Lecture Note #15 (Spring, 2022)
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Fuller & Harb (textbook), ch.15, Bard & Faulkner, ch. 18



Semiconductor basics
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Figure 15.2 Energy bands and energy (band) gaps for different
types of solid materials.
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Figure 15.1 Illustration of energy bands formed in a crystalline
solid.
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Figure 15.3 Excitation of an electron from the valence band to the
conduction band of a semiconductor.
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Conduction band

Valence band Figure 15.4 (a) Undoped Si. (b) An illustra-
tion of an n-type extrinsically doped Si with
electrons as the majority carriers.
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i ® Conduction band

Valence band Figure 15.5 Tllustration of a p-type extrinsically
doped semiconductor with holes as the majority
carriers.
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Figure 15.6 Illustration of energy
levels and ionization for (a) n-type
and (b) p-type dopants.
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n-type p-type in extrinsic semiconductors.
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n: # of free electrons (cm-3)

p: # of holes (cm™3)

n.: # of free electrons (cm=) in the
Intrinsic(undoped) SC

Np: # of donor atoms (cm-3)

N,: # of acceptor atoms (cm-3)

n ~ Ny for n-type SC
p ~ N, for p-type SC

np = n?

lllustration 15.1
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Figure 15.8 Resistivity of silicon at room temperature as function
of dopant concentration. For n-type, the dopant is phosphorous; for
p-type, it is boron.
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Energy scales
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Figure 15.9 Band gap energies at 300 K as well as location of the band edges for various semiconductors. Both vacuum and hydrogen scales
are shown. Solids with band gaps larger than about 3 eV are effectively insulators.
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Potential vs. energy (vs. vacuum)
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Example: Potential vs. energy (vs. vacuum)
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HOMO and LUMO of organic materials or polymers can be
displayed in the same way
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Semiconductor-electrolyte interface
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Depletion Q Figure 15.10 (a) Initial electron energy levels of
p-type Electrolyte region .- é semiconductor and redox couple, where the energy
semiconductor g of the CB electron is higher than that of the redox
(©) + - g couple. (b) Hllustration of the physical distribution of
- [7)]
= charge after transfer of charge from n-type semi-
_ qucL/ Ecs conductor (leaving a net positive charge on the left)
_________________ Ereq to the electrolyte (on the right). (c) Band bending

£ (different electron energy) at the interface after
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Electrochemical Engineering, First Edition. Thomas F. Fuller and John N. Harb.
© 2018 Thomas F. Fuller and John N. Harb. Published 2018 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/fuller/electrochemicalengineering




n-type E(eV) E(V vs. NHE) £ 0 E(eV)

0 i Vacuum -
T Ec (Cr¥, Cr?*) —0.41 + —4.1
E,~~ """~
' (H", Hy) 07 =45
O '
R Bg,ﬂ aR EO‘R
Au -5.1+ (FeS+, Fe2+) 0.77 +-5.3
EV
n-Type semiconductor Solution

n-Type semiconductor  Solution

(b)

A.J. Bard, L. R. Faulkner, Electrochemical Methods, Wiley, 2001.
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Light absorption

E (eV) = 1,240 / A(hm)

Figure 15.15 Optical absorption to excite electrons to the conduc-
tion band (i) where the photon energy is equal to the energy of the
band gap, and (ii) where the photon energy is greater than the band
gap energy.
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TABLE 6.2.1.

Energy Gaps (E,) of Selected Materials

Substance E; (eV) Substance E; (eV)
Ge 0.67 Fe, 0, ~2.3
CulnSe, 0.9 CdS 2.42
Si 112 ZnSe 2.58
WSe, ~1.1 WO, 2.8
MoSe, ~1.1 TiO, (rutile) 3.0
InP 1.3 TiO, (anatase) 3.2
GaAs 1.4 ZnO (zincite) 3.2
CdTe 1.50 SrTiO, 3.2
CdSe 1.74 SnO, 3.5
GaP 2.2 ZnS (zinc blende) 3.54
C (diamond) 54

A.J. Bard, Integrated Chemical Systems, Wiley, 1994.



Other losses
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Figure 15.18 Useable electric power generated from light energy.
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Photoelectrochemical effects
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Figure 15.19 Generation and separation of electron-hole pairs through light absorption in the depletion region of an n-type semiconductor.
(a) Band structure. (b) Physical situation.

Electrochemical Engineering, First Edition. Thomas F. Fuller and John N. Harb.
© 2018 Thomas F. Fuller and John N. Harb. Published 2018 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/fuller/electrochemicalengineering



Photoelectrochemistry at semiconductors

Radiation energy < electrical or chemical energy

-photoelectrochemical system: absorption of light by the system (e.g., sun
light) - chemical reactions & flow of current

-semiconductor: _ o _ _
absorb photons — electron-hole pairs = oxidation/reduction reactions —

products (photocurrent)

H, S )
D=
A

Red

Semiconductor




Hydrogen fuel production (H* or H,O reduction): i) kinetically difficult —
catalyst, i) recombining electrons and holes and lowering the efficiency of
the photoreaction unless rapid chemical reaction

2H" + Red — H, + Ox
Red: sacrificial (electron) donor

e.g., Photoproduction of H, on p-GaAs with methyl viologen & colloidal Pt
(J. Am. Chem. Soc., 102, 1488 (1980))

P-GaAs / Electrolyte /Catalyst(suspended)

hY > Eg (band gap)



Very slow H, photoreaction on GaAs (high hydrogen overpotential) — fast

reaction of MV2** + Pt (fast hydrogen evolution) — viologen +
polymer/self assembly etc

e.g., CdS particles in Nafion
hy .

2 + NAFION

%l




General photoelectrochemical system for conversion of solar
energy(sunlight) to useful chemical products
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Ox + Red' + hv —» Red + OX’
e.g., H,0 » 2H, + O, or H,, Cl,, OH" from NaCl solution



Photoeffects at semiconductor electrodes

1: dark
2: irradiation
3: Pt electrode




Photoelectrochemical cells
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Figure 15.21 Schematic diagram of a photoelectrochemical cell.
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Figure 15.22 -V curve, and on right ordinate, power versus cell
potential for the cell from Ilustration 15.7.
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Cell efficiency
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Types of PEC cells
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Figure 15.23 Energy diagrams for (a) a regenerative and (b) a photoelectrolytic cell. Source: Adapted from Gritzel 2001.
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lllustration 15.8

Figure 15.24 Photoelectrolytic cell with two
photoelectrodes.



cf. solar photovoltaic conversion & solar photovoltaic cell

Principle of p/n solar cell
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Photoelectrochemical photovoltaic cells

Representative Liquid Junction Photovoltaic Cells
Semiconductor E, (eV) Redox System Efficiency (%) Ref.?

n-GaAs (xyl) 1.4 Se3”, Se?” 12 (solar) 1, 2
n-GaAs (poly) 1.4 Ses”, Ses” 7.8 (solar) 1,3
n-CdTe (xyl) 1.4 Tel™, Te3™ 10 (632.8 nm) 4
n-Si (xyl) 1.1 Fc*/°%(MeOH) 10 (solar) 5
p-WS, (xyl) 1.3 Fc*!'/%MeCN) 7 (652.8 nm) 6
p-InP (xyl) 1.4 VA2 9.4 (solar) 7

A.J. Bard, Integrated Chemical Systems, Wiley, 1994,



Electrolytic processes for a sustainable future

Electrolytic fuel generation

- Solar fuels such as hydrogen: Hydrogen production using
photoelectrochemical cell (ch.15 in the textbook)



TABLE 6.1.1. Representative Half-Reactions of Interest in

Photoelectrochemistry
Reductions Oxidations
Ox Red Application Red’ Ox’ Application

HY H, Fuel generation Cl~ Cl, Disinfection

CO, CH, Fuel generation Br~ Br, Energy storage

Cu’* Cu  Metal removal Organic  CO, Wastewater
treatment

Agt Ag  Metal recovery CN- CNO~ Wastewater
treatment

Pt(IV) Pt Catalyst H,0 0, Inexpensive

preparation reductant
0, H,0, Synthesis CH,CO, CO,, CH; Synthesis

A.J. Bard, Integrated Chemical Systems, Wiley, 1994.



