

Contents	
☑ Ch. 1 Introduction to Ship Design	
☑ Ch. 2 Introduction to Offshore Plant Design	
☑ Ch. 3 Hull Form Design	
Image: Ch. 4 General Arrangement Design	
☑ Ch. 5 Naval Architectural Calculation	
☑ Ch. 6 Structural Design	
☑ Ch. 7 Outfitting Design	
Desian Theories of Ship and Offshore Plant, Fall 2016, Myung-II Roh	JUSIE NATE UNITY 2

15

C _P Variation Method - "1-C _P " Variation Method (4/5)		
Formula for Estimating the LCB		
 LCB represents the balance of the displacement between fore body and aft body. (So, it determines the distribution of the displacement of a ship) Block coefficient of after body (C_{BA}) has an effect on the maneuverability of a ship (Recommending that C_{BA} is less than 0.76.) Hull form of the fore body usually has effect on the wave resistance. Hull form of the after body usually has effect on the friction resistance and propulsion ability. 		
Ponderous (obese) ship: LCB to be located at fore body Slender ship: LCB to be located at midship or aft body		
• Formula for the LCB when C_{BA} is less than 0.76 $C_{PA} = C_P - 0.0215 \cdot LCB$	When the LCB is estimated, the correction factor obtained from basis ship can be applied.	
• When the C _B of the ship is 0.8-0.85 (Ponderous ship): LCB: 3.5~4.0% (forward)	$\frac{LCB_{\text{basis, actual}}}{LCB_{\text{basis, estimate}}} = C_{corr.}$ $LCB_{\text{design}} = C_{corr.} \cdot LCB_{\text{design, estimate}}$	
• Lap/Keller formula $LCB[\%L] = 13.33C_B - 9.0$	LCB _{ablancentinani} : LCB of the basis ship to be estimated by the formula LCB _{bashactinin} : Actual LCB of the basis ship C _{sor} : Correction factor LCB _{despectime} : LCB of the design ship to be estimated by the formula LCB _{despect} : LCB _{outpectime} multiplied by correction factor	
Dariem Theories of Shin and Offshore Diout Enil 2016 Muure II Bah	ydlab 54	

Hydrostatic Values \blacksquare Draft_{Mld}, Draft_{Scant}: Draft from base line, moulded / scantling (m) \square Volume_{Mld}(∇), Volume_{Ext}: Displacement volume, moulded / extreme (m³) \square Displacement_{Mld}(Δ), Displacement_{Ext}: Displacement, moulded / extreme (ton) ☑ LCB: Longitudinal center of buoyancy from midship (Sign: - Aft / + Forward) ☑ LCF: Longitudinal center of floatation from midship (Sign: - Aft / + Forward) ☑ VCB: <u>Vertical center of buoyancy above base line (m)</u> ☑ TCB: <u>Transverse center of buoyancy from center line (m)</u> \square KM_T: Transverse metacenter height above base line (m) **KM**_L: Longitudinal metacenter height above base line (m) ☑ MTC: <u>Moment to change trim one centimeter</u> (ton-m) ☑ TPC: Increase in Displacement_{Mld} (ton) per one centimeter immersion ☑ WSA: Wetted surface area (m²) \square C_B: <u>B</u>lock coefficient \square C_{WP}: <u>W</u>ater <u>p</u>lane area coefficient \square C_M: <u>M</u>idship section area coefficient \square C_P: Prismatic coefficient ☑ Trim: Trim(= after draft – forward draft) (m) sydlab 76 In Theories of Ship and Offshore Plant, Fall 2016, Myung-Il Roh

-														
DRAFT (M)	DISP MLD(M ³)	DISP EXT(Ton)	VCB (M)	LCB (M)	LCF (M)	<i>KM</i> (M)	<i>KM</i> _{<i>L</i>} (M)	<i>MTC</i> (T-M)	TPC (Ton)	WSA (M ²)	C_B	C_{W}	C_P	C_M
4,000	22054.0	22720.3	2,171	-2.732	-1.546	31.537	926,651	795.5	68.5	7474.0	0.5248	0.6332	0.5769	0.9097
4.050	22389.1	23064.3	2.199	-2.714	-1.535	31.314	916,847	798.9	68.7	7507.8	0.5261	0.6349	0.5777	0.9107
4.100	22726,2	23410.3	2,226	-2.697	-1.523	31.098	907,266	802.4	68.9	7541.5	0.5275	0.6367	0.5786	0.9118
4.150	23053.3	23756.4	2.253	-2,680	-1.511	30.889	897.964	805.9	69.1	7575.3	0.5288	0.6384	0.5794	0.9128
4,200	23400.4	24102,4	2,281	-2.663	-1.500	30,686	888.93	809.3	69.3	7609.1	0.5302	0.6402	0.5802	0.9138
4.250	23737.5	24448.5	2.308	-2,646	-1.488	30.490	880,152	812.8	69.5	7642.9	0.5314	0.6420	0.5810	0.9147
4.300	24077.3	24797.2	2.336	-2.630	-1.476	30.300	871.537	816.3	69.7	7676.7	0.5327	0.6437	0.5818	0.9157
4.350	24419.0	25148.0	2.363	-2.614	-1.465	30.115	863,102	819.8	69.9	7710.5	0.5341	0.6454	0.5826	0.9166
4,400	24760.7	25498.8	2.391	-2.598	-1.453	29.936	854.9	823.3	70,1	7744.3	0.5354	0.6472	0.5835	0.9176
4.450	25102.4	25849.6	2,418	-2.582	-1.441	29.762	846.921	826.7	70.3	7778,1	0.5366	0.6489	0.5843	0.9185
7.500	47233.9	48564.4	4.087	-2.084	-2,217	21.918	560,803	1023.9	78.2	9736.7	0.5979	0.7224	0.6283	0.9517
7.550	47615.8	48956.4	4,115	-2.086	-2.257	21,852	558,143	1027.2	78.3	9768.7	0.5988	0.7235	0.6290	0.9520
7,600	47999.0	49349.6	4.142	-2.088	-2.302	21,785	555.428	1030.3	78.4	9800.7	0.5996	0.7246	0.6296	0.9523
7.650	48382.1	49742.8	4,170	-2.090	-2.348	21,722	552.756	1033.4	78.6	9832.7	0.6004	0.7256	0.6303	0.9527
7,700	48765.2	50136.0	4.197	-2.092	-2.393	21.659	550,126	1036.6	78.7	9864.6	0.6013	0.7267	0.6309	0.9530
7.750	49148,4	50529.3	4,224	-2.094	-2.438	21,598	547.537	1039.7	78.8	9896.6	0.6021	0.7277	0.6316	0.9533
7,800	49533.1	50924.1	4.252	-2.097	-2.483	21.538	544.992	1042.9	78.9	9928.6	0.6029	0.7288	0.6322	0.9530
7.850	49919.1	51320.2	4.279	-2.100	-2.527	21,481	542,488	1046.1	79.0	9960.7	0.6037	0.7298	0.6329	0.9539
7.900	50305.0	51716.3	4.307	-2.104	-2.571	21,424	540.023	1049.2	79.1	9992.8	0.6045	0.7309	0.6335	0.9542
7.950	50690.9	52112.3	4.334	-2.107	-2.615	21.369	537.595	1052.4	79.2	10024,8	0.6053	0.7319	0.6342	0.9544

,50	UTEC		Ildi	ier	Suit) (2	(2)							
DRAFT (M)	DISP MLD(M ³)	DISP EXT(Ton)	VCB (M)	LCB (M)	LCF (M)	<i>KM</i> (M)	<i>KM</i> _{<i>L</i>} (M)	<i>MTC</i> (T-M)	TPC (Ton)	WSA (M ²)	C_{B}	Cw	C_p	C_M
11.750	81677.2	83912.8	6.431	-3.298	-8,607	18.919	430.346	1347.2	88,1	12595.4	0.6593	0.8134	0.6803	0.969
11,800	82107.4	84354.3	6.459	-3.326	-8,710	18,912	430.028	1353.1	88,2	12631.3	0.6600	0.8148	0.6809	0.969
11,850	82539.1	84797.3	6,487	-3.355	-8,816	18,905	429,787	1359.4	88,4	12667,6	0,6606	0.8162	0.6815	0.969
11.900	82970.8	85240.4	6.515	-3.384	-8.923	18,900	429.549	1365.5	88.5	12703.9	0.6613	0.8176	0.6820	0.969
11.950	83402.4	85683.4	6.543	-3.413	-9.030	18,894	429.313	1371.9	88,7	12740,2	0,6620	0.8190	0.6826	0.969
12,000	83634.1	86126,4	6.571	-3.442	-9.136	18,889	429,081	1378,1	88,8	12776,5	0,6626	0,8204	0.6832	0.9698
12.050	84267.9	86571.6	6.599	-3.471	-9.233	18,879	428,885	1384.5	89.0	12812.5	0.6633	0.8218	0.6838	0.9700
12,100	84703.3	87018.4	6.627	-3.501	-9.323	18,866	428,717	1391.0	89.1	12848.3	0.6639	0.8231	0.6844	0.9701
12,150	85138.6	87465.1	6.655	-3.531	-9.413	18,853	428,551	1397.5	89.3	12884,0	0,6646	0.8245	0.6850	0.9702
12,200	85573.9	87911.9	6.683	-3.561	-9.503	18,840	428.387	1404.0	89.4	12919.8	0.6652	0.8258	0.6856	0.9703
12,250	86009.2	88358.7	6.711	-3.591	-9.593	18,826	428,224	1410.5	89.5	12955.6	0.6659	0.8271	0.6862	0.9705
14,250	104062,4	106885.2	7.843	-4.937	-12,788	18,585	423.63	1683.1	95.4	14391.6	0.6924	0,8808	0.7105	0.9740
14,300	104528.0	107363.1	7.872	-4.973	-12.837	18,604	423.328	1689.2	95.5	14426,2	0.6931	0.8819	0.7111	0.9747
14.350	104995.0	107842.2	7.901	-5.008	-12,880	18,683	423.056	1695.6	95.6	14461.0	0.6938	0.8831	0.7117	0.9748
14,400	105451.9	108321.3	7.929	-5.042	-12.940	18,683	422,786	1701.9	95.7	14495.8	0.6944	0.8843	0.7123	0.9749
14.450	105928,8	108800.4	7.958	-5.077	-12.992	18,682	422.519	1708.2	95.9	14530.6	0.6951	0.8854	0.7129	0.9750
14.500	106395.7	109279.6	7.986	-5.112	-13.043	18,682	422.255	1714.5	96.0	14565.4	0.6957	0,8866	0.7135	0.975
14.550	106864.4	109760.5	8.015	-5.147	-13.090	18,682	422.01	1720.9	96.1	14600.3	0.6964	0.8878	0.7141	0.9751
14,600	107334.5	110242.8	8.043	-5,182	-13.133	18,681	421.779	1727.4	96,2	14635.1	0.6971	0.8889	0.7148	0.9752
14,650	107804.5	110725,1	8,072	-5.217	-13.176	18,681	421.55	1733.9	96,4	14970.0	0.6977	0.8901	0.7154	0.975
14,700	108274.5	111207.4	8,101	-5.251	-13.219	18,681	421.323	1740.3	96.5	14704.9	0.6984	0.8912	0.7160	0.975

Measure of Maneuverability	Criteria and Standard	Maneuver	IMO Standard	ABS Guide Requirement
	Required f	or Optional Class Not	tation	
Turning Ability	Tactical Diameter	Turning Circle	TD < 5L	Rated $Rtd \ge 1$
	Advance		Ad < 4.5L	Not rated Ad < 4.5L
Course Changing and Yaw Checking Ability	First Overshoot Angle	10/10 Zig-zag test	$\alpha 10_1 \leq f_{101}(L/V)$	Rated $Rt\alpha_{10} \ge 1$
	Second Overshoot Angle		$\alpha 10_2 < f_{102}(L/V)$	Not rated $\alpha 10_2 < f_{102}(L/V)$
	First Overshoot Angle	20/20 Zig-zag test	$\alpha 20_1 \le 25$	Rated $Rt\alpha_{20} \ge 1$
nitial Turning Ability	Distance traveled before 10-degrees course change	10/10 Zig-zag test	$\ell_{10} \le 2.5L$	Rated $Rti \ge 1$
Stopping Ability	Track Reach	Crash stop	$TR < 15L^{(1)}$	Not rated $TR < 15L^{(1)}$
	Head Reach		None	Rated $Rts \ge 1$
	Recommended, Not	Required for Optional	Class Notation	
Straight-line Stability and Course Keeping	Residual turning rate	Pull-out test	$r \neq 0$	Not rated $r \neq 0$
Ability	Width of instability (2) loop	Simplified spiral	$\alpha_U \leq f_u(L/V)$	Not rated $\alpha_{ij} \leq f(L/V)$

Full Scale Maneuvering Tests	
☑ Standard Tests	
Turning circle test	
■ 10/10 zig-zag test	
■ 20/20 zig-zag test	
■ Crash stop test	
☑ Non-standard Tests	
■ Pull out test	
Simplified spiral test	
Design Theories of Chip and Offshere Dant Fall 2016 Mune II Bah	/ydla b 112

Principal Particul	ars		
Ite	m	Value	Remark
	LOA	332.0 m	
_	LBP	320.0 m	
Principal Dimensions	В	60.0 m	
Dimensions	D	30.5 m	
	Td / Ts	21.0 / 22.5 m	
Cargo Ca	apacity	320,000 MT	at Ts
Spe	ed	16 knots	at Td
	Туре	SULZER 7RTA84T-D	
Main Engine	MCR	39,060 PS x 76.0 rpm	
-	NCR	35,150 PS x 73.4 rpm	
Propeller I	Diameter	10.2 m	

Principal Particula	ars		
Iten	n	Value	Remark
	LOA	282.6 m	
	LBP	271.6 m	
Principal Dimensions	В	43.4 m	
Dimensions	D	26.5 m	
	Td / Ts	11.3 / 12.0 m	
Cargo Ca	pacity	145,216 CBM	at Td
Spee	ed	20.2 knots	at Td
	Туре	Mitsubishi MS 40-2	
Main Engine	MCR	38,709 PS x 83.0 rpm	
	NCR	NCR 34,838 PS x 80.0 rpm	
Propeller D	liameter	8.28 m	

	_		
Principal Particula	rs		
Item	ı	Value	Remark
	LOA	292.85 m	
	LBP	282.7 m	
Principal Dimensions	В	46.7 m	
Dimensions	D	25.8 m	
	Td / Ts	17.9 / 17.9 m	
Cargo Car	pacity	182,000 MT	at Td
Spee	d	14.5 knots	at Td
	Туре	B&W 7S60MC-C	
Main Engine	MCR	17,940 BHP x 93.0 rpm	
	NCR	15,249 BHP x 84.5 rpm	
Propeller D	iameter	7.91 m	

Principal Particul	ars		
Ite	m	Value	Remark
	LOA	356.18 m	
	LBP	341.18 m	
Principal Dimensions	В	45.3 m	
Dimensions	D	27.0 m	
Ī	Td / Ts	14.0 / 14.0 m	
Cargo Ca	apacity	9,012 TEU	at Td
Spe	ed	25.0 knots	at Td
	Туре	HSD B&W 12K98MC-C	
Main Engine	MCR	91,491 PS x 94.0 rpm	
-	NCR	NCR 77,767 PS x 89.0 rpm	
Propeller I	Diameter	9.70 m	

