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In This Lecture

 MST (Minimum Spanning Tree) problem

 Main idea and cost of Prim’s algorithm for MST

 Main idea and cost of Kruskal’s algorithm for 
MST
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Minimum Cost Spanning Trees (1)

 Minimum Cost Spanning Tree (MST) Problem:
 Input: An undirected, connected graph G.
 Output: The subgraph of G that
 1) has minimum total cost as measured by summing 

the values of all the edges in the subset, and
 2) keeps the vertices connected.
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Minimum Cost Spanning Trees (2)

 Minimum Cost Spanning Tree (MST) Problem:
 A tree means a graph without cycle
 Property 1) of the output ensures MST has no cycle 

(why?)
 Property 1) G has minimum total cost as measured by 

summing the values of all the edges in the subset
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Minimum Cost Spanning Trees (3)

 Minimum Cost Spanning Tree (MST) Problem:
 Solution may not be unique

 E.g., (C,F) can be replaced with (D,F) in the previous slide
 But, the minimum costs are the same for all the 

solutions

 MST algorithms
 Prim’s algorithm
 Kruskal’s algorithm
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Prim’s MST Algorithm (1)

 Start with any vertex N in the graph. Add N to MST.
 Pick the least-cost edge (N,M) connected to N.
 Add vertex M and edge (N,M) to the MST.
 Pick the least-cost edge connected to (N or M). Let the vertex 

X be connected to the edge.
 X should not belong to the current MST.

 Add vertex X and the edge to the MST.
 (continue, until all vertices are added to MST)…
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Prim’s MST Algorithm (2)

A B C D E F

Initial ∞ ∞ 0 ∞ ∞ ∞

Process C 7 5 0 1 ∞ 2

Process D 7 5 0 1 ∞ 2

Process F 7 5 0 1 1 2

Process E 7 5 0 1 1 2
Process B 7 5 0 1 1 2

Process A 7 5 0 1 1 2
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Prim’s MST Algorithm (3)
// Compute a minimal-cost spanning tree
void Prim(Graph G, int s, int[] D, int[] V) {

int v, w;
for (int i=0; i<G.n(); i++)   // Initialize
D[i] = Integer.MAX_VALUE;

D[s] = 0;
for (int i=0; i<G.n(); i++) {
v = minVertex(G, D);
G.setMark(v, VISITED);
if (v != s) AddEdgetoMST(V[v], v);
if (D[v] == Integer.MAX_VALUE) return;
for (w=G.first(v); w<G.n(); w=G.next(v, w))
if (D[w] > G.weight(v, w)) {
D[w] = G.weight(v, w);
V[w] = v;

}
}

}
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Running Time of Prim’s MST

 Prim’s MST is very similar to Dijkstra’s 
algorithm
 MST: D[w] = G.weight(v, w);
 Shortest Path: D[w] = D[v] + G.weight(v, 
w);

 So does the running time of Prim’s MST
 Scan through the distance table: Θ(|V|2 + |E|) = Θ(|V|2)
 Min-heap: Θ((|V| + |E|)log|V|)
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Kruskal’s MST Algorithm (1)

 Initially, each vertex is in its own MST.

 Merge two MST’s that have the shortest edge 
between them.
 Use a priority queue to order the unprocessed edges.  

Grab next one at each step.
 Make sure the edge does not connect two vertices in a 

same MST

 How to tell if an edge connects two vertices 
already in the same MST?
 Use the UNION/FIND algorithm with parent-pointer 

representation.
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Kruskal’s MST Algorithm (2)
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Kruskal’s MST Algorithm (3)

 Cost is dominated by the time to remove edges 
from the heap.
 Can stop processing edges once all vertices are in the 

same MST

 Total cost: Θ(|E| log |E|)
 Can remove edges |E| times
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Summary

 MST (Minimum Spanning Tree) problem

 Main idea and cost of Prim’s algorithm for MST
 Cost the same as that of Dijkstra’s

 Main idea and cost of Kruskal’s algorithm for 
MST
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Questions?
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