
U Kang (2016) 1

Data Structure

Lecture#22: Searching 3
(Chapter 9)

U Kang
Seoul National University



U Kang (2016) 2

In This Lecture

 Motivation of collision resolution policy

 Open hashing for collision resolution

 Closed hashing for collision resolution



U Kang (2016) 3

Hashing

 Given a key k, can we search k in a constant time?
 Yes!
 We can do it by hashing. It is faster than binary search , 

QBS, and sequential search
 Hash table HT is the array that holds the records

 HT has M slots  (slots numbered from 0 to M-1)
 Hash function h maps key K to a number (position)

 0 ≤ ℎ 𝐾𝐾 ≤ 𝑀𝑀 − 1
 E.g., h(K) = K % M

 Goal of a hashing system: arrange things such that for 
a given key K, and i = h(K),  the record for the key K
is located in HT[i]
 Then, the searching time would be constant



U Kang (2016) 4

Hashing

 Goal of a hashing system: arrange things such that for 
a given key K, and i = h(K),  the record for the key K
is located in HT[i]

 Collision: two different keys k1 and k2 map to a slot
 h(k1) = 𝛽𝛽 = h(k2)    

 Finding a record with key value K by hashing:
 Compute the table location h(K)
 Starting with slot h(K), locate the record containing key K

using a collision resolution policy



U Kang (2016) 5

Collision Resolution

 Collision is unavoidable in many cases. How can we 
insert an item to hash table in case of collision?

 Collision resolution techniques
 Open hashing (also called `separate chaining’)

 Collisions are stored outside the table
 Closed hashing (also called `open addressing’)

 Collisions are stored at another slot in the table



U Kang (2016) 6

Open Hashing

 Open hashing (also called `separate chaining’)
 Collisions are stored outside the table
 Limitation: some slots in the table may not be used



U Kang (2016) 7

Closed Hashing

 Closed hashing (also called `open addressing’)
 Collisions are stored at another slot in the table
 Each record R with key kR has a home position h(kR)
 If another record already occupies R’s home position, R 

will be stored at some other slot in the table

 Examples
 Bucket Hashing
 Linear Probing
 …



U Kang (2016) 8

Bucket Hashing (1)

 Group hash table slots into buckets
 M slots are divided into B buckets 

(each bucket: M/B slots)
 Hash function (key->bucket 

number) assigns each record to the 
first slot in the bucket that the 
record is mapped to.
 If the first slot is empty, insert 
 If the first slot is occupied, find the 

next empty slot in the bucket
 If all the slots in the bucket are 

occupied, store in an overflow bucket
M = 10, B = 5
h(K) = K mod 5

Insertion order: 
9877, 2007, 1000, 9530, 3013, 9879, 1057



U Kang (2016) 9

Bucket Hashing (2)

 A variation on bucket hashing: 
hash a key to a slot in the hash 
table as though bucketing were not 
being used
 If the slot is empty, insert 
 If the slot is occupied, find the next 

empty slot in the bucket
 If all the slots in the bucket are 

occupied, store in an overflow bucket

M = 10, B = 5
h(K) = K mod 10

Insertion order: 
9877, 2007, 1000, 9530, 3013, 9879, 1057



U Kang (2016) 10

Bucket Hashing (3)

 Bucket hashing vs open hashing?
 Bucket hashing has more collision => longer running time 

to search an item
 Bucket hashing has less storage requirement => less space

 Limitation of Bucket Hashing
 If a bucket is full, then all the inserts to the bucket will be 

stored in the overflow bucket, even when the hash table has 
many empty areas



U Kang (2016) 11

Linear Probing

 Closed hashing with no bucketing, and a collision 
resolution policy can use any slot in the hash table

 If the home position is occupied, the new position is 
determined by (home + probe_function())
 The sequence of slots is called `probe sequence’

probe



U Kang (2016) 12

Linear Probing

 Linear probing: move down i slots in the table
 p(K, i) = i

M = 10
h(K) = K mod 10

Insertion order: 
1001, 9050, 9877, 2037

1059 is added



U Kang (2016) 13

Linear Probing

 Problem of linear probing
 Primary clustering: nonempty slots are clustered, and thus 

giving unequal probability to empty slots
 E.g., in the figure below, what is the probability that a random 

key k will be inserted at slot i?
 P (slot 2) = 0.6
 P (slot 3) = P (slot 4) = P (slot 5) = P (slot 6) = 0.1



U Kang (2016) 14

Improved Collision Revision

 Use linear probing, but skip slots by a constant c
 p(K, i) = ci
 c should be relatively prime to M  (why?)
 Limitation: one section of slots will be used more, if inputs 

are skewed
 E.g., if c = 2, and accesses are all odd numbers

 Pseudo-random probing
 p(K, i) = Perm[ i – 1], where Perm is an array of length M-1 

containing a random permutation of the values from 1 to M-1
 Quadratic probing

 p(K, i) = c1i2 + c2i + c3



U Kang (2016) 15

Performance of Closed Hashing

Cost 
(# of probe)

Load Factor

Linear
Probing

Lower
Bound

Linear
Probing

Lower
Bound



U Kang (2016) 16

Discussion

 How can we make the probability of collision 
very small?
 Open hashing vs. closed hashing
 Time and space tradeoff

 Open hashing vs. bucket hashing
 Bucket hashing uses space more efficiently, but has 

more collisions

 Bucket hashing vs linear probing?



U Kang (2016) 17

What you need to know

 Collision resolution
 Hard to avoid collision in most cases

 Open hashing 
 Simple, but some slots may not be used

 Closed hashing
 Open hashing vs. bucket hashing
 Bucket hashing vs. linear probing



U Kang (2016) 18

Questions?


	슬라이드 번호 1
	In This Lecture
	Hashing
	Hashing
	Collision Resolution
	Open Hashing
	Closed Hashing
	Bucket Hashing (1)
	Bucket Hashing (2)
	Bucket Hashing (3)
	Linear Probing
	Linear Probing
	Linear Probing
	Improved Collision Revision
	Performance of Closed Hashing
	Discussion
	What you need to know
	슬라이드 번호 18

