
U Kang (2016) 1

Data Structure

Lecture#25: Graphs 3
(Chapter 11)

U Kang
Seoul National University

U Kang (2016) 2

In This Lecture

 MST (Minimum Spanning Tree) problem

 Main idea and cost of Prim’s algorithm for MST

 Main idea and cost of Kruskal’s algorithm for
MST

U Kang (2016) 3

Minimum Cost Spanning Trees (1)

 Minimum Cost Spanning Tree (MST) Problem:
 Input: An undirected, connected graph G.
 Output: The subgraph of G that
 1) has minimum total cost as measured by summing

the values of all the edges in the subset, and
 2) keeps the vertices connected.

U Kang (2016) 4

Minimum Cost Spanning Trees (2)

 Minimum Cost Spanning Tree (MST) Problem:
 A tree means a graph without cycle
 Property 1) of the output ensures MST has no cycle

(why?)
 Property 1) G has minimum total cost as measured by

summing the values of all the edges in the subset

U Kang (2016) 5

Minimum Cost Spanning Trees (3)

 Minimum Cost Spanning Tree (MST) Problem:
 Solution may not be unique

 E.g., (C,F) can be replaced with (D,F) in the previous slide
 But, the minimum costs are the same for all the

solutions

 MST algorithms
 Prim’s algorithm
 Kruskal’s algorithm

U Kang (2016) 6

Prim’s MST Algorithm (1)

 Start with any vertex N in the graph. Add N to MST.
 Pick the least-cost edge (N,M) connected to N.
 Add vertex M and edge (N,M) to the MST.
 Pick the least-cost edge connected to (N or M). Let the vertex

X be connected to the edge.
 X should not belong to the current MST.

 Add vertex X and the edge to the MST.
 (continue, until all vertices are added to MST)…

U Kang (2016) 7

Prim’s MST Algorithm (2)

A B C D E F

Initial ∞ ∞ 0 ∞ ∞ ∞

Process C 7 5 0 1 ∞ 2

Process D 7 5 0 1 ∞ 2

Process F 7 5 0 1 1 2

Process E 7 5 0 1 1 2
Process B 7 5 0 1 1 2

Process A 7 5 0 1 1 2

U Kang (2016) 8

Prim’s MST Algorithm (3)
// Compute a minimal-cost spanning tree
void Prim(Graph G, int s, int[] D, int[] V) {

int v, w;
for (int i=0; i<G.n(); i++) // Initialize
D[i] = Integer.MAX_VALUE;

D[s] = 0;
for (int i=0; i<G.n(); i++) {
v = minVertex(G, D);
G.setMark(v, VISITED);
if (v != s) AddEdgetoMST(V[v], v);
if (D[v] == Integer.MAX_VALUE) return;
for (w=G.first(v); w<G.n(); w=G.next(v, w))
if (D[w] > G.weight(v, w)) {
D[w] = G.weight(v, w);
V[w] = v;

}
}

}

U Kang (2016) 9

Running Time of Prim’s MST

 Prim’s MST is very similar to Dijkstra’s
algorithm
 MST: D[w] = G.weight(v, w);
 Shortest Path: D[w] = D[v] + G.weight(v,
w);

 So does the running time of Prim’s MST
 Scan through the distance table: Θ(|V|2 + |E|) = Θ(|V|2)
 Min-heap: Θ((|V| + |E|)log|V|)

U Kang (2016) 10

Kruskal’s MST Algorithm (1)

 Initially, each vertex is in its own MST.

 Merge two MST’s that have the shortest edge
between them.
 Use a priority queue to order the unprocessed edges.

Grab next one at each step.
 Make sure the edge does not connect two vertices in a

same MST

 How to tell if an edge connects two vertices
already in the same MST?
 Use the UNION/FIND algorithm with parent-pointer

representation.

U Kang (2016) 11

Kruskal’s MST Algorithm (2)

U Kang (2016) 12

Kruskal’s MST Algorithm (3)

 Cost is dominated by the time to remove edges
from the heap.
 Can stop processing edges once all vertices are in the

same MST

 Total cost: Θ(|E| log |E|)
 Can remove edges |E| times

U Kang (2016) 13

Summary

 MST (Minimum Spanning Tree) problem

 Main idea and cost of Prim’s algorithm for MST
 Cost the same as that of Dijkstra’s

 Main idea and cost of Kruskal’s algorithm for
MST

U Kang (2016) 14

Questions?

	슬라이드 번호 1
	In This Lecture
	Minimum Cost Spanning Trees (1)
	Minimum Cost Spanning Trees (2)
	Minimum Cost Spanning Trees (3)
	Prim’s MST Algorithm (1)
	Prim’s MST Algorithm (2)
	Prim’s MST Algorithm (3)
	Running Time of Prim’s MST
	Kruskal’s MST Algorithm (1)
	Kruskal’s MST Algorithm (2)
	Kruskal’s MST Algorithm (3)
	Summary
	슬라이드 번호 14

