Electrochemical Energy Engineering, 2019

12. Scanning probe techniques (ch. 16)

Scanning tunneling microscopy (STM) Atomic force microscopy (AFM) Scanning electrochemical microscopy (SECM)

A.J. Bard, L. R. Faulkner, Electrochemical Methods, Wiley, 2001.

Scanning probe techniques

Microscopy: optical \rightarrow scanning electron or force \rightarrow STM, AFM *in situ vs. ex situ* techniques

Scanning tunneling microsocpy (STM)

Tunnelling

- if the potential energy of a particle does not rise to infinite in the wall & E < $V \rightarrow \Psi$ does not decay abruptly to zero
- if the walls are thin → Ψ oscillate inside the box & on the other side of the wall outside the box → particle is found on the outside of a container: leakage by penetration through classically forbidden zones "tunnelling"
 cf) C.M.: insufficient energy to escape

The transition probabilities for passage through a barrier. The horizontal axis is the energy of the incident particle expressed as a multiple of the barrier height. The curves are labelled with the value of $L(2mV)^{1/2}/$. The graph on the left is for E<V and that on the right for E>V. Note that T = 0 for E<V whereas classically T would be zero. However, T<1 for E>V, whereas classically T would be 1.

enhanced reflection (antitunnelling)

- high, wide barrier $\kappa L >> 1$
 - \Rightarrow T decrease exponentially with thickness of the barrier, with m^{1/2} \Rightarrow low mass particle \rightarrow high tunnelling *tunnelling is important for electron

e.g) proton transfer reaction STM (scanning tunnelling microscopy) AFM (atomic force microscopy)

Au(111) at 0.7 V vs. NHE in HCl

Electrochemical STM

STM images of HOPG

STM images of Pt(111) with I-adlattice in $HClO_4$

STM images of Cu(111): effect of etching

{211}

Scanning tunneling spectroscopy (STS)

Atomic force microscopy (AFM)

Cantilever displacement vs. z-deflection for (left) attractive interaction and (right) repulsive interaction

Electrochemical AFM

AFM of Cu underpotential deposition (UPD) on Au(111)

Scanning electrochemical microscopy (SECM)

Principles of SECM

SECM appoach curves for steady-state currents

Imaging surface topography & reactivity

Ta oxide formation on Ta

Commercialized SECM

SECM applications

Ag line formation

Electrochemical Cu etching