Lecture Note #15 (Spring, 2022)

Photoelectrochemical cells

- 1. Semiconductor basics
- 2. Semiconductor-electrolyte interface
- 3. Light absorption
- 4. Photoelectrochemical effects
- 5. Photoelectrochemical cells

Fuller & Harb (textbook), ch.15, Bard & Faulkner, ch. 18

Semiconductor basics

Figure 15.1 Illustration of energy bands formed in a crystalline solid.

Electrochemical Engineering, First Edition. Thomas F. Fuller and John N. Harb. © 2018 Thomas F. Fuller and John N. Harb. Published 2018 by John Wiley & Sons, Inc. Companion Website: www.wiley.com/go/fuller/electrochemicalengineering

Electrochemical Engineering, First Edition. Thomas F. Fuller and John N. Harb. © 2018 Thomas F. Fuller and John N. Harb. Published 2018 by John Wiley & Sons, Inc. Companion Website: www.wiley.com/go/fuller/electrochemicalengineering

Figure 15.3 Excitation of an electron from the valence band to the conduction band of a semiconductor.

Electrochemical Engineering, First Edition. Thomas F. Fuller and John N. Harb. © 2018 Thomas F. Fuller and John N. Harb. Published 2018 by John Wiley & Sons, Inc. Companion Website: www.wiley.com/go/fuller/electrochemicalengineering

Figure 15.5 Illustration of a *p*-type extrinsically doped semiconductor with holes as the majority carriers.

Figure 15.6 Illustration of energy levels and ionization for (a) *n*-type and (b) *p*-type dopants.

Electrochemical Engineering, First Edition. Thomas F. Fuller and John N. Harb. © 2018 Thomas F. Fuller and John N. Harb. Published 2018 by John Wiley & Sons, Inc. Companion Website: www.wiley.com/go/fuller/electrochemicalengineering

Figure 15.7 Carriers and immobile ions in extrinsic semiconductors.

n: # of free electrons (cm⁻³)
p: # of holes (cm⁻³)
n_i: # of free electrons (cm⁻³) in the intrinsic(undoped) SC
N_D: # of donor atoms (cm⁻³)
N_A: # of acceptor atoms (cm⁻³)

 $n \sim N_D$ for n-type SC p ~ N_A for p-type SC

 $np = n_i^2$

Figure 15.8 Resistivity of silicon at room temperature as function of dopant concentration. For *n*-type, the dopant is phosphorous; for *p*-type, it is boron.

Electrochemical Engineering, First Edition. Thomas F. Fuller and John N. Harb. © 2018 Thomas F. Fuller and John N. Harb. Published 2018 by John Wiley & Sons, Inc. Companion Website: www.wiley.com/go/fuller/electrochemicalengineering

Energy scales

$$E_{vacuum}[eV] = -4.44 - qE^{0}$$

Electrochemical Engineering, First Edition. Thomas F. Fuller and John N. Harb. © 2018 Thomas F. Fuller and John N. Harb. Published 2018 by John Wiley & Sons, Inc. Companion Website: www.wiley.com/go/fuller/electrochemicalengineering

Potential vs. energy (vs. vacuum)

HOMO and LUMO of organic materials or polymers can be displayed in the same way

유기물이나 고분자의 HOMO, LUMO도 동일하게 표시 가능

Semiconductor-electrolyte interface

Electrochemical Engineering, First Edition. Thomas F. Fuller and John N. Harb. © 2018 Thomas F. Fuller and John N. Harb. Published 2018 by John Wiley & Sons, Inc. Companion Website: www.wiley.com/go/fuller/electrochemicalengineering **Figure 15.10** (a) Initial electron energy levels of semiconductor and redox couple, where the energy of the CB electron is higher than that of the redox couple. (b) Illustration of the physical distribution of charge after transfer of charge from *n*-type semiconductor (leaving a net positive charge on the left) to the electrolyte (on the right). (c) Band bending (different electron energy) at the interface after energy levels have equilibrated by the transfer of electrons between phases.

A.J. Bard, L. R. Faulkner, Electrochemical Methods, Wiley, 2001.

p-type

Light absorption

 $E (eV) = 1,240 / \lambda(nm)$

Figure 15.15 Optical absorption to excite electrons to the conduction band (i) where the photon energy is equal to the energy of the band gap, and (ii) where the photon energy is greater than the band gap energy.

			and the second se
Substance	$E_{\rm g}~({\rm eV})$	Substance	$E_{\rm g}~({\rm eV})$
Ge	0.67	Fe ₂ O ₃	~2.3
CuInSe ₂	0.9	CdS	2.42
Si	1.12	ZnSe	2.58
WSe ₂	~1.1	WO ₃	2.8
MoSe ₂	~1.1	TiO_2 (rutile)	3.0
InP	1.3	TiO_2 (anatase)	3.2
GaAs	1.4	ZnO (zincite)	3.2
CdTe	1.50	SrTiO ₃	3.2
CdSe	1.74	SnO ₂	3.5
GaP	2.2	ZnS (zinc blende)	3.54
Gar	2.2	C (diamond)	5.4

TABLE 6.2.1. Energy Gaps (E_g) of Selected Materials

A.J. Bard, Integrated Chemical Systems, Wiley, 1994.

Figure 15.18 Useable electric power generated from light energy.

Electrochemical Engineering, First Edition. Thomas F. Fuller and John N. Harb. © 2018 Thomas F. Fuller and John N. Harb. Published 2018 by John Wiley & Sons, Inc. Companion Website: www.wiley.com/go/fuller/electrochemicalengineering

Photoelectrochemical effects

Figure 15.19 Generation and separation of electron-hole pairs through light absorption in the depletion region of an *n*-type semiconductor. (a) Band structure. (b) Physical situation.

Photoelectrochemistry at semiconductors

Radiation energy \Leftrightarrow electrical or chemical energy

-photoelectrochemical system: absorption of light by the system (e.g., sun light) \rightarrow chemical reactions & flow of current

-semiconductor:

absorb photons \rightarrow electron-hole pairs \Rightarrow oxidation/reduction reactions \rightarrow products (photocurrent)

Hydrogen fuel production (H⁺ or H₂O reduction): i) kinetically difficult \rightarrow catalyst, ii) recombining electrons and holes and lowering the efficiency of the photoreaction unless rapid chemical reaction 2H⁺ + Red \rightarrow H₂ + Ox

Red: sacrificial (electron) donor

e.g., Photoproduction of H₂ on p-GaAs with methyl viologen & colloidal Pt (*J. Am. Chem. Soc.*, 102, 1488 (1980))

p-GaAs / Electrolyte / Catalyst(suspended)

 $h \mathcal{V} \ge \mathbf{E}_{\mathbf{g}}$ (band gap)

Very slow H₂ photoreaction on GaAs (high hydrogen overpotential) \rightarrow fast reaction of MV^{2+/1+} + Pt (fast hydrogen evolution) \rightarrow viologen + polymer/self assembly etc

e.g., CdS particles in Nafion

General photoelectrochemical system for conversion of solar energy(sunlight) to useful chemical products

 $Ox + Red' + hv \rightarrow Red + Ox'$ e.g., $H_2O \rightarrow 2H_2 + O_2$ or H_2 , Cl_2 , OH^2 from NaCl solution

Photoeffects at semiconductor electrodes

1: dark

- 2: irradiation
- 3: Pt electrode

Photoelectrochemical cells

Electrochemical Engineering, First Edition. Thomas F. Fuller and John N. Harb. © 2018 Thomas F. Fuller and John N. Harb. Published 2018 by John Wiley & Sons, Inc. Companion Website: www.wiley.com/go/fuller/electrochemicalengineering

Maximum power

Figure 15.22 i-V curve, and on right ordinate, power versus cell potential for the cell from Illustration 15.7.

Cell efficiency

Power curve (I-V curve)

- I_{sc} : Short-circuit current
 - → Current value when V=0
- V_{oc} : Open-circuit voltage
 - → Voltage value when I=0
- P: Power output of the cell

F.F : Fill factor

$$F.F = \frac{P_{max}}{I_{SC}V_{OC}} = \frac{I_mV_m}{I_{SC}V_{OC}}$$

The overall efficiency

$$\eta = \frac{P_{max}}{P_{r}} = \frac{F.F I_{SC}V_{OC}}{P_{r}}$$

(P_r: Radient power input)

Types of PEC cells

Figure 15.23 Energy diagrams for (a) a regenerative and (b) a photoelectrolytic cell. *Source:* Adapted from Grätzel 2001.

Electrochemical Engineering, First Edition. Thomas F. Fuller and John N. Harb. © 2018 Thomas F. Fuller and John N. Harb. Published 2018 by John Wiley & Sons, Inc. Companion Website: www.wiley.com/go/fuller/electrochemicalengineering

cf. solar photovoltaic conversion & solar photovoltaic cell

Principle of p/n solar cell

Dye-Sensitized Solar Cell (염료감응태양전지)

Photoelectrochemical photovoltaic cells

Representative Liquid Junction Photovoltaic Cells						
Semiconductor	$E_{\rm g}~({\rm eV})$	Redox System	Efficiency (%)	Ref. ^a		
n-GaAs (xyl)	1.4	Se_2^{2-} , Se^{2-}	12 (solar)	1, 2		
n-GaAs (poly)	1.4	Se_2^{2-} , Se_2^{2-}	7.8 (solar)	1, 3		
n-CdTe (xyl)	1.4	Te_2^{2-}, Te_2^{2-}	10 (632.8 nm)	4		
n-Si (xyl)	1.1	Fc ^{+/0} (MeOH)	10 (solar)	5		
$p-WS_2$ (xyl)	1.3	$Fc^{+1/0}$ (MeCN)	7 (652.8 nm)	6		
p-InP (xyl)	1.4	$V^{3+/2+}$	9.4 (solar)	7		

Democratedius I invid Inaction Distancellatic Call.

A.J. Bard, Integrated Chemical Systems, Wiley, 1994.

Electrolytic processes for a sustainable future

Electrolytic fuel generation

- Solar fuels such as hydrogen: Hydrogen production using photoelectrochemical cell (ch.15 in the textbook)

TABLE 6.1.1. Representative Half-Reactions of Interest in Photoelectrochemistry

Reductions		Oxidations			
Ox	Red	Application	Red'	Ox'	Application
H ⁺	H ₂	Fuel generation	Cl ⁻	Cl ₂	Disinfection
CO ₂	CH ₄	Fuel generation	Br ⁻	Br ₂	Energy storage
Cu ²⁺	Cu	Metal removal	Organic	CO ₂	Wastewater treatment
Ag ⁺	Ag	Metal recovery	CN ⁻	CNO ⁻	Wastewater treatment
Pt(IV)	Pt	Catalyst preparation	H ₂ O	O ₂	Inexpensive reductant
O ₂	H_2O_2	Synthesis	$CH_3CO_2^-$	CO ₂ , CH ₃ .	Synthesis

A.J. Bard, Integrated Chemical Systems, Wiley, 1994.