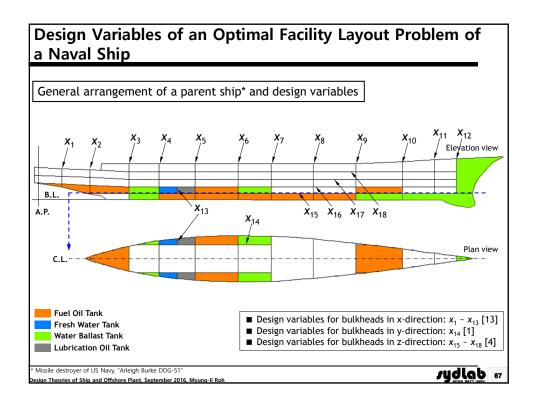
 $g_3 = d_i^k - s_i \le 0$

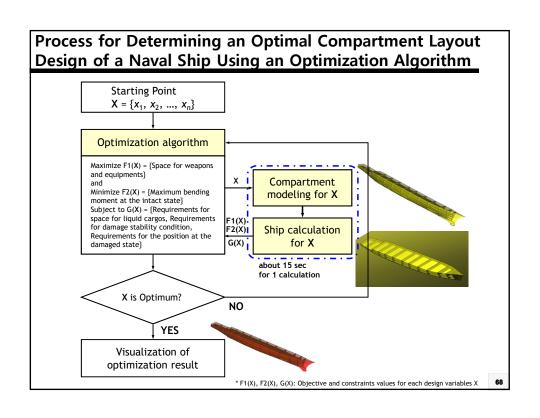

Constraints about the end of the transporting time


 $g_4 = p_i - p_j \le 0$

Constraints about the priority for transporting


for $i, j = 1, \dots, B$ and $k, l = 1, \dots, T$


Design Theories of Ship and Offshore Plant, September 2016, Myung-Il Ro

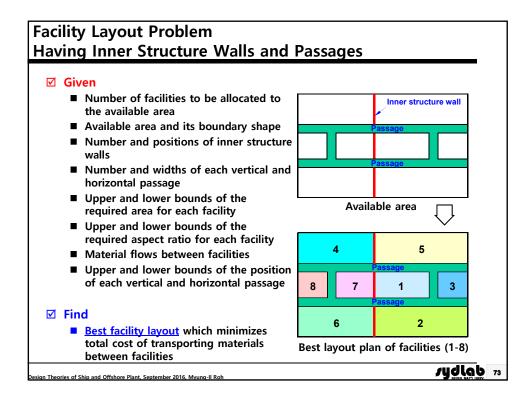


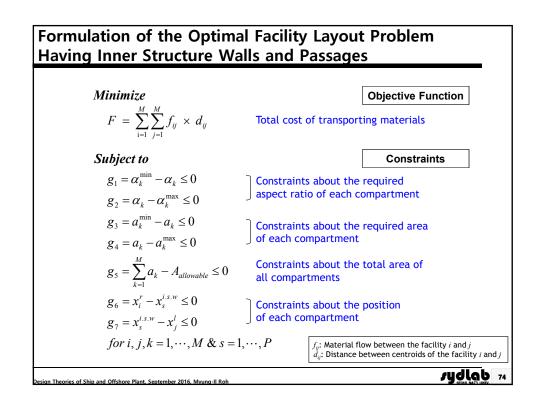
		Manual scheduling	Genetic algorithm	Proposed algorithm	
Total transportatio	n time	14 hr 16 min	12 hr 24 min	12 hr 13 min	
Total transportation ithout loadin		6 hr 10 min	4 hr 18 min	4 hr 7 min	
No. of interferer between the transp uring the transpor	orters d	7	2	1	
	T ₁	11 blocks	12 blocks	13 blocks	
No. of allocated	T_2	34 blocks	34 blocks	32 blocks	
blocks for each tr ansporter	T ₃	24 blocks	25 blocks	27 blocks	
	$T_{\mathtt{4}}$	28 blocks	26 blocks	25 blocks	

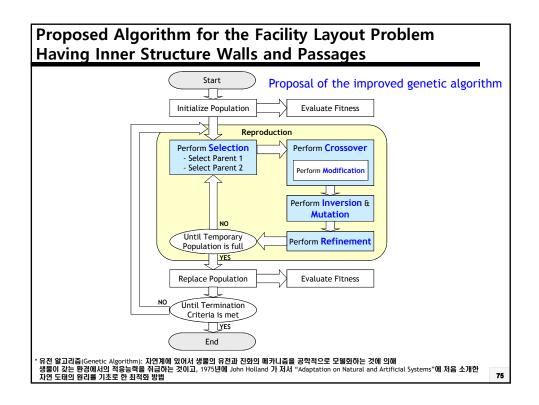
69

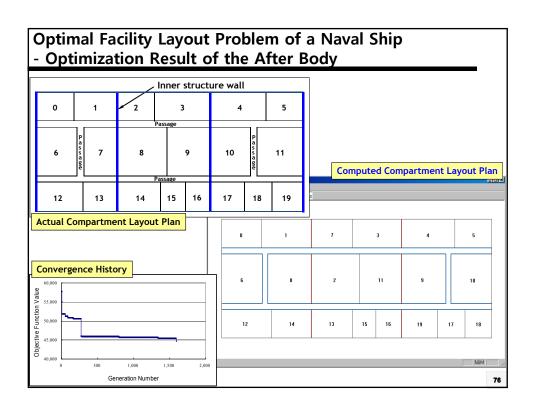
Optimization Result for the 9,000 ton Missile Destroyer
- Comparison with a Parent Ship (1/2)

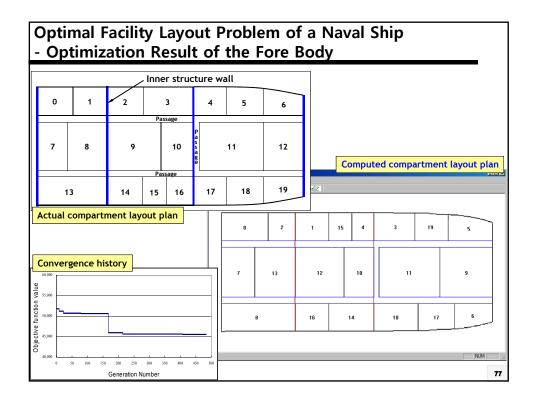
Item		Unit	Parent ship		Optimization result		Note
$V_{w.B.T}$		m³	1,181.4		1,050.6		Objective function (Minimize)
BM ₁	BM ₂	kN∙m	74,694.3	50,401.1	67,254.7	47,325.6	Objective function (Minimize)
φ _{0,1}	$\phi_{0,2}$	0	0.000	0.038	0.000	0.038	Requirements for damage stability
$A_{2,1}/A_{1,1}$	$A_{2,2}/A_{1,2}$	-	40.871	40.544	40.874	40.666	condition by international regulations
T ₁	T ₂	m	6.919	6.884	6.819	6.787	
t ₁	t ₂	m	0.192	0.396	0.309	0.589	
ϕ_1	ϕ_2	0	1.243	1.336	0.839	0.896	

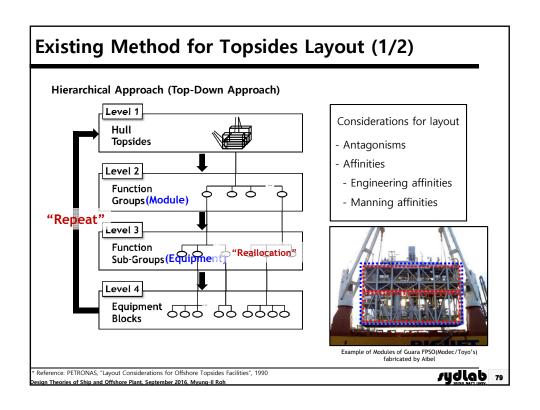

- ▶ Decrease of space for liquid cargos as compared with a parent ship (= Increase of space for weapons and equipment) & Increase of structural safety

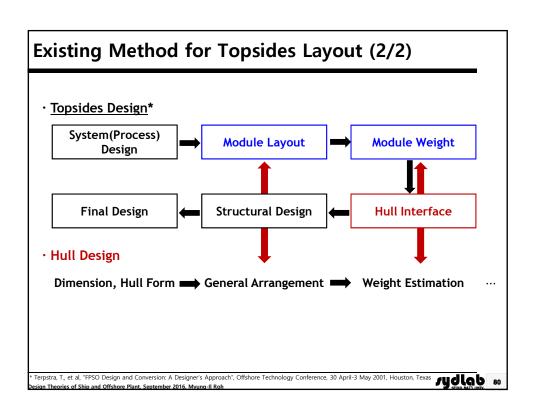

- *V_{W,B,T}: Total volume of ballast tank
 *BM; Maximum bending moment at the *i*th loading condition
 *\$\phi_{\text{o}_i}\$: Initial heel angle at the *j*th damage case
 *\$\phi_{\text{o}_i}\$: A_{\text{o}_i}\$\phi_{\text{o}_i}\$: A_{\text{o}_i}\$\phi_{\text{o}_i}\$: A_{\text{o}_i}\$\phi_{\text{o}_i}\$: A_{\text{o}_i}\$\phi_{\text{o}_i}\$: A_{\text{o}_i}\$\phi_{\text{o}_i}\$: A_{\text{o}_i}\$\phi_{\text{o}_i}\$: A_{\text{o}_i}\$\phi_{\text{o}_i}\$: Equivalent draft and trim at the *j*th damage case
 *\$\phi_i\$: Equivalent heel angle considering beam wind at the *j*th damage case

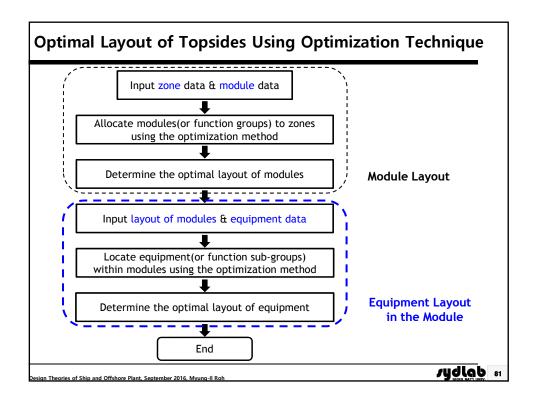

Optimization Result for the 9,000 ton Missile Destroyer - Comparison with a Parent Ship (2/2) Compartment model of a parent ship B.L A.P. Compartment model after optimization B.L A.P. Fuel Oil Tank Fresh Water Tank Water Ballast Tank Lubrication Oil Tank 70

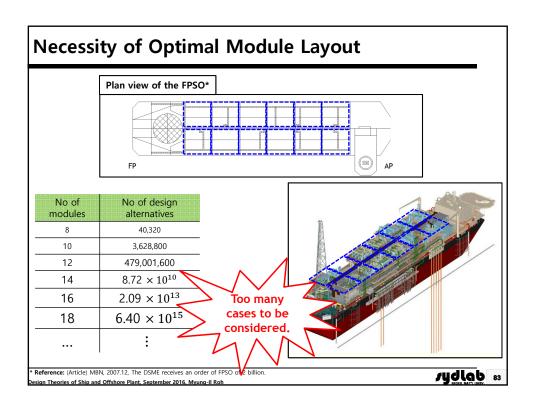

Optimal Facility Layout Problem of a Naval Ship ☑ Fore body (Fr. no. 68~92) ■ Rectangular boundary shape ■ 20 compartments, 2 watertight transverse bulkheads, 2 vertical passages, 2 horizontal passages ☑ After body (Fr. no. 17~44) Curved boundary shape ■ 20 compartments, 2 watertight transverse bulkheads, 1 vertical passage, 2 horizontal passages 2nd Deck of the FF-21 SECOND DECK After Body **Fore Body** 71 (Fr. no. 68~92

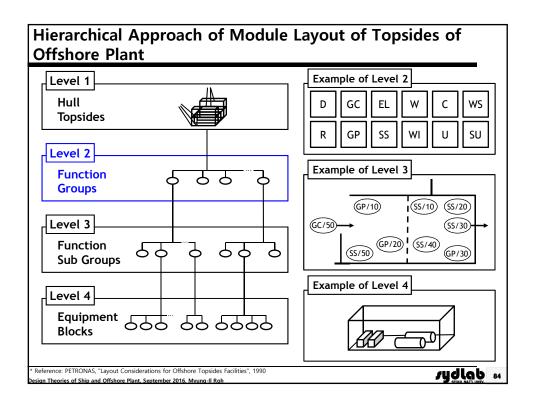

Facility Layout Problem (FLP) ☑ Facility Layout Problem Given: Available area, the required area for each facility, material flow between facilities, etc. Find: Best facility layout which minimizes total cost of transporting materials between facilities ■ Applications: Factory layout, equipment layout in the factory, office layout in the building, etc. ☑ Limitation of Existing Algorithms ■ Limited to a rectangular boundary shape ■ No consideration for inside side wall ■ No consideration for passages between facilities 5 Best layout of 7 facilities A given bounded area sydlab 72 n Theories of Ship and Offshore Plant, September 2016, Myung-II Roh











Optimal Module Layout of Topsides of Offshore Plant

)						
Vellhead .	w	Gas Compressing	GC	Workshop/Stores	ws	Safety Utilities	SU
Xmas Trees	W/10	Compression Train	GC/10	Workshop - Mechanical	WS/10	Fire Water Pumps	SU/10
Manifold	W/20	Scrubber	GC/20	Workshop - Electrical	WS/20	Emergency Generator	SU/20
Well Control	W/30	Coolers	GC/30	Stores	WS/30	Emergency Switchgear	SU/30
Conductors	W/40	Lube Oil/Seal Oil	GC/40	Laboratory	WS/40	UPS	SU/40
		Gas Metering	GC/50	Storage - Standby Fuel	WS/50	Survival Craft	SU/50
rilling	D	1		Storage - Jet Fuel	WS/60	Bridges	SU/60
BOP	D/10	Risers	R	Storage - Flamm./Comb. Liquids	WS/70		
Drilling Derrick	D/20	Risers/Manifolds	R/10	Storage - Process Consumables	WS/80	Electrical Power Generati	_
Drilling Support	D/30	ESD Valves	R/20			Driver / Power Generator	EL/10
Mud Systems (Active)	D/40	Pigging Facilities	R/30			Switchgear	EL/20
Drilling Control	D/50	Subsea Sat. Facilities	R/40	Material Handling	мн	Transmission Systems	TS
eparation/Stabilization	SS	Flare System	F	Cranes	MH/10	Relief and Blowdown	TS/10
Separation	SS/10	Flare Knockout	F/10	Laydown Areas	MH/20	Drains - Open	TS/20
Stabilization	SS/20	Tower (incl. tip)	F/20			Drains - Closed	TS/30
Test Separation	SS/30			F		Piping - Process	TS/40
Produced Water Treatment	SS/40	Living Quarter	LQ	Utilities	U	Piping - Safety	TS/50
Oil Export Pumping	SS/50	Living Quarters	LQ/10	Seawater System	U/10	Piping - Utilities.	TS/60
Oil Metering	SS/60	Living Quarters Utilities	LQ/20	Instrument Air System	U/20	Cables - Instrumentation	TS/70
		Sheltered Area	LQ/30	Diesel System	U/30	Cables - Electrical	TS/80
as Processing	GP	Helideck	LQ/40	HVAC	U/40	Ducting - HVAC	TS/90
Gas Processing	GP/10			Potable Water	U/50		-
Condensate Processing	GP/20	Control	C	Sewage Systems	U/60	Water Injection	WI
Dehydration	GP/30	Central Control	C/10	Heating Systems	U/70	Injection	WI/10
Fuel Gas	GP/40	Local Control	C/20	Cooling Systems	U/80	Treatment	W1/20

Characteristics for the Representation of Relationship between Topsides Modules

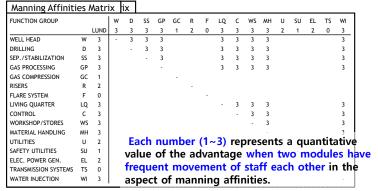
- Antagonisms: Characteristics which preclude an module being safely located near another specific module unless mutually protected (e.g., "two modules should be distant from each other.")
- ✓ Affinities: Characteristics which make it particularly advantageous to locate one module close to another specific module (e.g., "two modules should be adjacent to each other.")

esign Theories of Ship and Offshore Plant, September 2016, Myung-Il Roh

rydlab 86

Relationship between Topside Modules

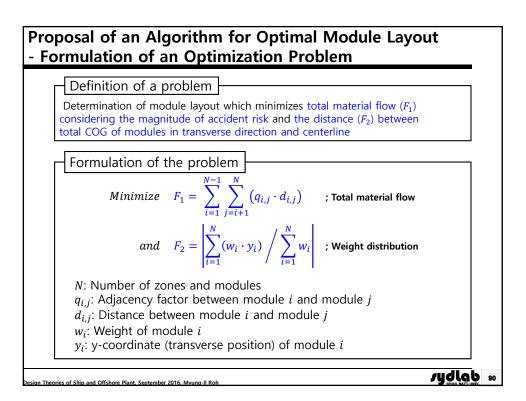
- Antagonisms
 - ☑ Characteristics for defining antagonisms
 - Active behavior characteristics: Probability of a module initiating major incidents
 - Reactive behavior characteristics: Propensity for a module to escalate major incidents initiated elsewhere.

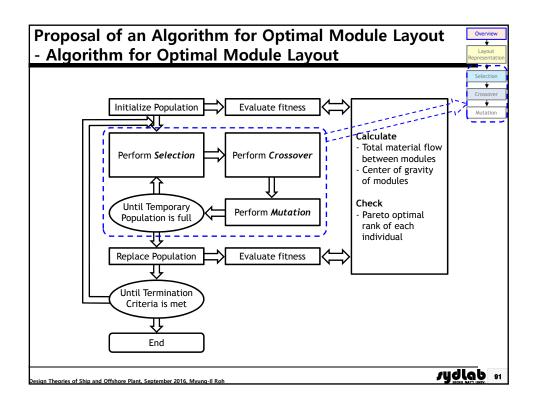

FUNCTION GROUP			W	D	SS	GP	GC	R	F	LQ	C	WS	MH	U	SU	EL	TS	WI	
		REACTIVE	3	3	3	3	2	3	3	3	3	2	2	2	3	3	3	2	
		ACTIVE																	
WELL HEAD	W	3	-																
DRILLING	D	3	3	-						Ea	ch	nu	mb	er	(1-	-3)	re	ore	sents a
SEP./STABILIZATION	SS	2	3	3	-														
GAS PROCESSING	GP	2	3	3	3	-				qua	ınt	ita	tive	Va	aiue	9 0	T T	ie r	isk when two
GAS COMPRESSION	GC	3	3	3	3	3	-			mo	du	les	are	e lo	oca [,]	ted	l in	aď	iacent zones
RISERS	R	3	3	3	3	3	3	-		داء	-	Th	a h	ial	hor	ni	mk	or'	the more risk
FLARE SYSTEM	F	2	3	3	3	3	3	3	-				e 11	ııyı	iei	III	HIII	Jei,	the more risk
LIVING QUARTER	LQ	0	3	3	3	3	3	3	3	lay	out	t.							
CONTROL	C	0	3	3	3	3	3	3	3	1	-								İ
WORKSHOP/STORES	WS	0	3	3	2	2	3	3	2	1	1	-							
MATERIAL HANDLING	MH	1	3	3	2	2	3	3	2	2	2	1	-						
UTILITIES	U	1	3	3	2	2	3	3	2	2	2	1	1	-					
SAFETY UTILITIES	SU	1	3	3	3	3	3	3	3	2	2	1	2	2	-				
ELEC. POWER GEN.	EL	3	3	3	3	3	3	3	3	3	3	2	2	2	3	-			
TRANSMISSION SYSTEMS	TS	3	3	3	3	3	3	3	3	3	3	2	2	2	3	3	-		
WATER INJECTION	WI	0	3	3	2	2	3	3	2	1	1	1	1	1	1	2	2		I

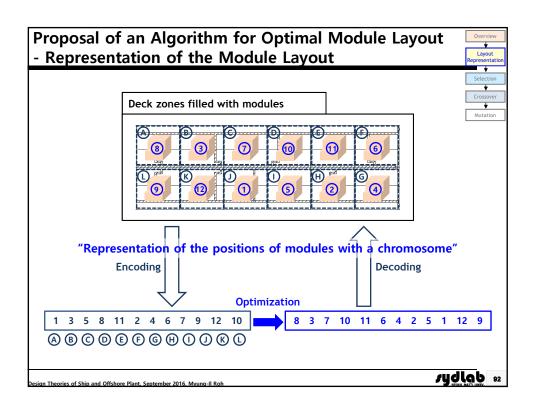
References
PETRONAS, "Layout Considerations for Offshore Topsides Facilities", 1990
Quantitative Risk Assessment, SIPM Report EP 55000-18, May 1990
Guidelines for Risk Analysis Data, Doc. Ref F-RADS, SIPM, June 1990

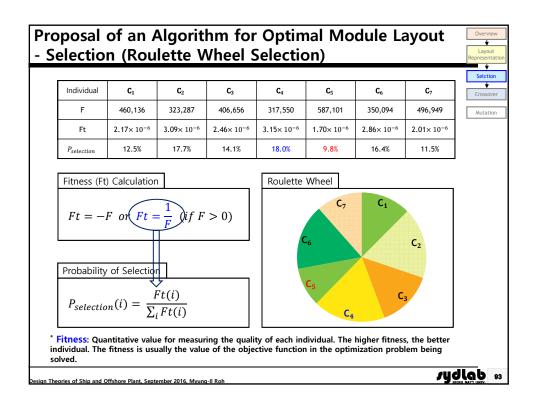
87

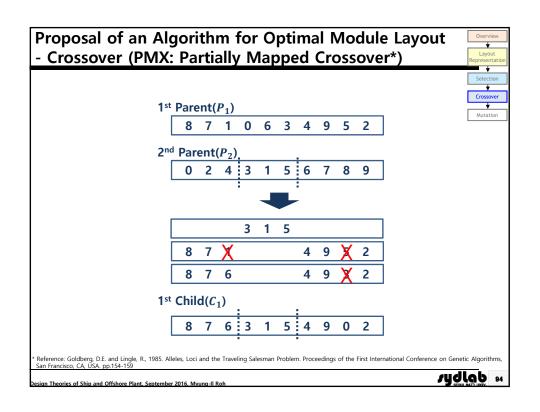
Relationship between Topside Modules

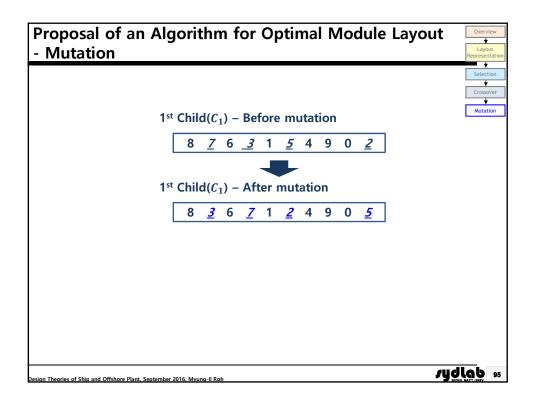

- Affinities
 - ☑ Characteristics for defining affinities
 - Engineering affinities: The need to locate certain modules close together, the most fundamental being the requirements of the process logic
 - Manning affinities: Ways to minimize the movement of staff around the platform

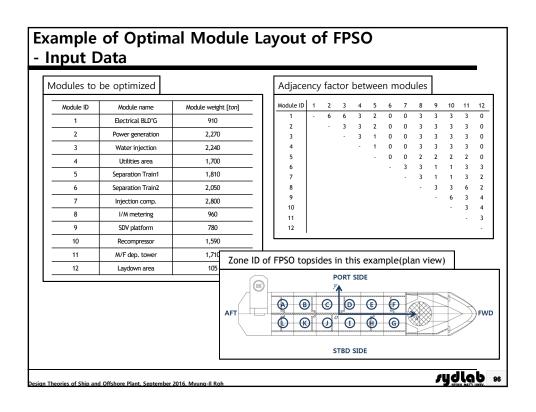


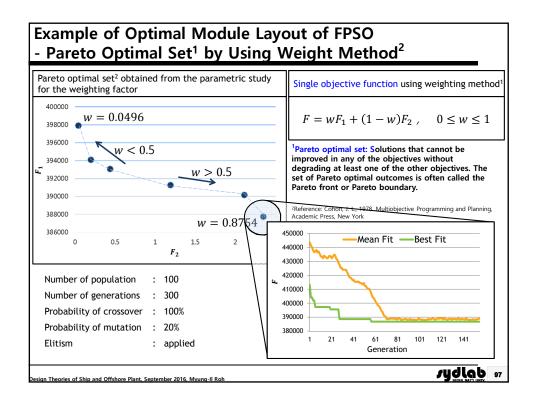

Reference: PETRONAS, "Layout Considerations for Offshore Topsides Facilities", 1990

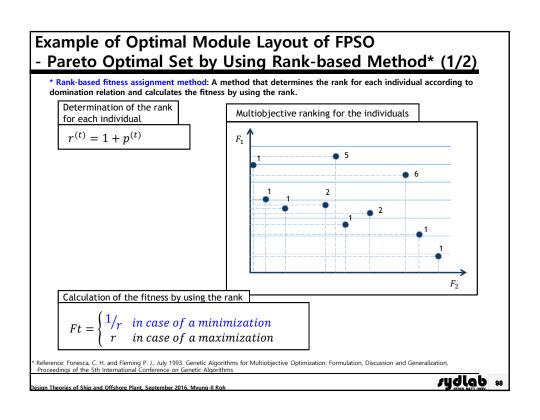

sydlab **

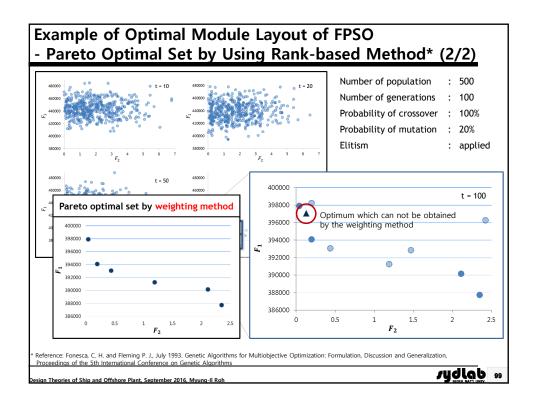

												Γa					1
٠ ما: م م ما	r		L	ء ما	4				11 -		^	q_1	11				1
Adjacend	СУН	-ac	tor	be	tw	eer	1 IV	100	iuie	25 (Ų =			٠.			1
(= Affinitie	es -	An ⁻	taa	oni	sms)									C	INN	
,			5			,						-					_
			_	. –													
Adjacency Fact	or N	Natr	x r	IX													
FUNCTION GROUP		W	D	SS	GP	GC	R	F	LQ	С	WS	MH	U	SU	EL	TS	WI
WELL HEAD	W	-	6	6	3	2	0	0	3	3	3	3	0	0	6	6	2
DRILLING	D		-	3	3	2	0	0	3	3	3	3	0	1	1	3	2
SEP./STABILIZATION	SS			-	3	3	0	0	3	3	3	3	0	5	5	6	2
GAS PROCESSING	GP				-	3	5	5	5	5	6	6	0	0	1		0
GAS COMPRESSION	GC					-	1	1	1	1	5	5	4	4	3	3	0
RISERS	R						-	2	3 5 1 2	2	2	6	6	3	3		0
FLARE SYSTEM	F							-	5	-					-		3
LIVING QUARTER	LQ								-	3	3			3			3
CONTROL	C									-	5			3			3
WORKSHOP/STORES	WS										-	3	3			6	6
MATERIAL HANDLING	MH											-	5	5	-	-	6
UTILITIES	U												-	0	0	5	5
SAFETY UTILITIES	SU													-	5	5	5
ELEC. POWER GEN.	EL														-	3	3
TRANSMISSION SYSTEMS																-	3
WATER INJECTION	WI																-

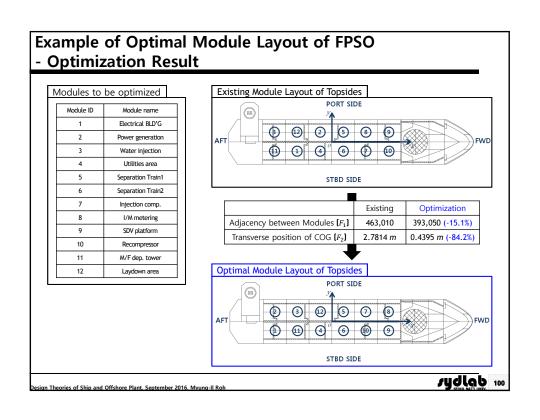




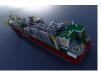






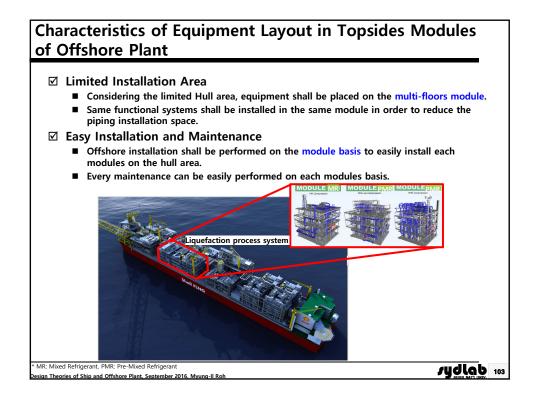


Optimal Equipment Layout in the Topsides Module of Offshore Plant (for Liquefaction Module)

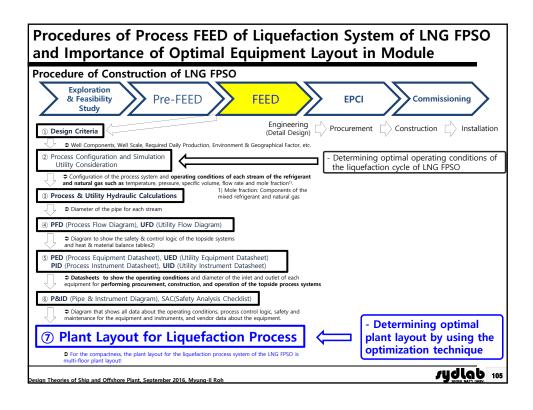

sydlab 101

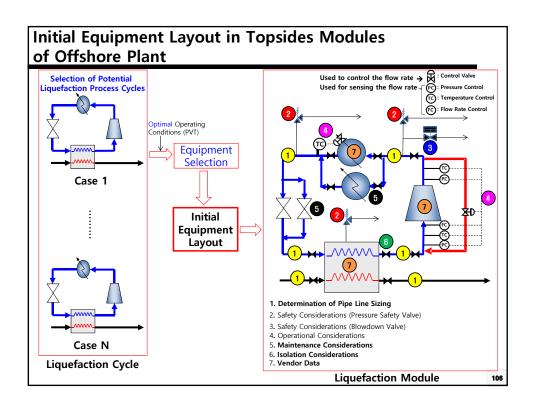
Considerations on Optimal Equipment Layout in the Liquefaction Module for Offshore Plant

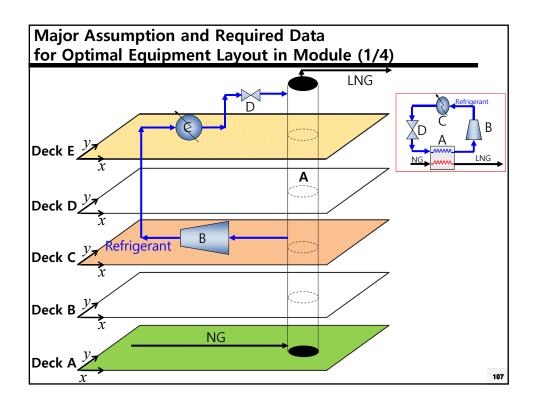
☑ Safety

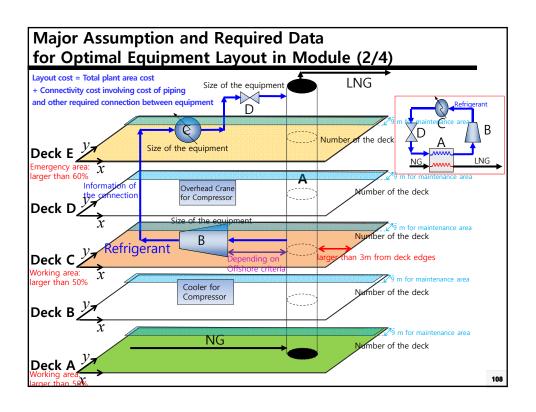

- Safety studies: HAZard and Operability (HAZOP), HAZard Identification (HAZID), Failure Modes and Effects Analysis (FMEA), Fault Tree Analysis (FTA), Event Tree Analysis (ETA)
- Optimal layout: Maintenance, Working space area, Emergency area

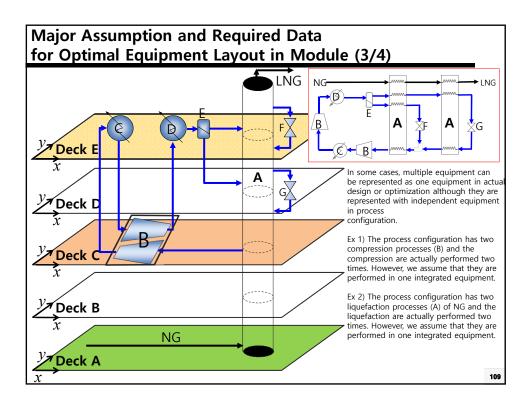
☑ Compactness

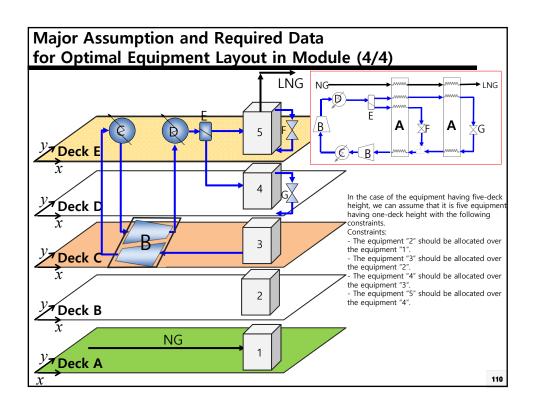

- Available area for the liquefaction cycle of offshore application is smaller than that of onshore
- By determining the optimal operating conditions and doing the optimal synthesis of the liquefaction cycle, the required power for the compressors can be reduced which will result in the reduction of the compressor size and the flow rate of the refrigerant. Thus, the overall sizes of the liquefaction cycle including the pipe diameter, equipment and instrument can be reduced.
- Therefore, the compactness can be achieved by optimization studies such as determination of the optimal operating condition or optimal synthesis of the liquefaction cycle.

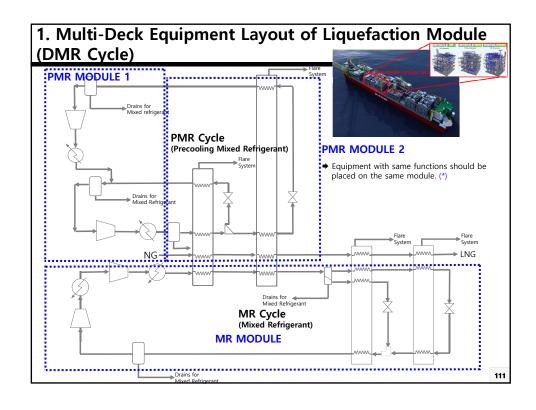

For the optimization of the process layout, 'Compactness' & 'Safety' are the most important consideration.

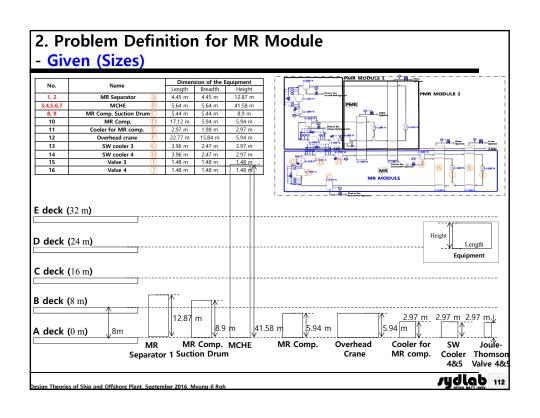

sydlab 102

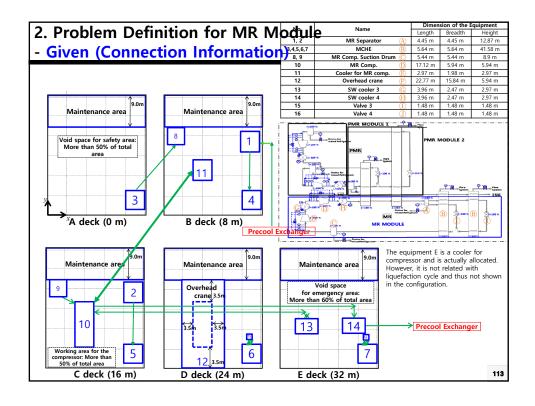


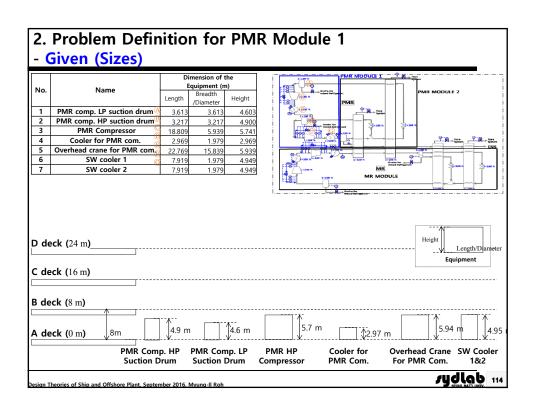


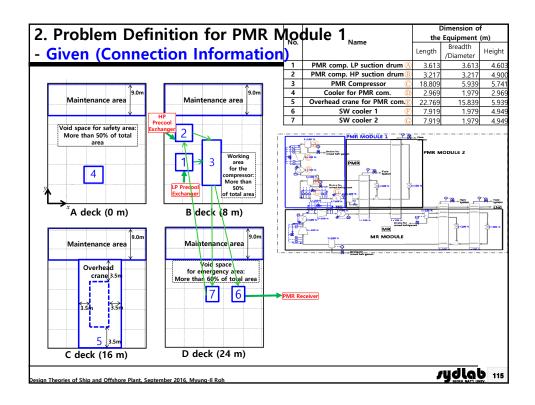


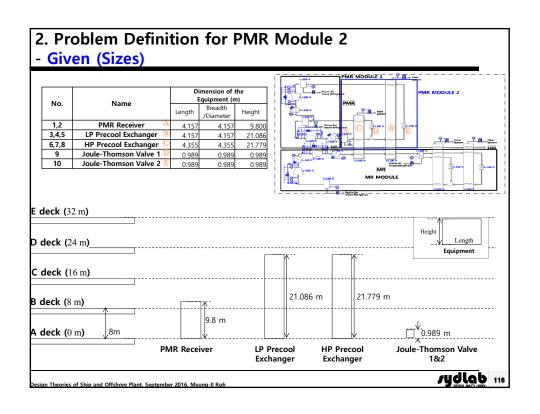


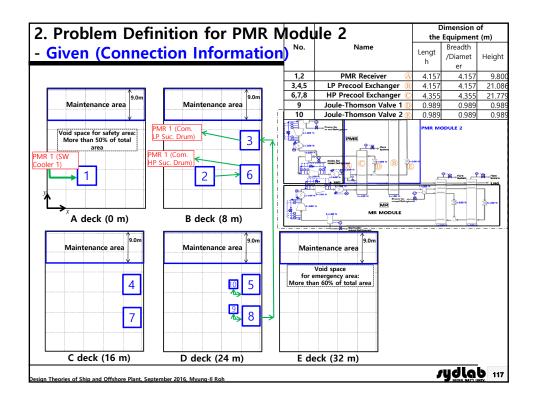


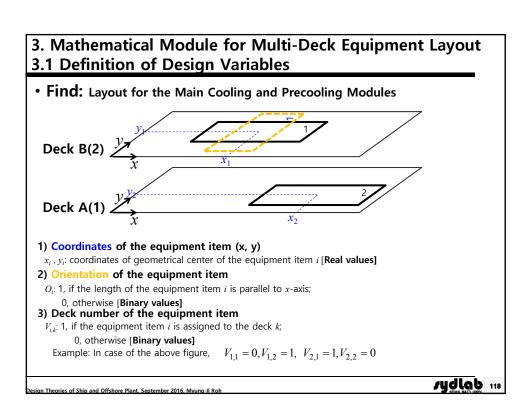


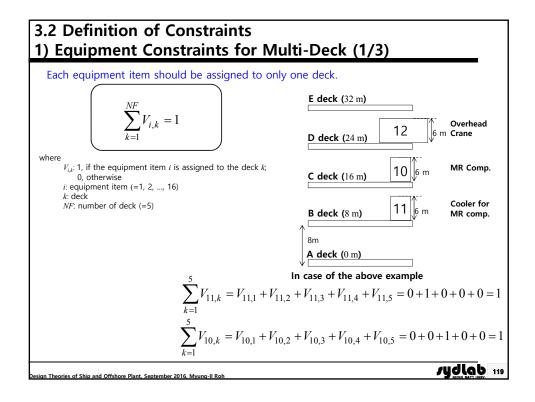


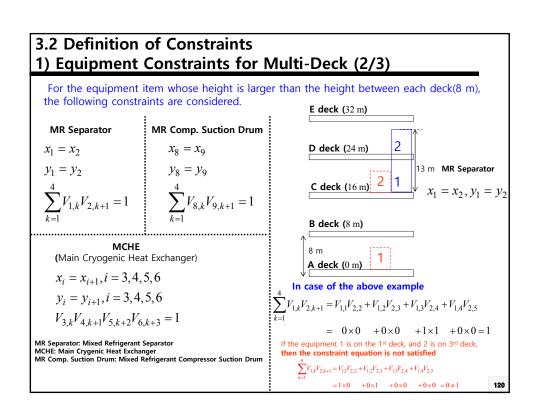


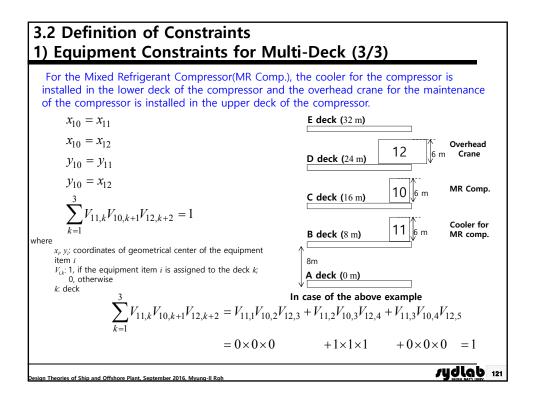


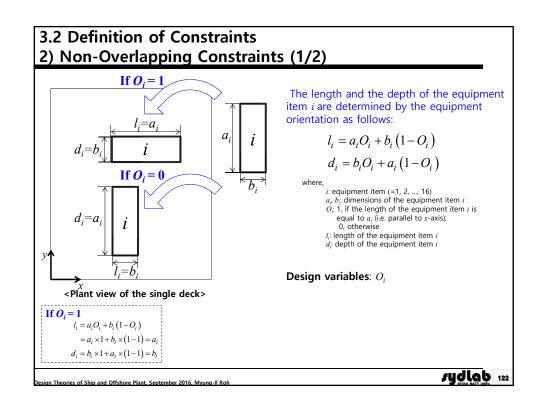


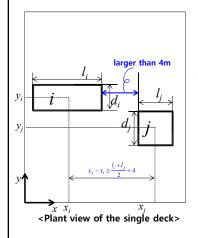












3.2 Definition of Constraints

2) Non-Overlapping Constraints (2/3)

In order to avoid situations where two equipment items i and j occupy the same physical location, appropriate constraints should be included in the model that prohibit overlapping of their equipment footprint projections, either in x or y direction.

Suppose that minimum distance between equipment = 4 m

$$|x_i - x_j| + M(1 - Z_{i,j} + E_{ij}) \ge \frac{l_i + l_j}{2} + 4$$
 ($E_{ij} = 0, Z_{i,j} = 1 \Rightarrow \text{active}$)

$$|y_i - y_j| + M(2 - Z_{i,j} - E_{ij}) \ge \frac{d_i + d_j}{2} + 4$$
 ($E_{ij} = 1, Z_{i,j} = 1 \Rightarrow \text{active}$)

where i: equipment item(=1, 2, ..., 15) j: equipment item (=i+1, ..., 16) Z_{ij} : 1, if the equipment items i and j are allocated to the same deck; 0, otherwise

$$Z_{i,j} = \sum_{k=1}^{N} V_{i,k} \cdot V_{j,k}$$

 $EI_{i,p}$, $E2_{i,p}$; binary parameters used for the non-overlapping constraint M: big constant to satisfy the any inequality constraint when the total value in the bracket is positive

/ydlab 123

3.2 Definition of Constraints

2) Non-Overlapping Constraints (3/3)

$$|x_i - x_j| + M(1 - Z_{i,j} + E_{ij}) \ge \frac{l_i + l_j}{2} + 4$$
 $(E_{ij} = 0, Z_{i,j} = 1 \implies \text{active})$
 $|y_i - y_j| + M(2 - Z_{i,j} - E_{ij}) \ge \frac{d_i + d_j}{2} + 4$ $(E_{ij} = 1, Z_{i,j} = 1 \implies \text{active})$

where Z_{ij} : 1, if the equipment items i and j are allocated to the same deck; 0, otherwise $Z_{i,j} = \sum V_{i,k} \cdot V_{j,k}$

 $\mathop{\it E1}_{i,j^*}\mathop{\it E2}_{i,j^!} \text{binary parameters used for the non-}$ overlapping constraint

If two equipment are on different decks

C deck (16 m)

$$\begin{split} Z_{i,j} &= \sum_{k=1} V_{i,k} \cdot V_{j,k} \\ &= V_{i,1} \cdot V_{j,1} + V_{i,2} \cdot V_{j,2} + V_{i,1} \cdot V_{j,3} \end{split}$$
 $= 0 \times 0 + 0 \times 1 + 1 \times 0 = 0$

If two equipment are on same decks C deck (16 m)

$$\begin{split} Z_{i,j} &= \sum_{k=1} V_{i,k} \cdot V_{j,k} \\ &= V_{i,1} \cdot V_{j,1} + V_{i,2} \cdot V_{j,2} + V_{i,1} \cdot V_{j,3} \\ &= V_{i,1} \cdot V_{j,1} + V_{i,2} \cdot V_{j,2} + V_{i,1} \cdot V_{j,3} \end{split}$$
 $= 0 \times 0 + 1 \times 1 + 0 \times 0 = 1$

B deck (8 m)

Two constraints above are calculated as below because Z is 0.

B deck (8 m) $\left|x_{i}-x_{j}\right|+M\left(E_{ij}\right)\geq\frac{l_{i}+l_{j}}{2}+4$

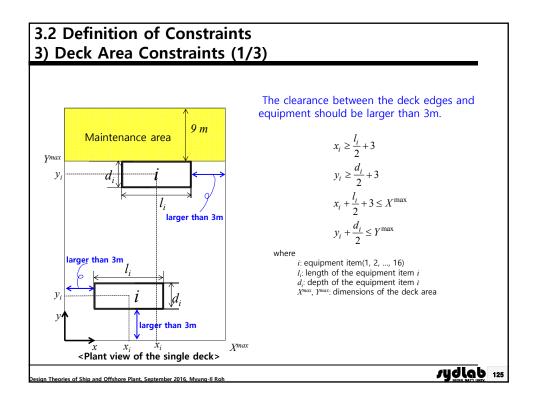
Two constraints above are calculated as below because Z is 1.

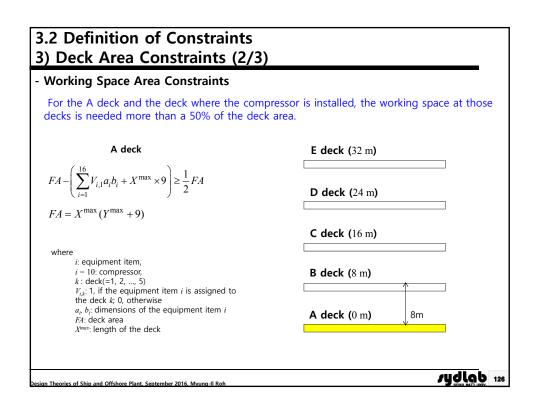
A deck (0 m)

 $\begin{aligned} &\left|x_{i}-x_{j}\right|+M\left(1+E_{ij}\right)\geq\frac{l_{i}+l_{j}}{2}+4\\ &\left|y_{i}-y_{j}\right|+M\left(2-E_{ij}\right)\geq\frac{d_{i}+d_{j}}{2}+4 \end{aligned}$

A deck (0 m) $|x_i - x_j| \ge \frac{l_i + l_j}{2} + 4, \quad |y_i - y_j| + M(1) \ge \frac{d_i + d_j}{2} + 4$ if $E_{ij} = 0$ then Plan view Always satisfied regardless of the y position of the equipment.

Two equations above are always satisfied regardless of values of E and positions of the equipment. That is, we don't need to


consider equipment overlapping.


| j | if $E_{ij} = 1$ then

Thus, equipment overlapping in the x direction should be considered. $|x_i - x_j| + M(1) \ge \frac{l_i + l_j}{2} + 4, \quad |y_i - y_j| \ge \frac{l_i + l_j}{2} + 4$ Always satisfied regardless of

Plan view j i

the x position of the equipment Thus, equipment overlapping in the y direction should be considered.

3.2 Definition of Constraints

3) Deck Area Constraints (3/3)

- Emergency Area Constraints

For the safety of the uppermost deck, the emergency area for installing the safety facilities at the uppermost deck is needed more than 60% of the deck area.

Uppermost deck(E deck)

$$FA - \left(\sum_{i=1}^{16} V_{i,5} a_i b_i + X^{\max} \times 9\right) \ge 0.6 FA$$

$$FA = X^{\text{max}} (Y^{\text{max}} + 9)$$

i: equipment item, i = 10: compressor,

k: deck(=1, 2, ..., 5) $V_{i,k}$: 1, if the equipment item i is assigned to

the deck k: 0. otherwise a_i , b_i : dimensions of the equipment item I

FA: deck area X^{max} : length of the deck

E deck (32 m)

D deck (24 m)

C deck (16 m)

B deck (8 m)

A deck (0 m) 8m

sydlab 127

Theories of Ship and Offshore Plant, September 2016, Myung-II Rol

3. Mathematical Module for Multi-Deck Equipment Layout 3.3 Definition of Objective Functions (1/2)

The objective function (W) is the minimization of the plant layout cost (connectivity cost + construction cost) and distance between the heat exchanger and centerline.

$$W = \sum_{i} \sum_{j \neq i} \left[W_{1,ij} \cdot TD_{ij} \right] + W_2 \cdot FA + W_3 \cdot y_i$$

 TD_{ij} total rectilinear distance between the equipment items i and j, connected each other by pipe E4: deck area

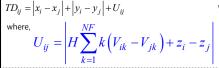
 y_i : distance between the heat exchanger and the centerline

$$FA = X^{\max} (Y^{\max} + 9)$$

Xmax, Ymax: dimensions of the deck area

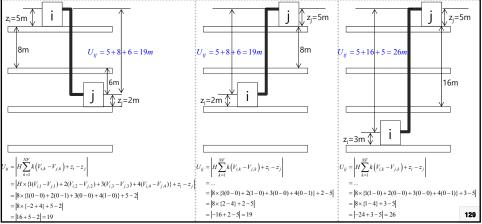
 $TD_{ij} = |x_i - x_j| + |y_i - y_j| + U_{ij}$

NF: number of decks (=5)
H: height between decks (=8m)


 $V_{i,k}$: 1, if the equipment item i is assigned to the deck k_i 0, otherwise $U_{i,i}$: relative distance in z coordinates between the equipment items iand j, if i is higher than j

ydlab 128

in Theories of Ship and Offshore Plant, September 2016, Myung-II Rol


3. Mathematical Module for Multi-Deck Equipment Layout 3.3 Definition of Objective Functions (2/2)

(1) Check where the equipment *i* and *j* are installed, (2) calculate the deck height, (3) and then calculate pipe length between them by considering the installation height of each equipment from bottom.

where, k: deck number NF: number of decks (=5)

H: height between decks (=8m) $V_{i,k}$: 1, if the equipment item i is assigned to the deck k; 0, otherwise relative distance in z coordinates between the equipment items i and , if *i* is higher than *j*

3. Mathematical Module for Multi-Deck Equipment Layout 3.4 Model for Optimal Equipment Layout of MR Module

- Design Variables [128]
 - 1) Coordinate of the equipment item (x, y)

 x_i, y_i : coordinates of geometrical center of the equipment item i [32 Real values]

2) Orientation of the equipment item

 O_i : 1, if the length of the equipment item i is parallel to x-axis; 0, otherwise [16 Binary values]

3) Deck number of the equipment item

 $V_{i,k}$: 1, if the equipment item i is assigned to the deck k; 0, otherwise [80 Binary values]

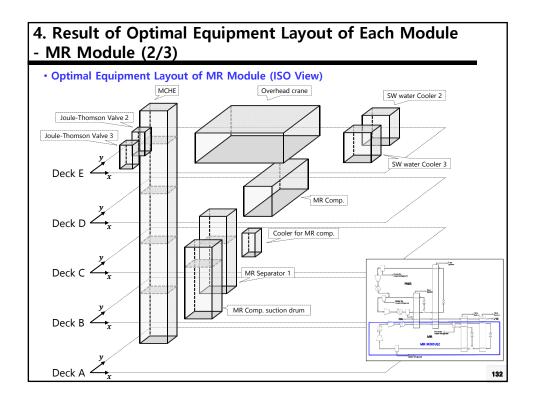
- Constraints [30+98=128]
 - 1) Equipment constraints for multi-deck

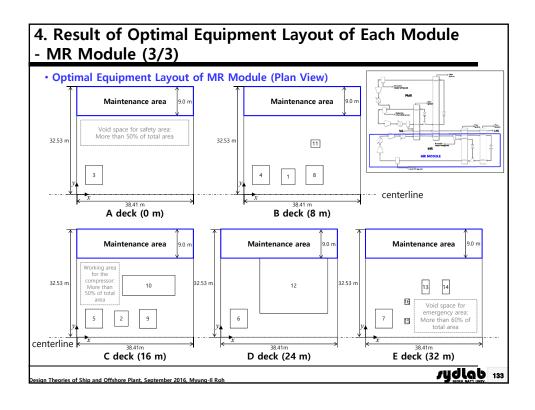
30 equality constraints

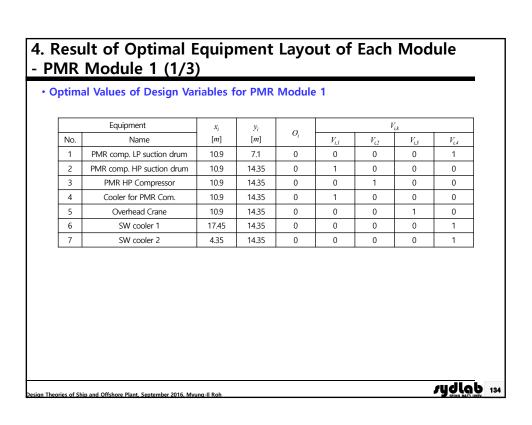
2) Non-overlapping constraints

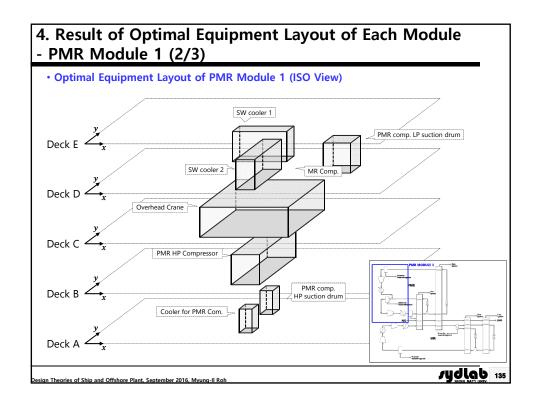
32 inequality constraints

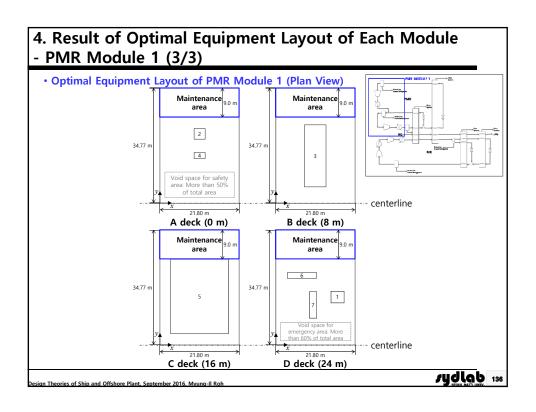
3) Deck area constraints

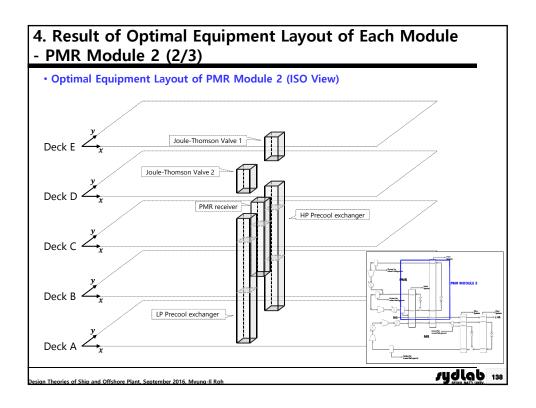

66 inequality constraints

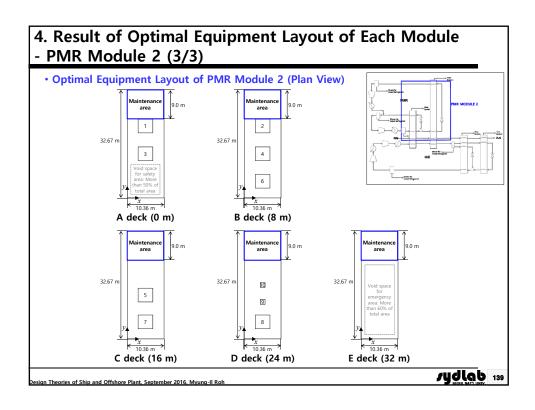

- Number of the design variables is larger than the number of the equality constraints.
- **▶** Indeterminate problem (Optimization problem)


Optimal Solution using Genetic Algorithm (GA)

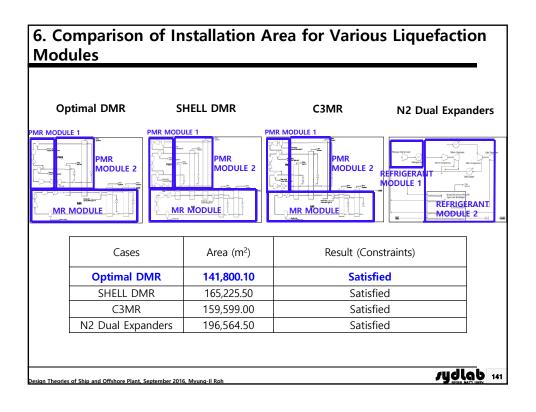

sydlab 130


Opt	imal Values of Design Variab	les for	MR M	odule					
•	Equipment	X_i	y_i				V_{ik}		
No.	Name	[m]	[m]	O_i	$V_{i,l}$	V_i ,	V_{i3}	V_{i4}	$V_{i,5}$
1	MR Separator 1 on lower deck	17	13	1	0	1	0	0	0
2	MR Separator 1 on upper deck	17	13	1	0	0	1	0	0
3	MCHE on A deck	16	4	1	1	0	0	0	0
4	MCHE on B deck	16	4	1	0	1	0	0	0
5	MCHE on C deck	16	4	1	0	0	1	0	0
6	MCHE on D deck	16	4	1	0	0	0	1	0
7	MCHE on E deck	16	4	1	0	0	0	0	1
8	MR Comp. suction drum on lower deck	4	20	1	0	1	0	0	0
9	MR Comp. suction drum on upper deck	4	20	1	0	0	1	0	0
10	MR Comp.	8	10	0	0	0	0	1	0
11	Cooler for MR comp.	8	10	0	0	0	1	0	0
12	Overhead crane	8	10	0	0	0	0	0	1
13	SW water Cooler 2	8	8	1	0	0	0	0	1
14	SW water Cooler 3	8	14	1	0	0	0	0	1
15	Joule-Thomson Valve 2	17	9	1	0	0	0	0	1
16	Joule-Thomson Valve 3	17	9	1	0	0	0	0	1


4. Result of Optimal Equipment Layout of Each Module - PMR Module 2 (1/3)


• Optimal Values of Design Variables for PMR Module 2

	Equipment	x_i	y_i				$V_{i,k}$		
No.	Name	[m]	[m]	O_i	$V_{i,I}$	$V_{i,2}$	$V_{i,3}$	$V_{i,4}$	$V_{i,5}$
1	PMR receiver on lower deck	7	8	1	0	1	0	0	0
2	PMR receiver on upper deck	7	8	1	0	0	1	0	0
3	LP Precool exchanger on B deck	15	17	1	1	0	0	0	0
4	LP Precool exchanger on C deck	15	17	1	0	1	0	0	0
5	LP Precool exchanger on D deck	15	17	1	0	0	1	0	0
6	HP Precool exchanger on B deck	15	8	1	1	0	0	0	0
7	HP Precool exchanger on C deck	15	8	1	0	1	0	0	0
8	HP Precool exchanger on D deck	15	8	1	0	0	1	0	0
9	Joule-Thomson Valve 1	11	11	1	0	0	0	1	0
10	Joule-Thomson Valve 2	11	17	1	0	0	0	1	0


Design Theories of Ship and Offshore Plant September 2016 Myung-II Ro

sydlab 137

action Modu	ıle		
lation Area for Eac	th Module		
Deck Area	Results	Area (m²)	Deck Area
	38.41 m * 32.53 m	1,249.48	A Deck
	38.41 m * 32.53 m	1,249.48	B Deck
MR Module	38.41 m * 32.53 m	1,249.48	C Deck
	38.41 m * 32.53 m	1,249.48	D Deck
	38.41 m * 32.53 m	1,249.48	E Deck
	21.80 m * 34.77 m	757.99	A Deck
PMR Module 1	21.80 m * 34.77 m	757.99	B Deck
PIVIR IVIOdule I	21.80 m * 34.77 m	757.99	C Deck
	21.80 m * 34.77 m	757.99	D Deck
	10.36 m * 32.67 m	338.46	A Deck
	10.36 m * 32.67 m	338.46	B Deck
PMR Module 2	10.36 m * 32.67 m	338.46	C Deck
	10.36 m * 32.67 m	338.46	D Deck
	10.36 m * 32.67 m	338.46	D Deck
To	otal Area	141,800.10	

