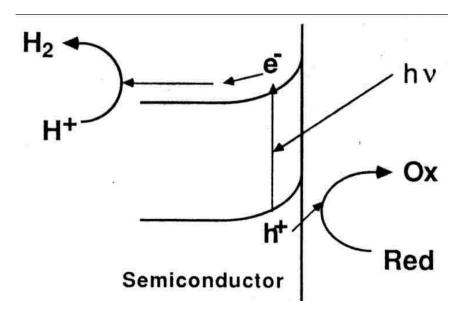

16. Photoelectrochemistry (Bard, ch. 18)

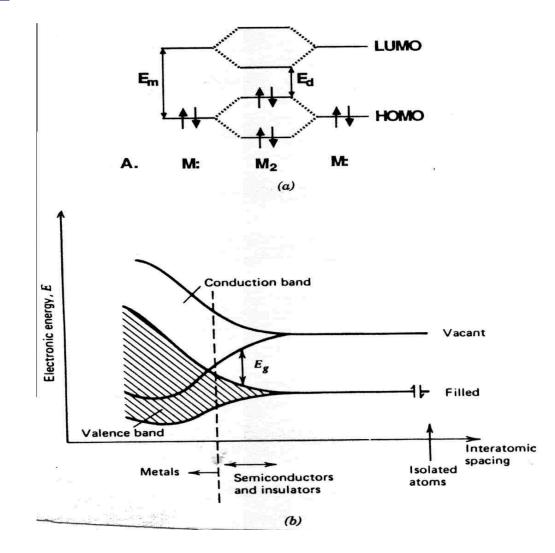
A. J. Bard, L. R. Faulkner, *Electrochemical Methods*, Wiley, 2001.

Electrochemical Energy Devices

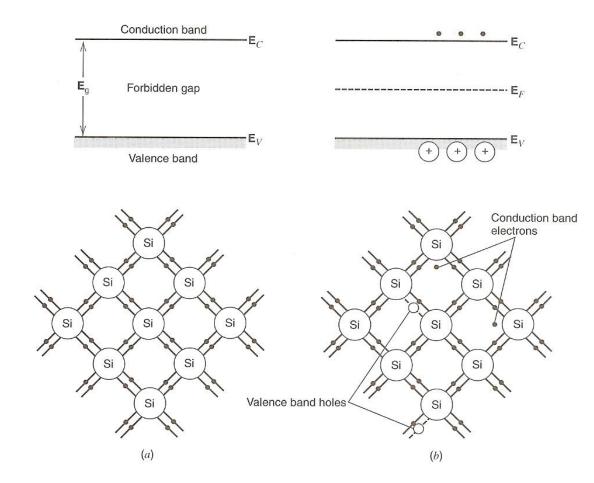
FC/electrolyzer: hydrogen + oxygen [air) \leftrightarrow water + electric energy Respiration/photosynthesis: glucose + oxygen (air) \leftrightarrow CO₂ + water + energy Photoelectrochemical cell Energy storage (battery)


Photoelectrochemistry at semiconductors

Radiation energy \Leftrightarrow electrical or chemical energy


• **photoelectrochemical system**: <u>absorption of light</u> by the system (e.g., sun light) \rightarrow <u>chemical reactions</u> & <u>flow of current</u>

• semiconductor:


absorb photons \rightarrow electron-hole pairs \Rightarrow oxidation/reduction reactions \rightarrow products (photocurrent)

Semiconductor electrodes Band model

intrinsic semiconductor; undoped

- intrinsic semiconductor; # of $e^{-}(n_i) \& h^+(p_i)$ per cm³ at T

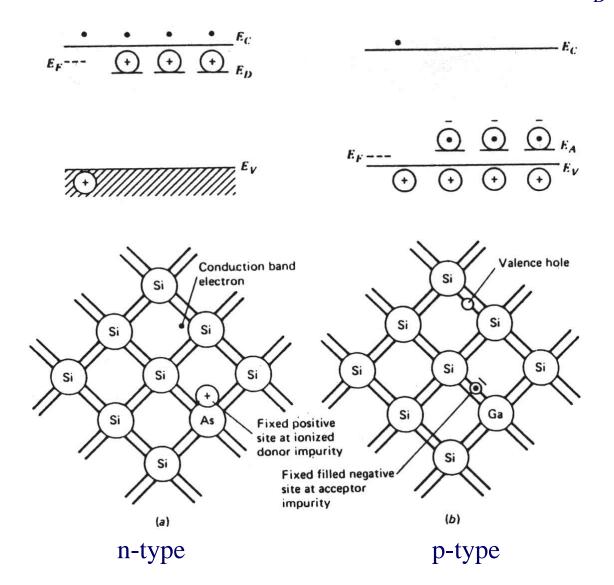
$$n_{i} = p_{i} = (N_{\rm C}N_{\rm V})^{1/2} \exp\left[-\frac{E_{g}}{2kT}\right]$$
$$N_{\rm C} = 2\left(\frac{2\pi m_{\rm n}kT}{h^{2}}\right)^{3/2} = (4.83 \times 10^{15})(m_{\rm e}*T)^{3/2}$$
$$N_{\rm V} = 2\left(\frac{2\pi m_{\rm p}kT}{h^{2}}\right)^{3/2} = (4.83 \times 10^{15})(m_{\rm h}*T)^{3/2}$$

Where T(K), m_n, m_p ; reduced masses of $e^- \& h^+, m_e^{*}, m_h^{*}$; relative effective masses where $m_e^{*} = m_n/m_0$, $m_h^{*} = m_p/m_0$ (m_0 ; rest mass of an electron)

$$n_i = p_i \sim 2.5 \text{ x } 10^{19} \exp(-E_g/2kT) \text{ cm}^{-3} (\text{near } 25^{\circ}\text{C})$$

For Si, $n_i = p_i \sim 1.4 \times 10^{10} \text{ cm}^{-3}$ $E_g > 1.5 \text{ eV} \rightarrow \text{few carriers: electrical insulators}$

			and the second se
Substance	$E_{\rm g}~({\rm eV})$	Substance	$E_{\rm g}~({\rm eV})$
Ge	0.67	Fe ₂ O ₃	~2.3
CuInSe ₂	0.9	CdS	2.42
Si	1.12	ZnSe	2.58
WSe ₂	~1.1	WO ₃	2.8
MoSe ₂	~1.1	TiO_2 (rutile)	3.0
InP	1.3	TiO_2 (anatase)	3.2
GaAs	1.4	ZnO (zincite)	3.2
CdTe	1.50	SrTiO ₃	3.2
CdSe	1.74	SnO ₂	3.5
	2.2	ZnS (zinc blende)	3.54
GaP	2.2	C (diamond)	5.4


TABLE 6.2.1. Energy Gaps (E_g) of Selected Materials

Property	$\frac{\text{Si}}{5.0 \times 10^{22}}$	$\frac{\text{GaAs}}{2.21 \times 10^{22}}$
Atoms/cm ³		
E_{g} (eV) at 300 K	1.12	1.43
Crystal structure	Diamond	Zinc blende
Density (g/cm^3)	2.328	5.32
Effective density of states		
in conduction band, $N_{\rm C}$ (cm ⁻³)	2.8×10^{19}	4.7×10^{17}
Effective density of states		
in valence band, $N_{\rm V}$ (cm ⁻³)	1.02×10^{19}	7.0×10^{18}
Effective mass (m^*/m_0)		
Electrons	0.97, 0.19	0.068
Holes	0.16, 0.5	0.12, 0.5
Dielectric constant	11.8	10.9
$n_i, p_i \text{ (cm}^{-3}$) at 300 K	6.8×10^{9}	1.8×10^{6}
Mobility $(cm^2 V^{-1} s^{-1})$ at 300 K		
Electrons	1900	8800
Holes	500	400

TABLE 6.2.2. Properties of Si and GaAs

- Mobilities (μ , cm²V⁻¹s⁻¹) vs. diffusion coefficient (cm²s⁻¹) D_i = kT μ _i = 0.0257 μ at 25°C, i = n, p Extrinsic semiconductors; doped

- dopants or impurity; ~ppm, typical donor densities (N_D) are 10¹⁵-10¹⁷ cm⁻³

n-type: total density (n) of electrons in CB

 $n = p + N_D$, p; hole density (thermal activation of VB atoms) most cases for moderate doping $N_D >> p$, $n \sim N_D$ For any materials (intrinsic or extrinsic)

$$np = N_{\rm C}N_{\rm V}\exp\frac{-E_{\rm g}}{kT} = n_i^2 = p_i^2$$

For n-type SC

$$p = \frac{N_{\rm C}N_{\rm V}}{N_{\rm D}}\exp\frac{-E_{\rm g}}{kT} = \frac{n_i^2}{N_{\rm D}}$$

e.g., 10^{17} cm⁻³ As doped Si \rightarrow electron density ~ 10^{17} cm⁻³, hole density ~ 460 \rightarrow majority carrier: electron

p-type dopant (acceptor) density; N_A , electron density (by thermal promotion); n \rightarrow

total density of holes (p)

 $p = n + N_A$ when $N_A >> n$, $p = N_A \rightarrow$ hole; majority carriers

 $n = n_i^2/N_A$ e.g., Si: N_A = 5 x 10¹⁶ acceptor/cm³, n ~ 4000 cm⁻³

•compound semiconductor (e.g., GaAs or TiO₂); n-type or p-type \rightarrow replacement of impurity atoms to the constituent lattice atoms, impurity atoms in an interstitial position, lattice vacancy or broken bond

e.g., n-TiO₂: oxygen vacancies in the lattice

• extrinsic SC; E_F move up & down depending upon doping

$$E_{\rm F} = E_{\rm V} + kT \ln\left(\frac{N_{\rm V}}{N_{\rm A}}\right)$$
 (p-type semiconductor)

and donors move $E_{\rm F}$ up toward the conduction band:

$$E_{\rm F} = E_{\rm C} - kT \ln \left(\frac{N_{\rm C}}{N_{\rm D}}\right)$$
 (n-type semiconductor)

e.g., $10^{17} \text{ cm}^{-3} \text{ As doped Si} \rightarrow \text{N}_{\text{D}} \sim 10^{17} \text{ cm}^{-3}, \text{N}_{\text{C}} = 2.8 \text{ x } 10^{19} \text{ cm}^{-3}, 25 \text{ °C}$ $\Rightarrow \text{E}_{\text{F}} = \text{E}_{\text{C}} - (25.7 \text{ x } 10^{-3} \text{ eV}) \ln(\text{N}_{\text{C}}/\text{N}_{\text{D}}) \sim \text{E}_{\text{C}} - 0.13 \text{ eV}$ $- \text{ if } \text{N}_{\text{D}} < \text{N}_{\text{C}}, \text{N}_{\text{A}} < \text{N}_{\text{V}} \rightarrow \text{SC}$

- if higher doping levels; Fermi level moves into VB or $CB \Rightarrow$ show metallic conductivity

e.g., transparent SnO₂ (E_g = 3.5 eV) + heavily doping with Sb(III) (N_D > 10^{19} cm^{-3}) \Rightarrow the material becomes conductive

Fermi level

1) probability that an electronic level at energy E is occupied by an electron at thermal equilibrium $f(E) \rightarrow$ Fermi-Dirac distribution function

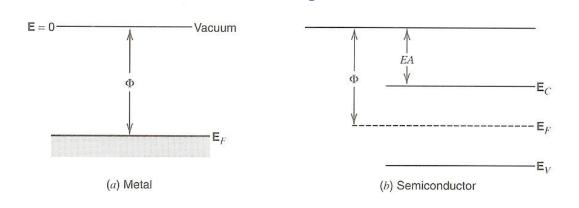
$$f(E) = \frac{1}{1 + \exp[(E - E_{\rm F})/kT]}$$

- Fermi level E_F ; value of E for which f(E) = 1/2 (equally probable that a level is occupied or vacant)

- At T = 0, all levels below $E_F (E < E_F)$ are occupied (f(E) \rightarrow 1); all levels $E > E_F$ vacant

-intrinsic SC: E_F in the middle of CB and VB edges

2) alternative definition of E_F for a phase α : "electrochemical potential"


$$E_{\rm F}^{\alpha} = \overline{\mu}_{\rm e}^{\alpha} = \mu_{\rm e}^{\alpha} - ze\phi^{\alpha}$$

where $\overline{\mu}_{e}^{\alpha}$ is the *electrochemical potential* of electrons in phase α , μ_{e}^{α} is the chemical potential of electrons in this phase, and ϕ^{α} is the inner potential of α (related to the electrical potential applied to the phase).

useful in thermodynamic considerations of reactions and interfaces; at equilibrium electrically, the electrochemical potential of electrons in all phases must be same by charge transfer → same Fermi level
Fermi levels difference between two phases; function of the applied

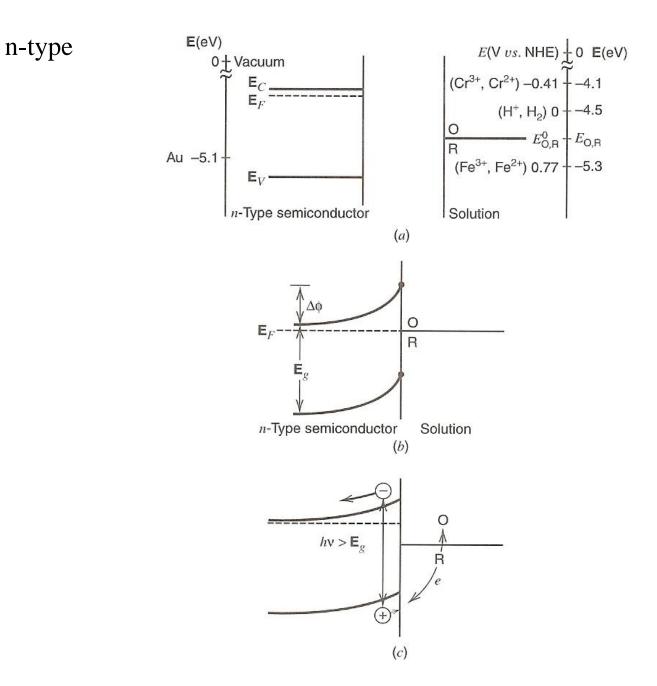
potential

• Fermi level (uncharged phase) vs. work function (Φ)

 $\Phi = -E_{\rm F}$

Semiconductor/solution interface

• electron transfer at the interface (same principles as those given above) + chemical reaction (if possible, e.g., decomposition of SC , oxide film formation) \rightarrow complicate


- Si; SiO₂ (if oxygen or oxidant in solution); hinder electron transfer

 \bullet The distribution of charge (e⁻/h⁺ in SC & ions in solution) and potential; depend on their relative Fermi level

• Fermi level in solution: electrochemical potential of electrons in solution phase ()

- governed by the nature and concentration of the redox species present in the solution and is directly related to the solution redox potential as calculated by the Nernst equation

- at the point of zero charge, no surface state, no specifically adsorbed ions, no excess charge \rightarrow the distribution of carriers (e⁻, h⁺, anions, cations) is uniform from surface to bulk, and the energy bands are flat "<u>flat band</u> <u>potential</u>" (E_{fb}); no space charge layer in SC & no diffuse layer in solution

• potential difference (by applied voltage or Fermi level difference); charged interface \rightarrow space charge layer (thickness W); potential difference ΔV , dopant density N_D

$$W (\text{cm}) \approx 1.05 \times 10^3 \left[\frac{\epsilon \Delta V(\text{V})}{N_{\text{D}}(\text{cm}^{-3})} \right]^{1/2}$$

50 ~ 2000 Å

• <u>band bending</u>: because of non uniform carrier density in SC (upward (with respect to the bulk SC) for a positively charged SC and downward for a negatively charged one) \rightarrow electric field in the space charge region \rightarrow direction of motion

The capacitance of the space charge layer

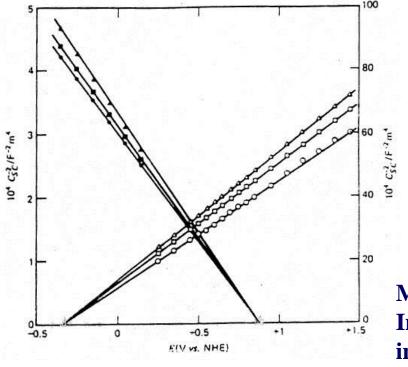
$$C_{sc} = (2kTn_i \varepsilon \varepsilon_0)^{1/2} \\ \cdot \frac{e}{2kT} \frac{-\lambda e^{-Y} + \lambda^{-1} e^{Y} + (\lambda - \lambda^{-1})}{[\lambda(e^{-Y} - 1) + \lambda^{-1}(e^{Y} - 1) + (\lambda - \lambda^{-1})]^{1/2}}$$

where $\lambda = n_i/N_D$ and $Y = e\Delta\phi/kT$. This equation can be simplified under the conditions that a depletion layer exists (i.e., $\lambda e^{-Y} \ll \lambda^{-1}$). For an n-type semiconductor, when $\lambda^{-1} \gg \lambda$, this equation can be written with some rearrangement as

$$\frac{1}{C_{\rm sc}^2} = \frac{2}{e\varepsilon\varepsilon_0 N_{\rm D}} \left(-\Delta\phi - \frac{kT}{e} \right) \qquad \text{Mott-Schottky plot}$$

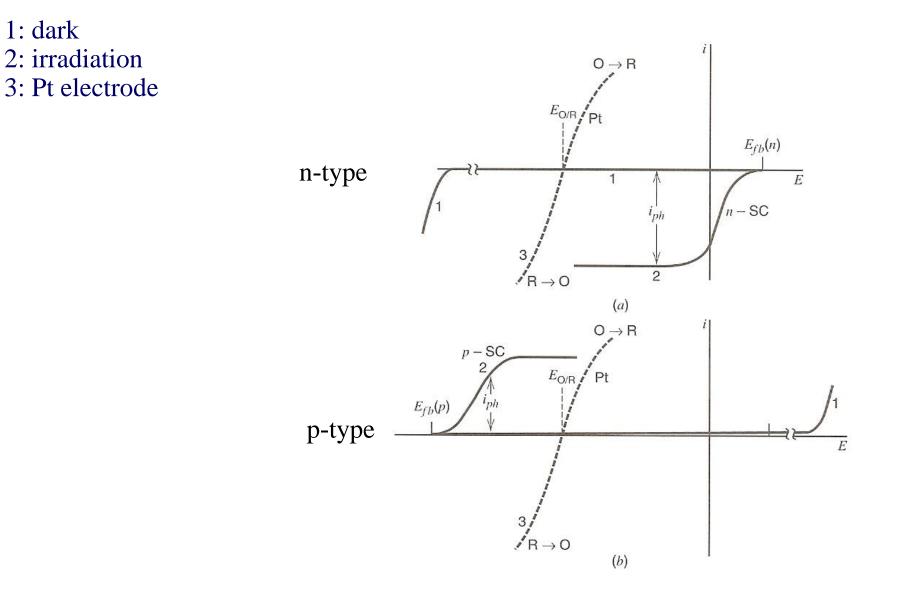
which at 25°C, for C_{sc} in $\mu F/cm^2$, N_D in cm⁻³, and $\Delta \phi = E_{fb} - E$ in volts is

$$\frac{1}{C_{\rm sc}^2} = \frac{1.41 \times 10^{20}}{\epsilon N_{\rm D}} \left[E - E_{\rm fb} - 0.0257 \right]$$

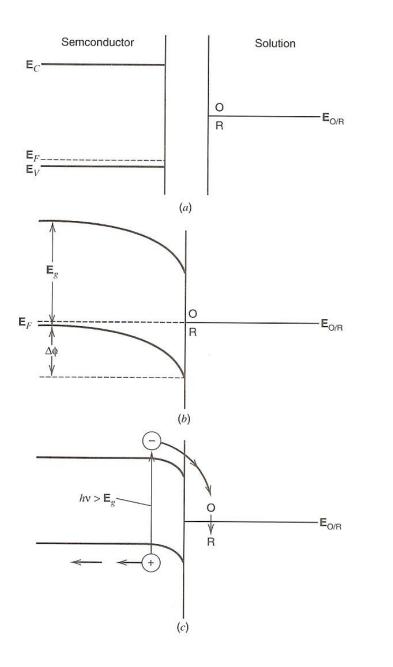

Mott-Schottky plot: useful in characterizing SC/liquid interface where a plot of $(1/C_{SC}^2)$ vs. E should be linear \rightarrow values of E_{fb} and N_D from the intercept and slope

space charge capacitance $C_{sc} \rightarrow Mott$ -Schottly equation

$$1/C_{sc}^{2} = (2/e\varepsilon\varepsilon_{0}N)^{1/2}(-\Delta\phi - kT/e)$$


 ϵ : dielectric constant, N: donor or acceptor densities, e: quantity of charge, - $\Delta \phi = E \text{-} E_{\mathrm{fb}}$

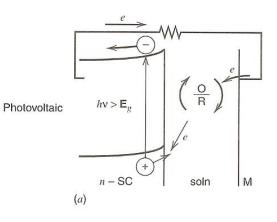
A plot of $1/C_{sc}^{2}$ vs. potential E should be linear $\rightarrow E_{fb}$, doping level N

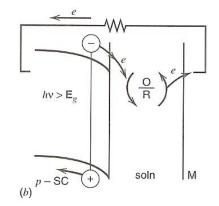


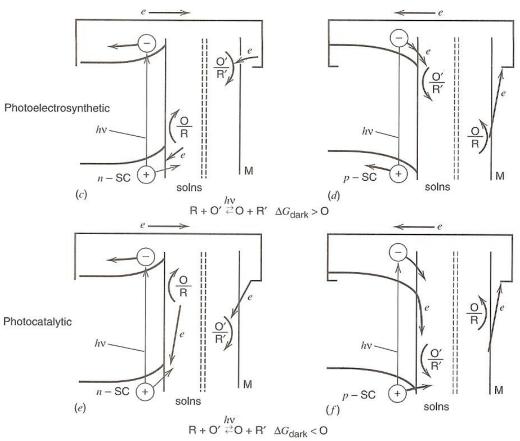
Mott-Schottky plots for n- and p-type InP in 1 M KCl + 0.01 M HCl

Photoeffects at semiconductor electrodes

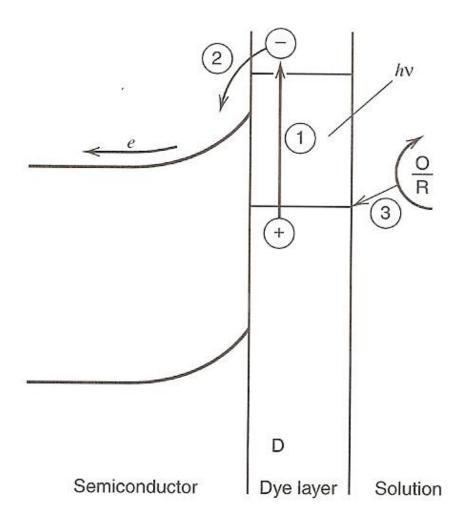
p-type

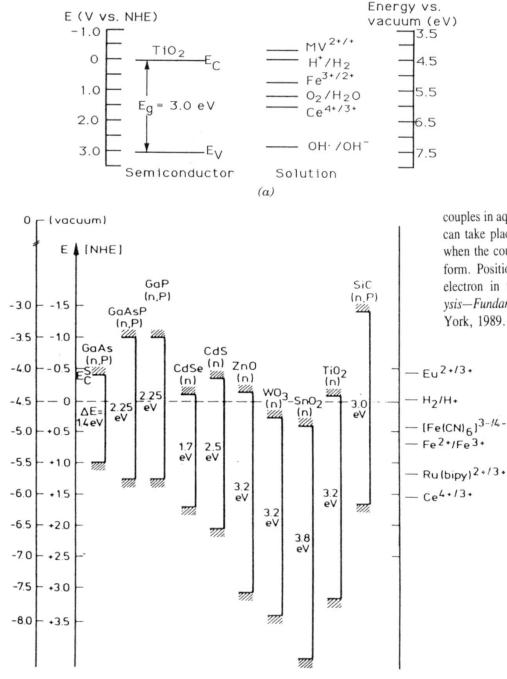



Photoelectrochemical cells

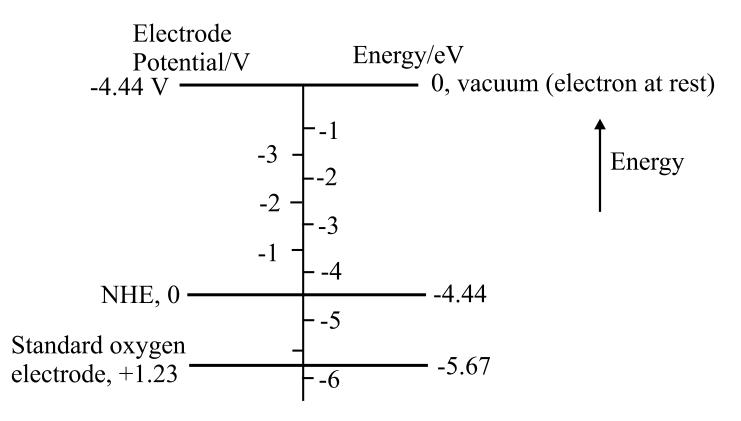

Photovoltaic cells: convert light to electricity

Photoelectrosynthetic cells: Radiant E to chemical energy

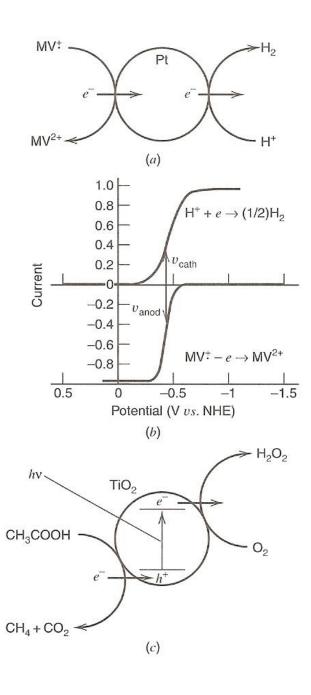

Photocatalytic cells: Light E to overcome activation E of the process



Band gap vs. wavelength \rightarrow limit to utilize sunlight (e.g., TiO₂ (3.0 eV)) \rightarrow dye sensitization of a semiconductor



(b)


Band-edge positions of semiconductors with respect to several redox couples in aqueous solution at pH 1. (a) TiO₂ in rutile form. Reduction by a CB electron can take place when the redox couple lies below E_C ; oxidation by a VB hole occurs when the couple lies above E_V . (b) Other semiconductors; here TiO₂ is in the anatase form. Positions are given both as potentials versus NHE and as energies versus the electron in vacuum. [Reprinted with permission from M. Grätzel, in *Photocatalysis—Fundamentals and Applications*, N. Serpone and E. Pelizzetti, eds., Wiley, New York, 1989. Copyright © 1989 John Wiley & Sons.]

Potential vs. energy (vs. vacuum)



Semiconductor particles

Grains Nanocrystalline films Quantum particles (Q-particles or quantum dots)

I-V Curves in Fuel Cell, Battery, Solar Cell(Photoelectrochemical Cell)

