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In This Lecture

 Motivation of collision resolution policy

 Open hashing for collision resolution

 Closed hashing for collision resolution
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Hashing

 Given a key k, can we search k in a constant time?
 Yes!
 We can do it by hashing. It is faster than binary search , 

QBS, and sequential search
 Hash table HT is the array that holds the records

 HT has M slots  (slots numbered from 0 to M-1)
 Hash function h maps key K to a number (position)

 0 ≤ ℎ 𝐾𝐾 ≤ 𝑀𝑀 − 1
 E.g., h(K) = K % M

 Goal of a hashing system: arrange things such that for 
a given key K, and i = h(K),  the record for the key K
is located in HT[i]
 Then, the searching time would be constant
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Hashing

 Goal of a hashing system: arrange things such that for 
a given key K, and i = h(K),  the record for the key K
is located in HT[i]

 Collision: two different keys k1 and k2 map to a slot
 h(k1) = 𝛽𝛽 = h(k2)    

 Finding a record with key value K by hashing:
 Compute the table location h(K)
 Starting with slot h(K), locate the record containing key K

using a collision resolution policy
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Collision Resolution

 Collision is unavoidable in many cases. How can we 
insert an item to hash table in case of collision?

 Collision resolution techniques
 Open hashing (also called `separate chaining’)

 Collisions are stored outside the table
 Closed hashing (also called `open addressing’)

 Collisions are stored at another slot in the table
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Open Hashing

 Open hashing (also called `separate chaining’)
 Collisions are stored outside the table
 Limitation: some slots in the table may not be used
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Closed Hashing

 Closed hashing (also called `open addressing’)
 Collisions are stored at another slot in the table
 Each record R with key kR has a home position h(kR)
 If another record already occupies R’s home position, R 

will be stored at some other slot in the table

 Examples
 Bucket Hashing
 Linear Probing
 …
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Bucket Hashing (1)

 Group hash table slots into buckets
 M slots are divided into B buckets 

(each bucket: M/B slots)
 Hash function (key->bucket 

number) assigns each record to the 
first slot in the bucket that the 
record is mapped to.
 If the first slot is empty, insert 
 If the first slot is occupied, find the 

next empty slot in the bucket
 If all the slots in the bucket are 

occupied, store in an overflow bucket
M = 10, B = 5
h(K) = K mod 5

Insertion order: 
9877, 2007, 1000, 9530, 3013, 9879, 1057
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Bucket Hashing (2)

 A variation on bucket hashing: 
hash a key to a slot in the hash 
table as though bucketing were not 
being used
 If the slot is empty, insert 
 If the slot is occupied, find the next 

empty slot in the bucket
 If all the slots in the bucket are 

occupied, store in an overflow bucket

M = 10, B = 5
h(K) = K mod 10

Insertion order: 
9877, 2007, 1000, 9530, 3013, 9879, 1057
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Bucket Hashing (3)

 Bucket hashing vs open hashing?
 Bucket hashing has more collision => longer running time 

to search an item
 Bucket hashing has less storage requirement => less space

 Limitation of Bucket Hashing
 If a bucket is full, then all the inserts to the bucket will be 

stored in the overflow bucket, even when the hash table has 
many empty areas
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Linear Probing

 Closed hashing with no bucketing, and a collision 
resolution policy can use any slot in the hash table

 If the home position is occupied, the new position is 
determined by (home + probe_function())
 The sequence of slots is called `probe sequence’

probe
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Linear Probing

 Linear probing: move down i slots in the table
 p(K, i) = i

M = 10
h(K) = K mod 10

Insertion order: 
1001, 9050, 9877, 2037

1059 is added
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Linear Probing

 Problem of linear probing
 Primary clustering: nonempty slots are clustered, and thus 

giving unequal probability to empty slots
 E.g., in the figure below, what is the probability that a random 

key k will be inserted at slot i?
 P (slot 2) = 0.6
 P (slot 3) = P (slot 4) = P (slot 5) = P (slot 6) = 0.1
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Improved Collision Revision

 Use linear probing, but skip slots by a constant c
 p(K, i) = ci
 c should be relatively prime to M  (why?)
 Limitation: one section of slots will be used more, if inputs 

are skewed
 E.g., if c = 2, and accesses are all odd numbers

 Pseudo-random probing
 p(K, i) = Perm[ i – 1], where Perm is an array of length M-1 

containing a random permutation of the values from 1 to M-1
 Quadratic probing

 p(K, i) = c1i2 + c2i + c3
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Performance of Closed Hashing

Cost 
(# of probe)

Load Factor

Linear
Probing

Lower
Bound

Linear
Probing

Lower
Bound
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Discussion

 How can we make the probability of collision 
very small?
 Open hashing vs. closed hashing
 Time and space tradeoff

 Open hashing vs. bucket hashing
 Bucket hashing uses space more efficiently, but has 

more collisions

 Bucket hashing vs linear probing?
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What you need to know

 Collision resolution
 Hard to avoid collision in most cases

 Open hashing 
 Simple, but some slots may not be used

 Closed hashing
 Open hashing vs. bucket hashing
 Bucket hashing vs. linear probing
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Questions?
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