
U Kang (2016) 1

Data Structure

Lecture#10: Binary Trees
(Chapter 5)

U Kang
Seoul National University

U Kang (2016) 2

In This Lecture

 The concept of binary tree, its terms, and its
operations

 Full binary tree theorem

 Idea and implementation of traversals for tree

U Kang (2016) 3

Binary Trees

 A binary tree is made up of a finite set of nodes
that is either empty or consists of a node called
the root together with two binary trees, called the
left and right subtrees, which are disjoint from
each other and from the root.

U Kang (2016) 4

Binary Tree Example

 Notation: node, children,
edge, parent, ancestor,
descendant, path, depth,
height, level, root node,
leaf node, internal node,
subtree.

Level (=Depth) 0

Level 1

Level 2

Level 3

height of this tree = 4

root node

leaf node

internal
node

U Kang (2016) 5

Full and Complete Binary Trees

 Full binary tree: Each node is either a leaf or internal
node with exactly two non-empty children.

 Complete binary tree: If the height of the tree is d,
then 1) all levels except possibly level d-1 are
completely full, and 2) the bottom level has all nodes to
the left side.

Full binary tree Complete binary tree

U Kang (2016) 6

Full Binary Tree Theorem (1)

 Theorem: The number of leaves in a non-empty full
binary tree is one more than the number of internal
nodes.

 Proof (by Mathematical Induction):

 Base case: A full binary tree with 1 internal node must have
two leaf nodes.

 Induction Hypothesis: Assume any full binary tree T
containing n-1 internal nodes has n leaves.

U Kang (2016) 7

Full Binary Tree Theorem (2)

 Induction Step: given tree T with n internal nodes,
pick internal node I with two leaf children. Remove
I’s children, call resulting tree T’.

 By induction hypothesis, T’ is a full binary tree with
n leaves.

 Restore I’s two children. The number of internal
nodes has now gone up by 1 to reach n. The number
of leaves has also gone up by 1.

U Kang (2016) 8

Full Binary Tree Corollary

 Theorem: The number of null pointers in a non-
empty tree is one more than the number of nodes
in the tree.

 Proof: Replace all null pointers with a pointer to
an empty leaf node. This is a full binary tree.

of null pointers = 10
of nodes = 9

U Kang (2016) 9

Binary Tree Node Class
/** ADT for binary tree nodes */
public interface BinNode<E> {
/** Return and set the element value */
public E element();
public E setElement(E v);

/** Return the left child */
public BinNode<E> left();

/** Return the right child */
public BinNode<E> right();

/** Return true if this is a leaf node */
public boolean isLeaf();

}

U Kang (2016) 10

Traversals (1)

 Any process for visiting the nodes in
some order is called a traversal.

 Any traversal that lists every node in the
tree exactly once is called an enumeration
of the tree’s nodes.

U Kang (2016) 11

Traversals (2)

 Preorder traversal: visit each node before visiting its
children.

 Postorder traversal: visit each node after visiting its
children.

 Inorder traversal: visit the left subtree, then the node,
then the right subtree.

 Apply the rule recursively inside children

2 3

1

Preorder Traversal

1 2

3

Postorder Traversal

1 3

2

Inorder Traversal

U Kang (2016) 12

Preorder

 Preorder traversal: visit each node before visiting
its children.
 E.g.) ?

2 3

1

Preorder Traversal

U Kang (2016) 13

Preorder

 Preorder traversal: visit each node before visiting
its children.
 E.g.) ABDCEGFHI

2 3

1

Preorder Traversal

U Kang (2016) 14

Postorder

 Postorder traversal: visit each node after visiting
its children.
 E.g.) ?

1 2

3

Postorder Traversal

U Kang (2016) 15

Postorder

 Postorder traversal: visit each node after visiting
its children.
 E.g.) DBGEHIFCA

1 2

3

Postorder Traversal

U Kang (2016) 16

Inorder

 Inorder traversal: visit the left subtree, then the
node, then the right subtree.
 E.g.) ?

1 3

2

Inorder Traversal

U Kang (2016) 17

Inorder

 Inorder traversal: Visit the left subtree, then the
node, then the right subtree.
 E.g.) BDAGECHFI

1 3

2

Inorder Traversal

U Kang (2016) 18

Implementing Traversals
/** @param rt The root of the subtree */
void preorder(BinNode rt)
{

if (rt == null) return; // Empty subtree
visit(rt);
preorder(rt.left());
preorder(rt.right());

}

// This implementation is error prone
void preorder2(BinNode rt) // Not so good
{

visit(rt);
if (rt.left() != null) preorder2(rt.left());
if (rt.right() != null) preorder2(rt.right());

}

U Kang (2016) 19

What you need to know

 The concept of binary tree, its terms, and its
operations

 Idea and proof of full binary tree theorem and its
corollary

 How to perform three main traversals for a given
tree; how to implement the traversals

U Kang (2016) 20

Questions?

	슬라이드 번호 1
	In This Lecture
	Binary Trees
	Binary Tree Example
	Full and Complete Binary Trees
	Full Binary Tree Theorem (1)
	Full Binary Tree Theorem (2)
	Full Binary Tree Corollary
	Binary Tree Node Class
	Traversals (1)
	Traversals (2)
	Preorder
	Preorder
	Postorder
	Postorder
	Inorder
	Inorder
	Implementing Traversals
	What you need to know
	슬라이드 번호 20

