

Data Structure

Lecture#25: Graphs 3 (Chapter 11)

U Kang Seoul National University

U Kang (2016)

1

In This Lecture

- MST (Minimum Spanning Tree) problem
- Main idea and cost of Prim's algorithm for MST
- Main idea and cost of Kruskal's algorithm for MST

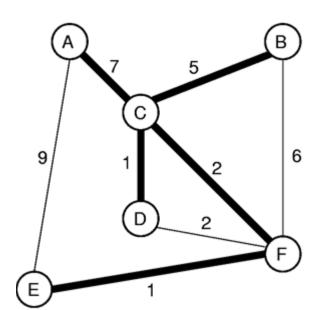
Minimum Cost Spanning Trees (1)

- Minimum Cost Spanning Tree (MST) Problem:
 - □ Input: An undirected, connected graph G.
 - Output: The subgraph of G that
 - 1) has minimum total cost as measured by summing the values of all the edges in the subset, and
 - 2) keeps the vertices connected.



Minimum Cost Spanning Trees (2)

- Minimum Cost Spanning Tree (MST) Problem:
 - A tree means a graph without cycle
 - Property 1) of the output ensures MST has no cycle (why?)
 - Property 1) G has minimum total cost as measured by summing the values of all the edges in the subset

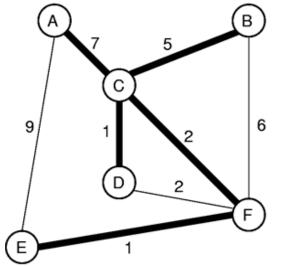


Minimum Cost Spanning Trees (3)

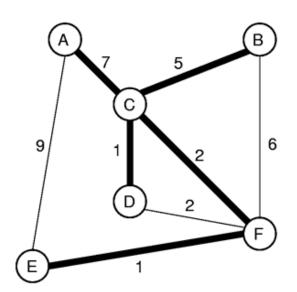
- Minimum Cost Spanning Tree (MST) Problem:
 - Solution may not be unique
 - E.g., (C,F) can be replaced with (D,F) in the previous slide
 - But, the minimum costs are the same for all the solutions
- MST algorithms
 - Prim's algorithm
 - Kruskal's algorithm

Prim's MST Algorithm (1)

- Start with any vertex N in the graph. Add N to MST.
- Pick the least-cost edge (N,M) connected to N.
- Add vertex M and edge (N,M) to the MST.
- Pick the least-cost edge connected to (N or M). Let the vertex X be connected to the edge.
 - X should not belong to the current MST.
- Add vertex X and the edge to the MST.
- (continue, until all vertices are added to MST)...



Prim's MST Algorithm (2)



	А	В	C	D	E	F
Initial	8	∞	0	∞	8	8
Process C	7	5	0	1	8	2
Process D	7	5	0	1	8	2
Process F	7	5	0	1	1	2
Process E	7	5	0	1	1	2
Process B	7	5	0	1	1	2
Process A	7	5	0	1	1	2

Prim's MST Algorithm (3)

```
// Compute a minimal-cost spanning tree
void Prim(Graph G, int s, int[] D, int[] V) {
  int v, w;
  for (int i=0; i<G.n(); i++) // Initialize</pre>
    D[i] = Integer.MAX_VALUE;
  D[s] = 0;
  for (int i=0; i<G.n(); i++) {</pre>
    v = minVertex(G, D);
    G.setMark(v, VISITED);
    if (v != s) AddEdgetoMST(V[v], v);
    if (D[v] == Integer.MAX VALUE) return;
    for (w=G.first(v); w<G.n(); w=G.next(v, w))</pre>
      if (D[w] > G.weight(v, w)) {
        D[w] = G.weight(v, w);
        V[w] = v;
```

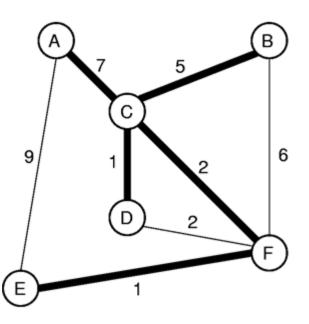

Running Time of Prim's MST

- Prim's MST is very similar to Dijkstra's algorithm
 - MST: D[w] = G.weight(v, w);
 - Dist Shortest Path: D[w] = D[v] + G.weight(v, w);
- So does the running time of Prim's MST
 Scan through the distance table: Θ(|V|² + |E|) = Θ(|V|²)
 Min-heap: Θ((|V| + |E|)log|V|)

Kruskal's MST Algorithm (1)

- Initially, each vertex is in its own MST.
- Merge two MST's that have the shortest edge between them.
 - Use a priority queue to order the unprocessed edges.
 Grab next one at each step.
 - Make sure the edge does not connect two vertices in a same MST
- How to tell if an edge connects two vertices already in the same MST?
 - Use the UNION/FIND algorithm with parent-pointer representation.

Kruskal's MST Algorithm (2)



Initial	A	В	C	D	E	F
Step 1 Process	A	(B)		E	F	
Step 2 Process	A	В		E	1	F
Step 3 Process	A edge (C, F	(B)			2 F	

Kruskal's MST Algorithm (3)

- Cost is dominated by the time to remove edges from the heap.
 - Can stop processing edges once all vertices are in the same MST
- Total cost: Θ(|E| log |E|)
 □ Can remove edges |E| times

Summary

- MST (Minimum Spanning Tree) problem
- Main idea and cost of Prim's algorithm for MST
 Cost the same as that of Dijkstra's
- Main idea and cost of Kruskal's algorithm for MST

Questions?