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In This Lecture

 Definition and evaluation measures of sorting

 Exchange sorting algorithms and their limitations

 Shellsort and how to exploit the best-case 
behavior of other algorithm
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Sorting

 Sorting: puts elements of a list in a certain order 
(increasing or decreasing)
 Many applications: scores, documents, search results, …
 One of the most fundamental tasks in Computer Science

 Sorting in offline world
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Sorting

 We will discuss many sorting algorithms
 insertion sort, bubble sort, selection sort, shell sort, 

merge sort, quicksort, heap sort, bin sort, radix sort

 Measures of cost:
 # of Comparisons
 # of Swaps
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Insertion Sort (1)

 Initially, the output is empty
 Insert each item one by one to the output
 Insert it in a correct place to make the output in a sorted 

order
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Insertion Sort (2)

Input Output
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Insertion Sort (3)
static <E extends Comparable<? super E>>
void Sort(E[] A) {
for (int i=1; i<A.length; i++)

for (int j=i;
(j>0) && (A[j].compareTo(A[j-1])<0); 
j--)

DSutil.swap(A, j, j-1);
}

 Best Case:
 Worst Case:
 Average Case:

# of Swaps, # of Comparisons
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Insertion Sort (4)
static <E extends Comparable<? super E>>
void Sort(E[] A) {
for (int i=1; i<A.length; i++)

for (int j=i;
(j>0) && (A[j].compareTo(A[j-1])<0); 
j--)

DSutil.swap(A, j, j-1);
}

 Best Case: 0 swaps, n – 1 comparisons
 Worst Case: n2/2 swaps and comparisons
 Average Case: n2/4 swaps and comparisons

Insertion Sort is very efficient when the array is near-sorted. 
This characteristic is used later in other sorting algorithms.
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Bubble Sort (1)

 Maybe, one of the most popular sorting algorithms
 Appears in many computer language introduction books

 Main Idea
 Initially, the output is empty
 At each iteration

 “Bubble up” the smallest element from the input to the output       
(= move the smallest element from the input to the output)

 Using an array for both input and output
 At iteration k, k th smallest element is located in the array[k]

 Given an array, how to move the smallest element to the 
beginning of the array?
 One idea is to swap neighbors repeatedly, from the end of the array
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Bubble Sort (2)
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Bubble Sort (3)
static <E extends Comparable<? super E>> 
void Sort(E[] A) {
for (int i=0; i<A.length-1; i++)
for (int j=A.length-1; j>i; j--)
if ((A[j].compareTo(A[j-1]) < 0))
DSutil.swap(A, j, j-1);

}

 Best Case:
 Worst Case:
 Average Case:

# of Swaps, # of Comparisons



U Kang (2016) 12

Bubble Sort (4)
static <E extends Comparable<? super E>> 
void Sort(E[] A) {
for (int i=0; i<A.length-1; i++)
for (int j=A.length-1; j>i; j--)
if ((A[j].compareTo(A[j-1]) < 0))
DSutil.swap(A, j, j-1);

}

 Best Case: 0 swaps, n2/2 comparisons
 Worst Case: n2/2 swaps and comparisons
 Average Case: n2/4 swaps and n2/2 comparisons
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Selection Sort (1)

 Essentially, a bubble sort

 Given an array, how to move the smallest element 
to the beginning of the array?
 [Bubble Sort] swap neighbors repeatedly
 [Selection Sort] scan the array, find the smallest 

element, and swap it with the first item in the array
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Selection Sort (2)



U Kang (2016) 15

Selection Sort (3)
static <E extends Comparable<? super E>>
void Sort(E[] A) {
for (int i=0; i<A.length-1; i++) {
int lowindex = i;
for (int j=A.length-1; j>i; j--)
if (A[j].compareTo(A[lowindex]) < 0)
lowindex = j;

DSutil.swap(A, i, lowindex);
}

}

 Best Case:
 Worst Case:
 Average Case:

# of Swaps, # of Comparisons
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Selection Sort (4)
static <E extends Comparable<? super E>>
void Sort(E[] A) {
for (int i=0; i<A.length-1; i++) {
int lowindex = i;
for (int j=A.length-1; j>i; j--)
if (A[j].compareTo(A[lowindex]) < 0)
lowindex = j;

DSutil.swap(A, i, lowindex);
}

}

 Best Case: 0 swaps (n-1 swaps for bad swap()), n2/2 comparisons 
 Worst Case: n-1 swaps and n2/2 comparisons 
 Average Case: O(n) swaps and n2/2 comparisons 

Better than Bubble sort, since # of swap is much smaller
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Pointer Swapping
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Summary

Insertion Bubble Selection
Comparisons
Best Case Θ(n) Θ(n2) Θ(n2)
Average Case Θ(n2) Θ(n2) Θ(n2)
Worst Case Θ(n2) Θ(n2) Θ(n2)

Swaps
Best Case 0 0 0 or Θ(n)
Average Case Θ(n2) Θ(n2) Θ(n)
Worst Case Θ(n2) Θ(n2) Θ(n)
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Exchange Sorting

 All of the sorting algorithms so far rely on 
exchanges of adjacent records.
 Thus, they are called “exchange sorting” algorithms

 What is the average number of exchanges 
required in any exchange sorting of n items?
 There are n! permutations
 Consider a permuation X and its reverse, X’
 Together, all pairs require n(n-1)/2 exchanges (or 

“inversion”) in total.
 On average, each permutation requires n(n-1)/4 = 
Ω(𝑛𝑛2) exchanges
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Shell Sort (1)

 Main idea 
 Task: sort an array x of size n
 Consider the following two sub arrays from x

 xe (contains elements whose indexes are even)
 xo (contains elements whose indexes are odd)

 Assume xe and xo are sorted, respectively
 Then, insertion sort on x would be efficient (why?)
 Now, recursively consider the above process on the 

two subarrays

 Shell sort: go backward from the end of the above 
process
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Shell Sort (2)

 Procedure
 Pass 1

 Make n/2 sublists of 2 elements each, where the array index of 
the 2 elements differs by n/2
 E.g., for n = 16, make 8 sublists: (0, 8), (1, 9), …, (7, 15)

 Each list of 2 elements is sorted using Insertion Sort
 Pass 2

 Make n/4 sublists of 4 elements each, where the array index of 
the 4 elements differs by n/4
 E.g., for n = 16, make 4 sublists: (0, 4, 8, 12), (1, 5, 9, 13), …

 Each list of 4 elements is sorted using Insertion Sort
 …
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Shell Sort (3)

 Main Idea
 Pass 3

 Make n/8 sublists of 8 elements each, where the array index of 
the 8 elements differs by n/8
 E.g., for n = 16, make 2 sublists: (even numbers), (odd numbers)

 Each list of 8 elements is sorted using Insertion Sort
 … Final Pass (Pass (log n))

 Make 1 sublist of n elements(=do nothing), and sort the sublist
using insertion sort ( = apply the standard insertion sort on the 
array)
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Shell Sort (4)
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Shell Sort (5)
static <E extends Comparable<? super E>> 
void Sort(E[] A) {
for (int i=A.length/2; i>2; i/=2)
for (int j=0; j<i; j++)
inssort2(A, j, i);

inssort2(A, 0, 1);
}

/** Modified version of Insertion Sort for 
varying increments */

static <E extends Comparable<? super E>>
void inssort2(E[] A, int start, int incr) {
for (int i=start+incr; i<A.length; i+=incr)
for (int j=i;(j >= start+incr)&&

(A[j].compareTo(A[j-incr])<0);
j-=incr)

DSutil.swap(A, j, j-incr);
}



U Kang (2016) 25

Shell Sort (6)

 Correctness: Shellsort always sorts an array 
correctly. Why?
 Since it performs the insertion sort at the end

 Efficiency: Is Shellsort better than Insertion Sort?
 Yes (in most cases), since each insertion sort operates 

on an “almost sorted” array

 Fact: average-case performance of ShellSort takes 
Ο(𝑛𝑛1.5), which is much efficient than Insertion Sort
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What you need to know

 Sorting: puts elements in a certain order
 Evaluation: # of swaps, # of comparisons

 Exchange sorting algorithms
 Insertion sort, bubble sort, and selection sort
 Cost and limitations

 Shellsort
 Main ideas
 How it exploits insertion sort
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Questions?
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