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In This Lecture

 Learn the examples of asymptotic analysis

 Learn the concepts of space complexity, and 
time/space tradeoff

 Learn how to analyze algorithms with multiple 
parameters
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Asymptotic Analysis: Big-oh

 Definition: For T(n) a non-negatively valued 
function, T(n) is in the set O(f(n)) if there exist 
two positive constants c and n0 such that T(n) <= 
cf(n) for all n > n0.

 Use: The algorithm is in O(n2) in [best, average, 
worst] case.

 Meaning: For all data sets big enough (i.e., n>n0), the 
algorithm always executes in less than cf(n) steps in 
[best, average, worst] case.
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Big-Omega

 Definition: For T(n) a non-negatively valued 
function, T(n) is in the set Ω(g(n)) if there exist 
two positive constants c and n0 such that T(n) >= 
cg(n) for all n > n0.

 Meaning: For all data sets big enough (i.e.,  n > 
n0), the algorithm always requires more than cg(n) 
steps.

 Lower bound.
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Theta Notation

 When big-Oh and Ω coincide, we indicate this by 
using Θ (big-Theta) notation.

 Definition: An algorithm is said to be in Θ(h(n)) 
if it is in O(h(n)) and it is in Ω(h(n)).
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Simplifying Rules

1. If f(n) is in O(g(n)) and g(n) is in O(h(n)), then 
f(n) is in O(h(n)).

2. If f(n) is in O(kg(n)) for some constant k > 0, 
then f(n) is in O(g(n)).

3. If f1(n) is in O(g1(n)) and f2(n) is in O(g2(n)), 
then (f1 + f2)(n) is in O(max(g1(n), g2(n))).

 What about Ω ? What about Θ ?

4. If f1(n) is in O(g1(n)) and f2(n) is in O(g2(n)) 
then f1(n)f2(n) is in O(g1(n)g2(n)).
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Time Complexity Examples (1)

 Example 3.9: a = b;

This assignment takes constant time, so it is 
Θ(1).

 Example 3.10:
sum = 0;
for (i=1; i<=n; i++)

sum += n;
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Time Complexity Examples (2)

 Example 3.11:
sum = 0;
for (j=1; j<=n; j++)

for (i=1; i<=j; i++)
sum++;

for (k=0; k<n; k++)
A[k] = k;
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Time Complexity Examples (3)

 Example 3.12:
sum1 = 0;
for (i=1; i<=n; i++)

for (j=1; j<=n; j++)
sum1++;

sum2 = 0;
for (i=1; i<=n; i++)

for (j=1; j<=i; j++)
sum2++;
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Time Complexity Examples (4)

 Example 3.13:
sum1 = 0;
for (k=1; k<=n; k*=2)

for (j=1; j<=n; j++)
sum1++;

sum2 = 0;
for (k=1; k<=n; k*=2)

for (j=1; j<=k; j++)
sum2++;
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Binary Search

 How many elements are examined in worst case?

Looking for ‘45’
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Binary Search
/** @return The position of an element in        

sorted array A with value k.  If k is not 
in A,return A.length. */

static int binary(int[] A, int k) {
int l = -1;        // Set l and r
int r = A.length;  // beyond array bounds
while (l+1 != r) { // Stop when l, r meet

int i = (l+r)/2; // Check middle
if (k < A[i]) r = i;     // In left half
if (k == A[i]) return i; // Found it
if (k > A[i]) l = i;     // In right half

}
return A.length; // Search value not in A

}
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Other Control Statements

 while loop: analyze like a for loop.

 if statement: take greater complexity of then/else
clauses.

 switch statement: take complexity of most 
expensive case.

 Subroutine call: complexity of the subroutine.
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Discussion

 Is it always ok to ignore the constants as in the 
asymptotic analysis?
 Alg1:   T(n) =  1000n
 Alg2:   T(n) = 2n2
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Problems

 Problem: a task to be performed.
 Best thought of as inputs and matching outputs.
 Problem definition should include constraints on the 

resources that may be consumed by any acceptable 
solution.
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Problems (cont)

 Problems ⇔ mathematical functions
 A function is a matching between inputs (the domain) 

and outputs (the range).
 An input to a function may be single number, or a 

collection of information.
 The values making up an input are called the 

parameters of the function.
 A particular input must always result in the same 

output every time the function is computed.
 Exception: randomized algorithm
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Algorithms and Programs

 Algorithm: a method or a process followed to 
solve a problem.
 A recipe.

 An algorithm takes the input to a problem 
(function) and transforms it to the output.
 A mapping of input to output.

 A problem can have many algorithms.
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Analyzing Problems: Example

 May or may not be able to obtain matching upper and 
lower bounds.

 Example of imperfect knowledge: Sorting

1. Cost of I/O: Ω(n).
2. Bubble or insertion sort: O(n2).
3. A better sort (Quicksort, Mergesort, Heapsort, etc.): O(n log n).
4. We prove later that sorting is in Ω(n log n).
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Space/Time Tradeoff Principle

 One can often reduce time if one is willing to 
sacrifice space, or vice versa.
 Factorial: how can we make fact(n) super fast?

 Swapping a and b: how can we do this without 
additional space?

 Disk-based Space/Time Tradeoff Principle: The 
smaller you make the disk storage requirements, 
the faster your program will run.
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Multiple Parameters

 Compute the rank ordering for all C pixel values 
in a picture of P pixels.

for (i=0; i<C; i++)  // Initialize count
count[i] = 0;

for (i=0; i<P; i++)  // Look at all pixels
count[value(i)]++; // Increment count

sort(count);         // Sort pixel counts

 Running time?
 Θ(P + C log C)
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Space Complexity

 Space complexity can also be analyzed with 
asymptotic complexity analysis.
 Amount of memory space to keep while running an 

algorithm

for (i=0; i<C; i++)  // Initialize count
count[i] = 0;

for (i=0; i<P; i++)  // Look at all pixels
count[value(i)]++; // Increment count

sort(count);         // Sort pixel counts

 Space complexity of the above code? 
(input: value[0..P])
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What you need to know

 Asymptotic analysis
 Analyze the time and space complexity of an algorithm

 Time/space tradeoff
 Understand the main idea
 Convert an operation to trade time for space (or vice 

versa)

 How to analyze algorithms with multiple 
parameters
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Questions?
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