

Data Structure

Lecture#10: Binary Trees (Chapter 5)

U Kang Seoul National University

U Kang (2016)

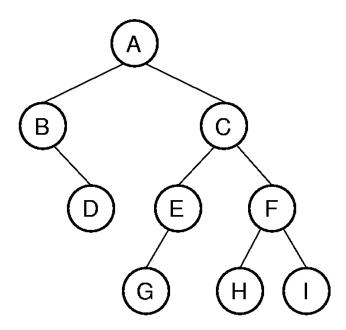
1

In This Lecture

- The concept of binary tree, its terms, and its operations
- Full binary tree theorem
- Idea and implementation of traversals for tree

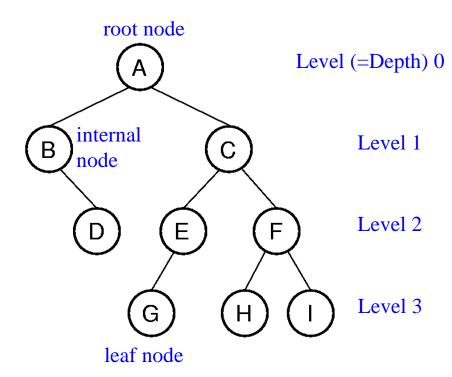
Binary Trees

A <u>binary tree</u> is made up of a finite set of nodes that is either <u>empty</u> or consists of a node called the <u>root</u> together with two binary trees, called the left and right <u>subtrees</u>, which are disjoint from each other and from the root.



Binary Tree Example

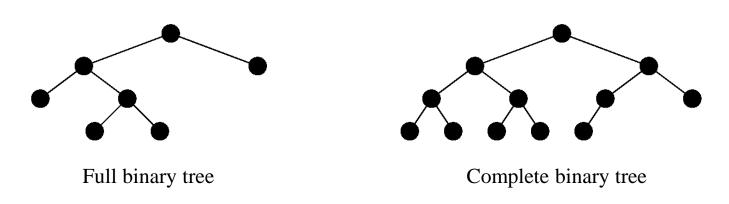
 Notation: <u>node</u>, <u>children</u>, <u>edge</u>, <u>parent</u>, <u>ancestor</u>, <u>descendant</u>, <u>path</u>, <u>depth</u>, <u>height</u>, <u>level</u>, <u>root node</u>, <u>leaf node</u>, <u>internal node</u>, <u>subtree</u>.



height of this tree = 4

Full and Complete Binary Trees

- <u>Full</u> binary tree: Each node is either a leaf or internal node with exactly two non-empty children.
- Complete binary tree: If the height of the tree is d, then 1) all levels except possibly level d-1 are completely full, and 2) the bottom level has all nodes to the left side.



Full Binary Tree Theorem (1)

Theorem: The number of leaves in a non-empty full binary tree is one more than the number of internal nodes.

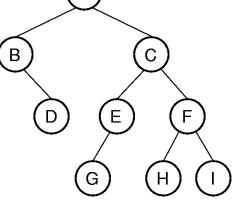
- **Proof** (by Mathematical Induction):
- **Base case:** A full binary tree with 1 internal node must have two leaf nodes.
- Induction Hypothesis: Assume any full binary tree T containing *n*-1 internal nodes has *n* leaves.

Full Binary Tree Theorem (2)

- Induction Step: given tree T with n internal nodes, pick internal node *I* with two leaf children. Remove *I*'s children, call resulting tree T'.
- By induction hypothesis, T' is a full binary tree with n leaves.
- Restore *I*'s two children. The number of internal nodes has now gone up by 1 to reach *n*. The number of leaves has also gone up by 1.

Full Binary Tree Corollary

 Theorem: The number of null pointers in a nonempty tree is one more than the number of nodes in the tree.



of null pointers = 10
of nodes = 9

• **Proof**: Replace all null pointers with a pointer to an empty leaf node. This is a full binary tree.

Binary Tree Node Class

/** ADT for binary tree nodes */
public interface BinNode<E> {
 /** Return and set the element value */
 public E element();
 public E setElement(E v);

/** Return the left child */
public BinNode<E> left();

/** Return the right child */
public BinNode<E> right();

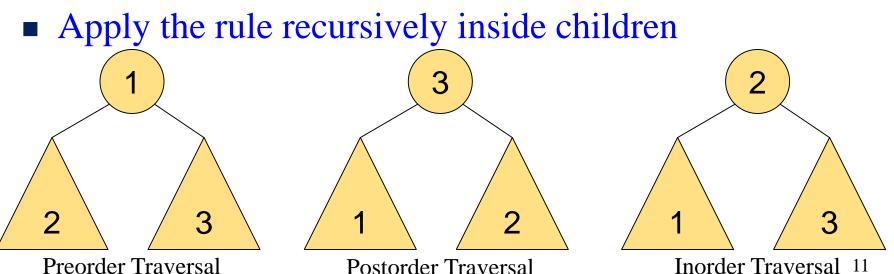
/** Return true if this is a leaf node */
public boolean isLeaf();

Traversals (1)

- Any process for visiting the nodes in some order is called a <u>traversal</u>.
- Any traversal that lists every node in the tree exactly once is called an <u>enumeration</u> of the tree's nodes.

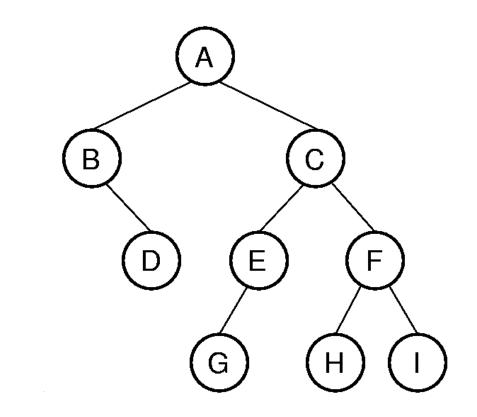
Traversals (2)

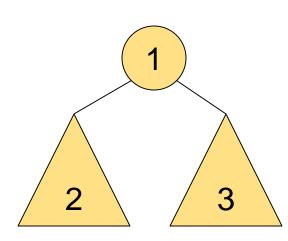
- Preorder traversal: visit each node before visiting its children.
- Postorder traversal: visit each node after visiting its children.
- Inorder traversal: visit the left subtree, then the node, then the right subtree.



Preorder

- Preorder traversal: visit each node before visiting its children.
 - □ E.g.) ?

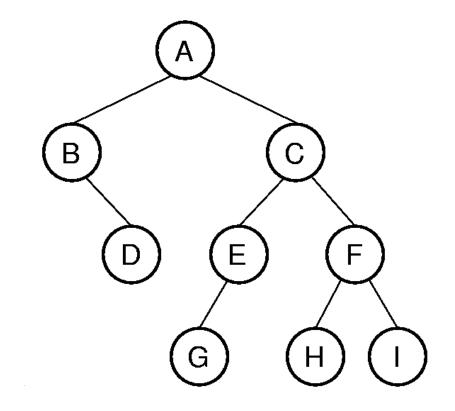


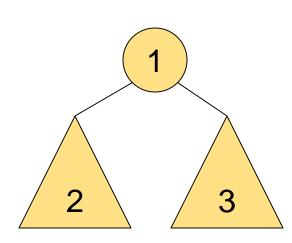


Preorder Traversal

Preorder

- Preorder traversal: visit each node before visiting its children.
 - E.g.) ABDCEGFHI

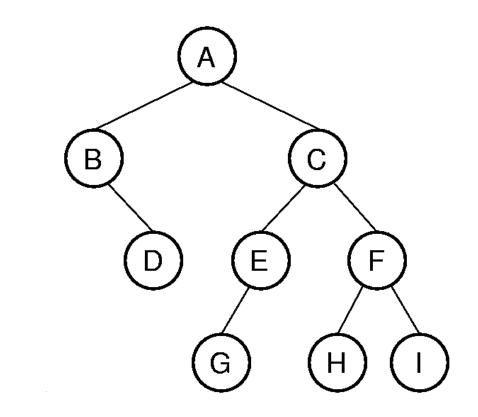


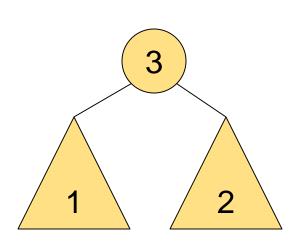


Preorder Traversal

Postorder

- Postorder traversal: visit each node after visiting its children.
 - □ E.g.) ?

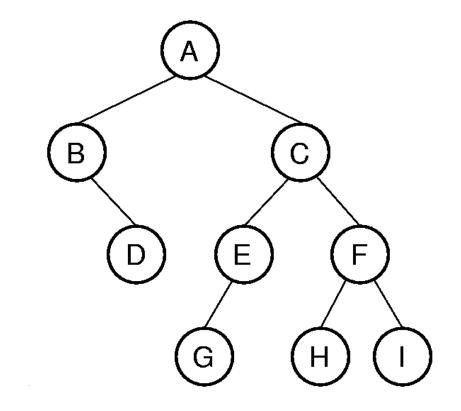


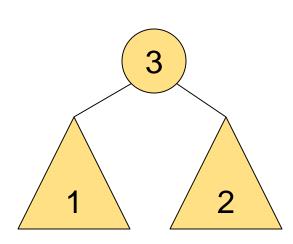


Postorder Traversal

Postorder

- Postorder traversal: visit each node after visiting its children.
 - □ E.g.) DBGEHIFCA

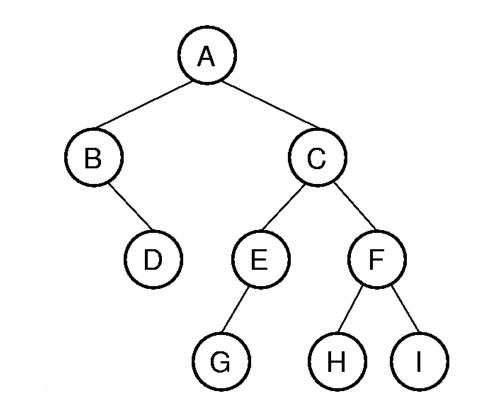


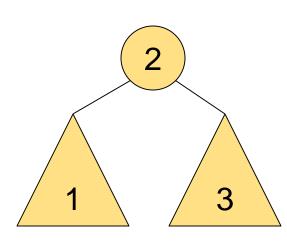


Postorder Traversal

Inorder

- Inorder traversal: visit the left subtree, then the node, then the right subtree.
 - □ E.g.) ?

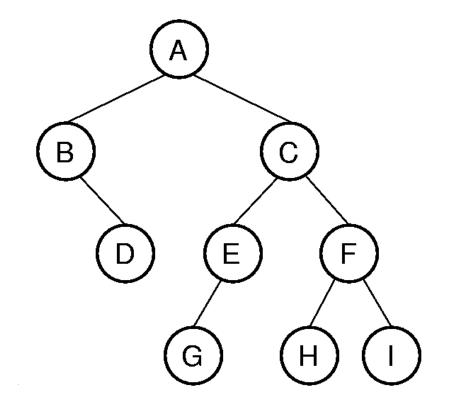


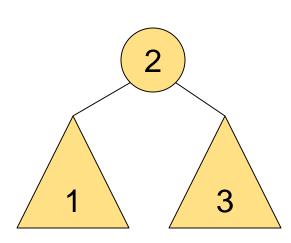


Inorder Traversal

Inorder

- Inorder traversal: Visit the left subtree, then the node, then the right subtree.
 - □ E.g.) BDAGECHFI





Inorder Traversal

Implementing Traversals

```
/** @param rt The root of the subtree */
void preorder(BinNode rt)
  if (rt == null) return; // Empty subtree
  visit(rt);
  preorder(rt.left());
 preorder(rt.right());
}
// This implementation is error prone
void preorder2(BinNode rt) // Not so good
 visit(rt);
  if (rt.left() != null) preorder2(rt.left());
  if (rt.right() != null) preorder2(rt.right());
```


What you need to know

- The concept of binary tree, its terms, and its operations
- Idea and proof of full binary tree theorem and its corollary
- How to perform three main traversals for a given tree; how to implement the traversals

Questions?