
U Kang (2016) 1

Data Structure

Lecture#6: Algorithm Analysis 2
(Chapter 3)

U Kang
Seoul National University

U Kang (2016) 2

In This Lecture

 Learn the examples of asymptotic analysis

 Learn the concepts of space complexity, and
time/space tradeoff

 Learn how to analyze algorithms with multiple
parameters

U Kang (2016) 3

Asymptotic Analysis: Big-oh

 Definition: For T(n) a non-negatively valued
function, T(n) is in the set O(f(n)) if there exist
two positive constants c and n0 such that T(n) <=
cf(n) for all n > n0.

 Use: The algorithm is in O(n2) in [best, average,
worst] case.

 Meaning: For all data sets big enough (i.e., n>n0), the
algorithm always executes in less than cf(n) steps in
[best, average, worst] case.

U Kang (2016) 4

Big-Omega

 Definition: For T(n) a non-negatively valued
function, T(n) is in the set Ω(g(n)) if there exist
two positive constants c and n0 such that T(n) >=
cg(n) for all n > n0.

 Meaning: For all data sets big enough (i.e., n >
n0), the algorithm always requires more than cg(n)
steps.

 Lower bound.

U Kang (2016) 5

Theta Notation

 When big-Oh and Ω coincide, we indicate this by
using Θ (big-Theta) notation.

 Definition: An algorithm is said to be in Θ(h(n))
if it is in O(h(n)) and it is in Ω(h(n)).

U Kang (2016) 6

Simplifying Rules

1. If f(n) is in O(g(n)) and g(n) is in O(h(n)), then
f(n) is in O(h(n)).

2. If f(n) is in O(kg(n)) for some constant k > 0,
then f(n) is in O(g(n)).

3. If f1(n) is in O(g1(n)) and f2(n) is in O(g2(n)),
then (f1 + f2)(n) is in O(max(g1(n), g2(n))).

 What about Ω ? What about Θ ?

4. If f1(n) is in O(g1(n)) and f2(n) is in O(g2(n))
then f1(n)f2(n) is in O(g1(n)g2(n)).

U Kang (2016) 7

Time Complexity Examples (1)

 Example 3.9: a = b;

This assignment takes constant time, so it is
Θ(1).

 Example 3.10:
sum = 0;
for (i=1; i<=n; i++)

sum += n;

U Kang (2016) 8

Time Complexity Examples (2)

 Example 3.11:
sum = 0;
for (j=1; j<=n; j++)

for (i=1; i<=j; i++)
sum++;

for (k=0; k<n; k++)
A[k] = k;

U Kang (2016) 9

Time Complexity Examples (3)

 Example 3.12:
sum1 = 0;
for (i=1; i<=n; i++)

for (j=1; j<=n; j++)
sum1++;

sum2 = 0;
for (i=1; i<=n; i++)

for (j=1; j<=i; j++)
sum2++;

U Kang (2016) 10

Time Complexity Examples (4)

 Example 3.13:
sum1 = 0;
for (k=1; k<=n; k*=2)

for (j=1; j<=n; j++)
sum1++;

sum2 = 0;
for (k=1; k<=n; k*=2)

for (j=1; j<=k; j++)
sum2++;

U Kang (2016) 11

Binary Search

 How many elements are examined in worst case?

Looking for ‘45’

U Kang (2016) 12

Binary Search
/** @return The position of an element in

sorted array A with value k. If k is not
in A,return A.length. */

static int binary(int[] A, int k) {
int l = -1; // Set l and r
int r = A.length; // beyond array bounds
while (l+1 != r) { // Stop when l, r meet

int i = (l+r)/2; // Check middle
if (k < A[i]) r = i; // In left half
if (k == A[i]) return i; // Found it
if (k > A[i]) l = i; // In right half

}
return A.length; // Search value not in A

}

U Kang (2016) 13

Other Control Statements

 while loop: analyze like a for loop.

 if statement: take greater complexity of then/else
clauses.

 switch statement: take complexity of most
expensive case.

 Subroutine call: complexity of the subroutine.

U Kang (2016) 14

Discussion

 Is it always ok to ignore the constants as in the
asymptotic analysis?
 Alg1: T(n) = 1000n
 Alg2: T(n) = 2n2

U Kang (2016) 15

Problems

 Problem: a task to be performed.
 Best thought of as inputs and matching outputs.
 Problem definition should include constraints on the

resources that may be consumed by any acceptable
solution.

U Kang (2016) 16

Problems (cont)

 Problems ⇔ mathematical functions
 A function is a matching between inputs (the domain)

and outputs (the range).
 An input to a function may be single number, or a

collection of information.
 The values making up an input are called the

parameters of the function.
 A particular input must always result in the same

output every time the function is computed.
 Exception: randomized algorithm

U Kang (2016) 17

Algorithms and Programs

 Algorithm: a method or a process followed to
solve a problem.
 A recipe.

 An algorithm takes the input to a problem
(function) and transforms it to the output.
 A mapping of input to output.

 A problem can have many algorithms.

U Kang (2016) 18

Analyzing Problems: Example

 May or may not be able to obtain matching upper and
lower bounds.

 Example of imperfect knowledge: Sorting

1. Cost of I/O: Ω(n).
2. Bubble or insertion sort: O(n2).
3. A better sort (Quicksort, Mergesort, Heapsort, etc.): O(n log n).
4. We prove later that sorting is in Ω(n log n).

U Kang (2016) 19

Space/Time Tradeoff Principle

 One can often reduce time if one is willing to
sacrifice space, or vice versa.
 Factorial: how can we make fact(n) super fast?

 Swapping a and b: how can we do this without
additional space?

 Disk-based Space/Time Tradeoff Principle: The
smaller you make the disk storage requirements,
the faster your program will run.

U Kang (2016) 20

Multiple Parameters

 Compute the rank ordering for all C pixel values
in a picture of P pixels.

for (i=0; i<C; i++) // Initialize count
count[i] = 0;

for (i=0; i<P; i++) // Look at all pixels
count[value(i)]++; // Increment count

sort(count); // Sort pixel counts

 Running time?
 Θ(P + C log C)

U Kang (2016) 21

Space Complexity

 Space complexity can also be analyzed with
asymptotic complexity analysis.
 Amount of memory space to keep while running an

algorithm

for (i=0; i<C; i++) // Initialize count
count[i] = 0;

for (i=0; i<P; i++) // Look at all pixels
count[value(i)]++; // Increment count

sort(count); // Sort pixel counts

 Space complexity of the above code?
(input: value[0..P])

U Kang (2016) 22

What you need to know

 Asymptotic analysis
 Analyze the time and space complexity of an algorithm

 Time/space tradeoff
 Understand the main idea
 Convert an operation to trade time for space (or vice

versa)

 How to analyze algorithms with multiple
parameters

U Kang (2016) 23

Questions?

	슬라이드 번호 1
	In This Lecture
	Asymptotic Analysis: Big-oh
	Big-Omega
	Theta Notation
	Simplifying Rules
	Time Complexity Examples (1)
	Time Complexity Examples (2)
	Time Complexity Examples (3)
	Time Complexity Examples (4)
	Binary Search
	Binary Search
	Other Control Statements
	Discussion
	Problems
	Problems (cont)
	Algorithms and Programs
	Analyzing Problems: Example
	Space/Time Tradeoff Principle
	Multiple Parameters
	Space Complexity
	What you need to know
	슬라이드 번호 23

