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In This Lecture

 The concept of binary tree, its terms, and its 
operations

 Full binary tree theorem

 Idea and implementation of traversals for tree
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Binary Trees

 A binary tree is made up of a finite set of nodes 
that is either empty or consists of a node called 
the root together with two binary trees, called the 
left and right subtrees, which are disjoint from 
each other and from the root.



U Kang (2016) 4

Binary Tree Example

 Notation: node, children, 
edge, parent, ancestor, 
descendant, path, depth, 
height, level, root node, 
leaf node, internal node, 
subtree.

Level (=Depth) 0

Level 1

Level 2

Level 3

height of this tree = 4

root node

leaf node

internal
node
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Full and Complete Binary Trees

 Full binary tree: Each node is either a leaf or internal 
node with exactly two non-empty children.

 Complete binary tree: If the height of the tree is d, 
then 1) all levels except possibly level d-1 are 
completely full, and 2) the bottom level has all nodes to 
the left side.

Full binary tree Complete binary tree



U Kang (2016) 6

Full Binary Tree Theorem (1)

 Theorem: The number of leaves in a non-empty full 
binary tree is one more than the number of internal 
nodes.

 Proof (by Mathematical Induction):

 Base case: A full binary tree with 1 internal node must have 
two leaf nodes.

 Induction Hypothesis: Assume any full binary tree T
containing n-1 internal nodes has n leaves.
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Full Binary Tree Theorem (2)

 Induction Step: given tree T with n internal nodes, 
pick internal node I with two leaf children.  Remove 
I’s children, call resulting tree T’.

 By induction hypothesis, T’ is a full binary tree with 
n leaves.

 Restore I’s two children.  The number of internal 
nodes has now gone up by 1 to reach n.  The number 
of leaves has also gone up by 1.
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Full Binary Tree Corollary

 Theorem: The number of null pointers in a non-
empty tree is one more than the number of nodes 
in the tree.

 Proof: Replace all null pointers with a pointer to 
an empty leaf node.  This is a full binary tree.

# of null pointers = 10
# of nodes = 9
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Binary Tree Node Class
/** ADT for binary tree nodes */
public interface BinNode<E> {
/** Return and set the element value */
public E element();
public E setElement(E v);

/** Return the left child */
public BinNode<E> left();

/** Return the right child */
public BinNode<E> right();

/** Return true if this is a leaf node */
public boolean isLeaf();

}
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Traversals (1)

 Any process for visiting the nodes in 
some order is called a traversal.

 Any traversal that lists every node in the 
tree exactly once is called an enumeration
of the tree’s nodes.
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Traversals (2)

 Preorder traversal: visit each node before visiting its 
children.

 Postorder traversal: visit each node after visiting its 
children.

 Inorder traversal: visit the left subtree, then the node, 
then the right subtree.

 Apply the rule recursively inside children

2 3

1

Preorder Traversal

1 2

3

Postorder Traversal

1 3

2

Inorder Traversal
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Preorder

 Preorder traversal: visit each node before visiting 
its children.
 E.g.) ?

2 3

1

Preorder Traversal
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Preorder

 Preorder traversal: visit each node before visiting 
its children.
 E.g.) ABDCEGFHI

2 3

1

Preorder Traversal
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Postorder

 Postorder traversal: visit each node after visiting 
its children.
 E.g.) ?

1 2

3

Postorder Traversal
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Postorder

 Postorder traversal: visit each node after visiting 
its children.
 E.g.) DBGEHIFCA

1 2

3

Postorder Traversal
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Inorder

 Inorder traversal: visit the left subtree, then the 
node, then the right subtree.
 E.g.) ?

1 3

2

Inorder Traversal
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Inorder

 Inorder traversal: Visit the left subtree, then the 
node, then the right subtree.
 E.g.) BDAGECHFI

1 3

2

Inorder Traversal
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Implementing Traversals
/** @param rt The root of the subtree */
void preorder(BinNode rt)
{

if (rt == null) return; // Empty subtree
visit(rt);
preorder(rt.left());
preorder(rt.right());

}

// This implementation is error prone
void preorder2(BinNode rt) // Not so good
{

visit(rt);
if (rt.left() != null)  preorder2(rt.left());
if (rt.right() != null) preorder2(rt.right());

}
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What you need to know

 The concept of binary tree, its terms, and its 
operations

 Idea and proof of full binary tree theorem and its 
corollary

 How to perform three main traversals for a given 
tree; how to implement the traversals
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Questions?
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