
U Kang (2016) 1

Data Structure

Lecture#16: Internal Sorting
(Chapter 7)

U Kang
Seoul National University

U Kang (2016) 2

In This Lecture

 Definition and evaluation measures of sorting

 Exchange sorting algorithms and their limitations

 Shellsort and how to exploit the best-case
behavior of other algorithm

U Kang (2016) 3

Sorting

 Sorting: puts elements of a list in a certain order
(increasing or decreasing)
 Many applications: scores, documents, search results, …
 One of the most fundamental tasks in Computer Science

 Sorting in offline world

U Kang (2016) 4

Sorting

 We will discuss many sorting algorithms
 insertion sort, bubble sort, selection sort, shell sort,

merge sort, quicksort, heap sort, bin sort, radix sort

 Measures of cost:
 # of Comparisons
 # of Swaps

U Kang (2016) 5

Insertion Sort (1)

 Initially, the output is empty
 Insert each item one by one to the output
 Insert it in a correct place to make the output in a sorted

order

U Kang (2016) 6

Insertion Sort (2)

Input Output

U Kang (2016) 7

Insertion Sort (3)
static <E extends Comparable<? super E>>
void Sort(E[] A) {
for (int i=1; i<A.length; i++)

for (int j=i;
(j>0) && (A[j].compareTo(A[j-1])<0);
j--)

DSutil.swap(A, j, j-1);
}

 Best Case:
 Worst Case:
 Average Case:

of Swaps, # of Comparisons

U Kang (2016) 8

Insertion Sort (4)
static <E extends Comparable<? super E>>
void Sort(E[] A) {
for (int i=1; i<A.length; i++)

for (int j=i;
(j>0) && (A[j].compareTo(A[j-1])<0);
j--)

DSutil.swap(A, j, j-1);
}

 Best Case: 0 swaps, n – 1 comparisons
 Worst Case: n2/2 swaps and comparisons
 Average Case: n2/4 swaps and comparisons

Insertion Sort is very efficient when the array is near-sorted.
This characteristic is used later in other sorting algorithms.

U Kang (2016) 9

Bubble Sort (1)

 Maybe, one of the most popular sorting algorithms
 Appears in many computer language introduction books

 Main Idea
 Initially, the output is empty
 At each iteration

 “Bubble up” the smallest element from the input to the output
(= move the smallest element from the input to the output)

 Using an array for both input and output
 At iteration k, k th smallest element is located in the array[k]

 Given an array, how to move the smallest element to the
beginning of the array?
 One idea is to swap neighbors repeatedly, from the end of the array

U Kang (2016) 10

Bubble Sort (2)

U Kang (2016) 11

Bubble Sort (3)
static <E extends Comparable<? super E>>
void Sort(E[] A) {
for (int i=0; i<A.length-1; i++)
for (int j=A.length-1; j>i; j--)
if ((A[j].compareTo(A[j-1]) < 0))
DSutil.swap(A, j, j-1);

}

 Best Case:
 Worst Case:
 Average Case:

of Swaps, # of Comparisons

U Kang (2016) 12

Bubble Sort (4)
static <E extends Comparable<? super E>>
void Sort(E[] A) {
for (int i=0; i<A.length-1; i++)
for (int j=A.length-1; j>i; j--)
if ((A[j].compareTo(A[j-1]) < 0))
DSutil.swap(A, j, j-1);

}

 Best Case: 0 swaps, n2/2 comparisons
 Worst Case: n2/2 swaps and comparisons
 Average Case: n2/4 swaps and n2/2 comparisons

U Kang (2016) 13

Selection Sort (1)

 Essentially, a bubble sort

 Given an array, how to move the smallest element
to the beginning of the array?
 [Bubble Sort] swap neighbors repeatedly
 [Selection Sort] scan the array, find the smallest

element, and swap it with the first item in the array

U Kang (2016) 14

Selection Sort (2)

U Kang (2016) 15

Selection Sort (3)
static <E extends Comparable<? super E>>
void Sort(E[] A) {
for (int i=0; i<A.length-1; i++) {
int lowindex = i;
for (int j=A.length-1; j>i; j--)
if (A[j].compareTo(A[lowindex]) < 0)
lowindex = j;

DSutil.swap(A, i, lowindex);
}

}

 Best Case:
 Worst Case:
 Average Case:

of Swaps, # of Comparisons

U Kang (2016) 16

Selection Sort (4)
static <E extends Comparable<? super E>>
void Sort(E[] A) {
for (int i=0; i<A.length-1; i++) {
int lowindex = i;
for (int j=A.length-1; j>i; j--)
if (A[j].compareTo(A[lowindex]) < 0)
lowindex = j;

DSutil.swap(A, i, lowindex);
}

}

 Best Case: 0 swaps (n-1 swaps for bad swap()), n2/2 comparisons
 Worst Case: n-1 swaps and n2/2 comparisons
 Average Case: O(n) swaps and n2/2 comparisons

Better than Bubble sort, since # of swap is much smaller

U Kang (2016) 17

Pointer Swapping

U Kang (2016) 18

Summary

Insertion Bubble Selection
Comparisons
Best Case Θ(n) Θ(n2) Θ(n2)
Average Case Θ(n2) Θ(n2) Θ(n2)
Worst Case Θ(n2) Θ(n2) Θ(n2)

Swaps
Best Case 0 0 0 or Θ(n)
Average Case Θ(n2) Θ(n2) Θ(n)
Worst Case Θ(n2) Θ(n2) Θ(n)

U Kang (2016) 19

Exchange Sorting

 All of the sorting algorithms so far rely on
exchanges of adjacent records.
 Thus, they are called “exchange sorting” algorithms

 What is the average number of exchanges
required in any exchange sorting of n items?
 There are n! permutations
 Consider a permuation X and its reverse, X’
 Together, all pairs require n(n-1)/2 exchanges (or

“inversion”) in total.
 On average, each permutation requires n(n-1)/4 =
Ω(𝑛𝑛2) exchanges

U Kang (2016) 20

Shell Sort (1)

 Main idea
 Task: sort an array x of size n
 Consider the following two sub arrays from x

 xe (contains elements whose indexes are even)
 xo (contains elements whose indexes are odd)

 Assume xe and xo are sorted, respectively
 Then, insertion sort on x would be efficient (why?)
 Now, recursively consider the above process on the

two subarrays

 Shell sort: go backward from the end of the above
process

U Kang (2016) 21

Shell Sort (2)

 Procedure
 Pass 1

 Make n/2 sublists of 2 elements each, where the array index of
the 2 elements differs by n/2
 E.g., for n = 16, make 8 sublists: (0, 8), (1, 9), …, (7, 15)

 Each list of 2 elements is sorted using Insertion Sort
 Pass 2

 Make n/4 sublists of 4 elements each, where the array index of
the 4 elements differs by n/4
 E.g., for n = 16, make 4 sublists: (0, 4, 8, 12), (1, 5, 9, 13), …

 Each list of 4 elements is sorted using Insertion Sort
 …

U Kang (2016) 22

Shell Sort (3)

 Main Idea
 Pass 3

 Make n/8 sublists of 8 elements each, where the array index of
the 8 elements differs by n/8
 E.g., for n = 16, make 2 sublists: (even numbers), (odd numbers)

 Each list of 8 elements is sorted using Insertion Sort
 … Final Pass (Pass (log n))

 Make 1 sublist of n elements(=do nothing), and sort the sublist
using insertion sort (= apply the standard insertion sort on the
array)

U Kang (2016) 23

Shell Sort (4)

U Kang (2016) 24

Shell Sort (5)
static <E extends Comparable<? super E>>
void Sort(E[] A) {
for (int i=A.length/2; i>2; i/=2)
for (int j=0; j<i; j++)
inssort2(A, j, i);

inssort2(A, 0, 1);
}

/** Modified version of Insertion Sort for
varying increments */

static <E extends Comparable<? super E>>
void inssort2(E[] A, int start, int incr) {
for (int i=start+incr; i<A.length; i+=incr)
for (int j=i;(j >= start+incr)&&

(A[j].compareTo(A[j-incr])<0);
j-=incr)

DSutil.swap(A, j, j-incr);
}

U Kang (2016) 25

Shell Sort (6)

 Correctness: Shellsort always sorts an array
correctly. Why?
 Since it performs the insertion sort at the end

 Efficiency: Is Shellsort better than Insertion Sort?
 Yes (in most cases), since each insertion sort operates

on an “almost sorted” array

 Fact: average-case performance of ShellSort takes
Ο(𝑛𝑛1.5), which is much efficient than Insertion Sort

U Kang (2016) 26

What you need to know

 Sorting: puts elements in a certain order
 Evaluation: # of swaps, # of comparisons

 Exchange sorting algorithms
 Insertion sort, bubble sort, and selection sort
 Cost and limitations

 Shellsort
 Main ideas
 How it exploits insertion sort

U Kang (2016) 27

Questions?

	슬라이드 번호 1
	In This Lecture
	Sorting
	Sorting
	Insertion Sort (1)
	Insertion Sort (2)
	Insertion Sort (3)
	Insertion Sort (4)
	Bubble Sort (1)
	Bubble Sort (2)
	Bubble Sort (3)
	Bubble Sort (4)
	Selection Sort (1)
	Selection Sort (2)
	Selection Sort (3)
	Selection Sort (4)
	Pointer Swapping
	Summary
	Exchange Sorting
	Shell Sort (1)
	Shell Sort (2)
	Shell Sort (3)
	Shell Sort (4)
	Shell Sort (5)
	Shell Sort (6)
	What you need to know
	슬라이드 번호 27

