

Data Structure

Lecture#6: Algorithm Analysis 2 (Chapter 3)

U Kang Seoul National University

U Kang (2016)

1

In This Lecture

- Learn the examples of asymptotic analysis
- Learn the concepts of space complexity, and time/space tradeoff
- Learn how to analyze algorithms with multiple parameters

Asymptotic Analysis: Big-oh

- Definition: For $\mathbf{T}(n)$ a non-negatively valued function, $\mathbf{T}(n)$ is in the set O(f(n)) if there exist two positive constants *c* and n_0 such that $\mathbf{T}(n) \le cf(n)$ for all $n > n_0$.
- Use: The algorithm is in O(n²) in [best, average, worst] case.
- Meaning: For all data sets big enough (i.e., n>n₀), the algorithm always executes in less than cf(n) steps in [best, average, worst] case.

Big-Omega

- Definition: For $\mathbf{T}(n)$ a non-negatively valued function, $\mathbf{T}(n)$ is in the set $\Omega(g(n))$ if there exist two positive constants *c* and n_0 such that $\mathbf{T}(n) \ge cg(n)$ for all $n \ge n_0$.
- Meaning: For all data sets big enough (i.e., n > n₀), the algorithm always requires more than cg(n) steps.

• Lower bound.

Theta Notation

- When big-Oh and Ω coincide, we indicate this by using Θ (big-Theta) notation.
- Definition: An algorithm is said to be in Θ(h(n)) if it is in O(h(n)) and it is in Ω(h(n)).

Simplifying Rules

- 1. If f(n) is in O(g(n)) and g(n) is in O(h(n)), then f(n) is in O(h(n)).
- 2. If f(n) is in O(kg(n)) for some constant k > 0, then f(n) is in O(g(n)).
- 3. If $f_1(n)$ is in $O(g_1(n))$ and $f_2(n)$ is in $O(g_2(n))$, then $(f_1 + f_2)(n)$ is in $O(\max(g_1(n), g_2(n)))$.
 - What about Ω ? What about Θ ?
- 4. If $f_1(n)$ is in $O(g_1(n))$ and $f_2(n)$ is in $O(g_2(n))$ then $f_1(n)f_2(n)$ is in $O(g_1(n)g_2(n))$.

Time Complexity Examples (1)

Example 3.9: a = b;

This assignment takes constant time, so it is $\Theta(1)$.

```
Example 3.10:
sum = 0;
for (i=1; i<=n; i++)
sum += n;
```


Time Complexity Examples (2)

```
Example 3.11:
sum = 0;
for (j=1; j<=n; j++)
  for (i=1; i<=j; i++)
     sum++;
for (k=0; k<n; k++)
     A[k] = k;
```


Time Complexity Examples (3)

Example 3.12: sum1 = 0; for (i=1; i<=n; i++) for (j=1; j<=n; j++) sum1++; sum2 = 0; for (i=1; i<=n; i++) for (j=1; j<=i; j++) sum2++;

Time Complexity Examples (4)

Example 3.13: sum1 = 0; for (k=1; k<=n; k*=2) for (j=1; j<=n; j++) sum1++; sum2 = 0; for (k=1; k<=n; k*=2) for (j=1; j<=k; j++)</pre>

sum2++;

Binary Search

Looking for '45'

• How many elements are examined in worst case?

Binary Search

/** @return The position of an element in sorted array A with value k. If k is not in A,return A.length. */ static int binary(int[] A, int k) { int l = -1; // Set l and r int r = A.length; // beyond array bounds while (l+1 != r) { // Stop when l, r meet int i = (1+r)/2; // Check middle if (k < A[i]) r = i; // In left half if (k == A[i]) return i; // Found it if (k > A[i]) l = i; // In right half } return A.length; // Search value not in A

Other Control Statements

- while loop: analyze like a for loop.
- if statement: take greater complexity of then/else clauses.
- **switch** statement: take complexity of most expensive case.
- Subroutine call: complexity of the subroutine.

Discussion

- Is it always ok to ignore the constants as in the asymptotic analysis?
 - Alg1: T(n) = 1000n
 - Alg2: $T(n) = 2n^2$

Problems

- <u>Problem</u>: a task to be performed.
 - □ Best thought of as inputs and matching outputs.
 - Problem definition should include constraints on the resources that may be consumed by any acceptable solution.

Problems (cont)

- Problems ⇔ mathematical functions
 - A <u>function</u> is a matching between inputs (the <u>domain</u>) and outputs (the <u>range</u>).
 - An <u>input</u> to a function may be single number, or a collection of information.
 - The values making up an input are called the <u>parameters</u> of the function.
 - A particular input must always result in the same output every time the function is computed.
 - Exception: randomized algorithm

Algorithms and Programs

- <u>Algorithm</u>: a method or a process followed to solve a problem.
 - □ A recipe.
- An algorithm takes the input to a problem (function) and transforms it to the output.
 A mapping of input to output.
- A problem can have many algorithms.

Analyzing Problems: Example

- May or may not be able to obtain matching upper and lower bounds.
 - Example of imperfect knowledge: Sorting
 - 1. Cost of I/O: $\Omega(n)$.
 - 2. Bubble or insertion sort: $O(n^2)$.
 - 3. A better sort (Quicksort, Mergesort, Heapsort, etc.): $O(n \log n)$.
 - 4. We prove later that sorting is in $\Omega(n \log n)$.

Space/Time Tradeoff Principle

- One can often reduce time if one is willing to sacrifice space, or vice versa.
 - □ Factorial: how can we make fact(n) super fast?
 - Swapping a and b: how can we do this without additional space?

 Disk-based Space/Time Tradeoff Principle: The smaller you make the disk storage requirements, the faster your program will run.

Multiple Parameters

- Compute the rank ordering for all C pixel values in a picture of P pixels.
- for (i=0; i<C; i++) // Initialize count
 count[i] = 0;
 for (i=0; i<P; i++) // Look at all pixels</pre>
- count[value(i)]++; // Look at all pixels
 count[value(i)]++; // Increment count
 sort(count); // Sort pixel counts
- Running time? • $\Theta(P + C \log C)$

Space Complexity

- Space complexity can also be analyzed with asymptotic complexity analysis.
 - Amount of memory space to keep while running an algorithm
- for (i=0; i<C; i++) // Initialize count
 count[i] = 0;
 for (i=0; i<P; i++) // Look at all pixels
 count[value(i)]++; // Increment count
 sort(count); // Sort pixel counts</pre>

Space complexity of the above code?
 (input: value[0..P])

What you need to know

- Asymptotic analysis
 - Analyze the time and space complexity of an algorithm
- Time/space tradeoff
 - Understand the main idea
 - Convert an operation to trade time for space (or vice versa)
- How to analyze algorithms with multiple parameters

Questions?