Lecture Note \#3 (Spring, 2022)

Electrochemical kinetics

1. Potential on reaction rate
2. Butler-Volmer equation
3. Exchange current
4. Charge transfer resistance
5. Tafel plot

Fuller \& Harb (textbook), ch.3, Bard (ref.), ch.3, Oh (ref.), ch. 4

Current: expression of reaction rate

- Current (i) : the rate of the electrode reactions
- Charge $(q) \rightarrow$ extent of chemical change at each electrode. The charge required to convert N mol of starting material to product in an $n e^{-}$ electrode reaction is calculated using Faraday's law of electrolysis

$$
q=\int i d t=n N F=n m F / M \quad \text { for time } t
$$

where F : Faraday constant $\left(96,485 \mathrm{C} \mathrm{mol}^{-1}\right)$

$$
\begin{aligned}
i(\text { amperes })= & \frac{d Q}{d t}(\text { coulombs } / \mathrm{s}) \\
\frac{Q}{n F} \frac{(\text { coulombs })}{(\text { coulombs } / \mathrm{mol})} & =N(\text { mol electrolyzed }) \\
\text { Rate }(\mathrm{mol} / \mathrm{s}) & =\frac{d N}{d t}=\frac{i}{n F}
\end{aligned}
$$

I-V relation

Plot of cell currents versus the cell voltages (volt + am(pere) + mogram)

Not linear \rightarrow electrochemical cells do not obey Ohm's law
Overpotential (or overvoltage, polarization) $\eta=E-E_{\text {eq }}$

$$
E_{e q}=E^{0}
$$

I-V curve : Butler-Volmer equation

Nernst equation : equilibrium expression

\rightarrow electrode reaction rate? (kinetics)
\rightarrow relationship between potential and rate of electrode reaction (which determine current) : I-V curve

I-V relation: Butler-Volmer equation, Tafel equation

One-step, one-electron kinetic relationships (Butler-Volmer approach):

$E-E^{0}=\eta$: overpotential
Control the magnitude of the current by changing the potential (and vise versa). Potential and current cannot be adjusted at the same time.

Electron transfer at an electrode

Reduction \& oxidation at electrode are accomplished by heterogeneous electron transfer reactions since electron transfer occurs at the interface between electrode and solution \rightarrow relationship between potential and rate of electrode reaction (which determine current)
\rightarrow Butler-Volmer equation

FIGURE 19-10 Steps in the reaction $\mathrm{Ox}+n e \rightleftharpoons$ Red at an electrode. Note that the surface layer is only a few molecules thick. (Adapted from: A. J. Bard and L. R. Faulkner, Electrochemical Methods, p. 21, Wiley: New York, 1980. Reprinted by permission of John Wiley \& Sons, Inc.)

Dynamic equilibrium

$$
\mathrm{O}+\mathrm{e} \underset{k_{b}}{\stackrel{k_{f}}{=} R} \text { or } A+e=B
$$

Rate of the forward process

$$
v_{f}(\mathrm{M} / \mathrm{s})=\mathrm{k}_{\mathrm{f}} \mathrm{C}_{\mathrm{A}}
$$

Rate of the reverse reaction

$$
v_{b}=k_{b} C_{B}
$$

Rate const, $\mathrm{k}_{\mathrm{f}}, \mathrm{k}_{\mathrm{b}}$: s^{-1} Net conversion rate of A \& B

$$
v_{\text {net }}=k_{f} C_{A}-k_{b} C_{B}
$$

At equilibrium, $\mathrm{v}_{\text {net }}=0$

$$
\mathrm{k}_{\mathrm{f}} / \mathrm{k}_{\mathrm{b}}=\mathrm{K}=\mathrm{C}_{\mathrm{B}} / \mathrm{C}_{\mathrm{A}}
$$

*kinetic theory predicts a constant concentration ratio at equilibrium, just as thermodynamics
At equilibrium, kinetic equations \rightarrow thermodynamic ones
\rightarrow dynamic equilibrium (equilibrium: nonzero rates of $k_{f} \& k_{b}$, but equal)
Exchange velocity

$$
\mathrm{v}_{0}=\mathrm{k}_{\mathrm{f}}\left(\mathrm{C}_{\mathrm{A}}\right)_{\mathrm{eq}}=\mathrm{k}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{B}}\right)_{\mathrm{eq}}
$$

Relationship between current and heterogeneous rate constants

Faraday's law: chemical reaction \rightarrow electric current \rightarrow an indicator of reaction rate
Amount of electricity,

$$
q=n F N
$$

n : electron number, N : number of moles, F : Faraday constant $(96,485$ C/mol)
e.g., $\mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 2 \mathrm{e}^{-}+\mathrm{PbO}_{2}(\mathrm{~s})+\mathrm{HSO}_{4}^{-}(\mathrm{aq})+3 \mathrm{H}^{+}(\mathrm{aq})$

$$
\mathrm{q} / 2 \mathrm{~F}=-\Delta \mathrm{N}_{\mathrm{PbSO} 4}=-\Delta \mathrm{N}_{\mathrm{H} 2 \mathrm{O}} / 2=\Delta \mathrm{N}_{\mathrm{PbO} 2}=\Delta \mathrm{N}_{\mathrm{HSO} 4-}=\Delta \mathrm{N}_{\mathrm{H}+} / 3
$$

The passage of two moles of electrons = destroy one mole of PbSO_{4}, destroy two moles of water, create one mole of $\mathrm{PbO}_{2} \ldots$

If we generalize this result and apply it to the oxidation reaction,

$$
R \rightarrow n e^{-}+O
$$

Then,

$$
\mathrm{q} / \mathrm{nF}=-\Delta \mathrm{N}_{\mathrm{R}}=\Delta \mathrm{N}_{\mathrm{O}}
$$

$\mathrm{I}=\mathrm{dq} / \mathrm{dt}=\mathrm{nFdN} / \mathrm{dt}$

$$
\begin{gathered}
\mathrm{I} / \mathrm{nF}=-\mathrm{dN}_{\mathrm{R}} / \mathrm{dt}=\mathrm{dN} / \mathrm{dt}=\text { rate } \\
\mathrm{O}+\mathrm{e}^{-}=\mathrm{R} \\
\mathrm{E}_{\mathrm{n}}=\mathrm{E}^{0}-\mathrm{RT} / \mathrm{F} \ln \left(\mathrm{c}_{\mathrm{R}} / \mathrm{c}_{\mathrm{O}}\right)
\end{gathered}
$$

depends on the concentrations of the two species and $\mathrm{E}^{0^{\prime}}$
"=" means,

$$
\begin{aligned}
& \mathrm{R} \rightarrow \mathrm{e}^{-}+\mathrm{O} \\
& \mathrm{O}+\mathrm{e}^{-} \rightarrow \mathrm{R}
\end{aligned}
$$

At $E_{n}\left(E_{\text {eq }}\right)$, the rates

$$
r_{o x}\left(E_{n}\right)=r_{r d}\left(E_{n}\right)
$$

because no net reaction occurs. The rate r depend on the electrode potential E .

What exactly is meant by the "rate" of an electrode reaction?
At the potential of E ,

$$
r_{\text {net }}(E)=r_{o x}(E)-r_{r d}(E)
$$

net reaction rate: the rate at which R is destroyed, or the rate at which O is created, per unit area of electrode (unit of $\mathrm{mol} \cdot \mathrm{m}^{-2} \mathrm{~s}^{-1}$) "heterogeneous reaction rate"

$$
\begin{gathered}
r_{\text {net }}(E)=-(1 / A)\left(d N_{R} / d t\right)=(1 / A)\left(d N_{O} / d t\right) \\
\mathbf{r}_{\mathbf{o x}}(E)=\mathbf{k}_{\mathbf{o x}}(E) \mathbf{c}_{\mathbf{R}}^{\mathbf{s}}
\end{gathered}
$$

"s" means that the concentrations at the electrode surface
$\mathrm{k}_{\mathrm{ox}}(\mathrm{E})$: oxidative rate constant $\left(\mathrm{ms}^{-1}\right)$

$$
r_{r d}(E)=k_{r d}(E) c_{o}^{s}
$$

$\mathrm{k}_{\mathrm{rd}}(\mathrm{E})$: reductive rate constant

$$
r_{\text {net }}(\mathrm{E})=\mathrm{l} / \mathrm{nAF}=\mathrm{i} / \mathrm{nF}
$$

From $r_{\text {net }}(E)=r_{o x}(E)-r_{r d}(E), r_{o x}(E)=k_{o x}(E) c_{R}, r_{r d}(E)=k_{r d}(E) c_{o}$

Relate the faradaic current and rate constants

$$
\mathrm{i}=\mathrm{nF}\left[\mathrm{k}_{\mathrm{ox}} \mathrm{c}_{\mathrm{R}}{ }^{\mathrm{s}}-\mathrm{k}_{\mathrm{rd}} \mathrm{c}_{\mathrm{o}} \mathrm{~s}\right]
$$

cf) $k_{o x}=k_{a}$ of anode, $k_{r d}=k_{c}$ of cathode
when $\mathrm{k}_{\mathrm{ox}}(\mathrm{E}) \mathrm{c}_{\mathrm{R}}{ }^{s}=\mathrm{k}_{\mathrm{rd}}(\mathrm{E}) \mathrm{c}_{\mathrm{O}}{ }^{\mathrm{s}} \rightarrow$ zero current \rightarrow equilibrium when $\mathrm{k}_{\mathrm{ox}}(\mathrm{E}) \mathrm{c}_{\mathrm{R}}{ }^{\mathrm{s}}>\mathrm{k}_{\mathrm{rd}}(\mathrm{E}) \mathrm{c}_{\mathrm{O}}{ }^{\mathrm{s}} \rightarrow$ anodic current $\left(\mathrm{i}_{\mathrm{a}}\right) \rightarrow$ oxidation of R to O when $\mathrm{k}_{\mathrm{ox}}(\mathrm{E}) \mathrm{c}_{\mathrm{R}}{ }^{\mathrm{s}}<\mathrm{k}_{\mathrm{rd}}(\mathrm{E}) \mathrm{c}_{\mathrm{O}}{ }^{\mathrm{s}} \rightarrow$ cathodic current $\left(\mathrm{i}_{\mathrm{c}}\right) \rightarrow$ reduction of O to R

Figure 3.3 The relationship between potential, electron energy, and the direction of a faradaic reaction.

Electrochemical Engineering, First Edition. Thomas F. Fuller and John N. Harb. © 2018 Thomas F. Fuller and John N. Harb. Published 2018 by John Wiley \& Sons, Inc. Companion Website: www.wiley.com/go/fuller/electrochemicalengineering

Figure 3.4 Simple electron transfer reaction at metal electrode.

Electrochemical Engineering, First Edition. Thomas F. Fuller and John N. Harb. (c) 2018 Thomas F. Fuller and John N. Harb. Published 2018 by John Wiley \& Sons, Inc. Companion Website: www.wiley.com/go/fuller/electrochemicalengineering

Figure 3.5 Change in energy associated with reaction at an electrode surface (subscript $a=$ anodic and $c=$ cathodic).

Electrochemical Engineering, First Edition. Thomas F. Fuller and John N. Harb. © 2018 Thomas F. Fuller and John N. Harb. Published 2018 by John Wiley \& Sons, Inc. Companion Website: www.wiley.com/go/fuller/electrochemicalengineering

Oh, ch.4, Fig. 4-3

Potential dependence of heterogeneous rate constants

$$
\mathrm{O}+\mathrm{ne}^{-}=\mathrm{R}
$$

Transition state model,

$$
\mathrm{k}_{\mathrm{rd}}=\mathrm{k}_{\mathrm{f}}=\operatorname{Aexp}\left(-\Delta \mathrm{G}_{\mathrm{f}}^{\ddagger} / \mathrm{RT}\right)
$$

where ΔG_{f}^{\ddagger} is the free energy of activation and A is a frequency factor which accounts for the rate of collision of the electroactive molecule with the electrode surface
cf) $k_{o x}=k_{b}$ of anode, $k_{r d}=k_{f}$ since forward direction (\rightarrow) is reduction one.

(a) equilibrium between O and R
$\mathrm{O} \rightarrow \mathrm{R}$: pass over the activation free energy barrier, $\Delta \mathrm{G}_{\mathrm{f}}^{\ddagger}$
$R \rightarrow O$: pass over the activation free energy barrier, $\Delta G_{b} \ddagger$
At equilibrium, $\Delta \mathrm{G}_{\mathrm{f}}^{\ddagger}=\Delta \mathrm{G}_{\mathrm{b}}^{\ddagger} \rightarrow$ probability of electron transfer is the same in each direction \rightarrow no net curent $\rightarrow i_{c}+i_{a}=0$ No net current means same rates between forward and backward (not zero current) \rightarrow exchange current i_{0} at equilibrium; $i_{0}=i_{c}=-i_{a}$

$$
\mathrm{i}_{0} \uparrow \text { as } \Delta \mathrm{G} \downarrow
$$

(b) net reduction
applying negative potentials reduction: more negative potential $\rightarrow \mathrm{k}_{\mathrm{f}}\left(\right.$ or $\left.\mathrm{k}_{\mathrm{rd}}\right) \uparrow, \mathrm{k}_{\mathrm{b}} \downarrow$

Negative potential $\mathrm{E} \rightarrow$ lower $\Delta \mathrm{G}_{\ddagger} \ddagger$ and raise $\Delta \mathrm{G}_{\mathrm{b}} \ddagger$
Potential change $\mathrm{E}-\mathrm{E}^{0} \rightarrow$ free energy change $-\mathrm{nF}\left(\mathrm{E}-\mathrm{E}^{0}\right) \Rightarrow$ part of this energy change (factor α) \rightarrow decrease in the activation barrier for reduction (forward reaction) ; part (factor ($1-\alpha$)) \rightarrow increase in the activation barrier for oxidation
$\Delta \mathrm{G}_{\mathrm{f}}^{\ddagger}=\Delta \mathrm{G}^{0 \ddagger}-\alpha \mathrm{nF}\left(\mathrm{E}-\mathrm{E}^{0^{\prime}}\right)$
$\Delta G_{b}{ }^{\ddagger}=\Delta G^{0 \ddagger}+(1-\alpha) n F\left(E-E^{0}\right)$
Applying potential to the electrode \rightarrow activation free energy barrier α; "transfer coefficient" or "symmetry factor" since α is a measure of the symmetry of the energy barrier \rightarrow a symmetrical energy barrier ($\alpha=0.5$), real systems: $0.3 \sim 0.7$ semiconductor: ~ 0 or ~ 1

Actually,

$$
\mathrm{O}+\alpha \mathrm{ne}^{-} \rightarrow \mathrm{R}-(1-\alpha) \mathrm{ne}^{-}
$$

$\alpha,-(1-\alpha)$; orders of the reductive and oxidative processes
another interpretation of α : increasing electrochemical activity of electrons \rightarrow it accelerates the reductive process and retards the oxidative process \rightarrow α is the fraction of the increase $r_{r d},(1-\alpha)$ is the fraction that diminishes $r_{o x}$ $\alpha=0.5$; perfect symmetric, these fractions are equal

Fig. 4.4 Energy profiles for the cases (a) $\alpha_{\mathrm{c}} \approx 0$; (b) $\alpha_{\mathrm{c}} \approx \frac{1}{2}$; (c) $\alpha_{\mathrm{c}} \approx 1$.
Arrhenius form,

$$
\begin{aligned}
& k_{f}=k^{0} \exp \left[-\alpha n F\left(E-E^{0}\right) / R T\right] \\
& k_{b}=k^{0} \exp \left[(1-\alpha) n F\left(E-E^{0}\right) / R T\right]
\end{aligned}
$$

Where k^{0} is the standard rate constant, $k_{f}=k_{b}=k^{0}$ at $E^{0} . k^{0}, \alpha \rightarrow$ rate constant. Relationship between potential and rate

Relationship between current and potential

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{c}}=\mathrm{nFc}_{O}{ }^{\mathrm{s}} \mathrm{k}_{\mathrm{f}} \text { and } \mathrm{i}_{\mathrm{a}}=-\mathrm{nF} \mathrm{c}_{\mathrm{R}}{ }^{\mathrm{s} k_{\mathrm{b}}} \\
& \mathrm{i}_{\mathrm{c}}=\mathrm{nFk}^{0} \mathrm{c}_{\mathrm{o}}{ }^{\mathrm{s}} \exp \left\{-\alpha \mathrm{nF}\left(\mathrm{E}^{-E^{0}}\right) / R T\right\} \\
& \mathrm{i}_{\mathrm{a}}=-\mathrm{nFk} \mathrm{c}_{\mathrm{R}}{ }^{\mathrm{s}} \exp \left\{(1-\alpha) \mathrm{nF}\left(E-E^{0}\right) / R T\right\} \\
& i=i_{c}+i_{a}
\end{aligned}
$$

Butler-Volmer equation

$$
\mathrm{i}=\mathrm{nFk} k^{0}\left[\mathrm{c}_{0}{ }^{\mathrm{s}} \exp \left\{-\alpha \mathrm{nF}\left(\mathrm{E}-\mathrm{E}^{0}\right) / R T\right\}-\mathrm{c}_{\mathrm{R}}{ }^{\mathrm{s}} \exp \left\{(1-\alpha) \mathrm{nF}\left(\mathrm{E}-\mathrm{E}^{0}\right) / R T\right\}\right]
$$

This relationship links the faradaic current, electrode potential, the concentrations of electroactive species at the electrode surface

i and i_{c} and i_{a} as a function of potential E; negative $E \uparrow \rightarrow i_{c} \uparrow$ (forward reaction), positive $E \uparrow \rightarrow i_{a} \uparrow$ (backward)
$\mathrm{k}^{0} ; 1 \sim 50 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$ for very fast reactions, $10^{-9} \mathrm{~cm} \cdot \mathrm{~s}^{-1}$ for very slow reactions.
Exchange current density $\mathrm{i}_{0} ; 10 \mathrm{~A} \cdot \mathrm{~cm}^{-2} \sim 1 \mathrm{pA} \cdot \mathrm{cm}^{-2}$

I-V: Electroless deposition

■ Electrochemical Point of View: Mixed Potential Theory (혼성전위)

- Mixed potential theory: overlap of two independent electrochemical reaction

Metal ion reduction

$$
\begin{aligned}
& \mathrm{M}^{n+}+\mathrm{ne}^{-} \rightarrow \mathrm{M} \\
& i_{c}=f(E)
\end{aligned}
$$

Reducing agent oxidation

$$
\begin{aligned}
& \text { Red } \rightarrow \mathrm{Ox}^{\mathrm{m}+}+\mathrm{me}^{-} \\
& i_{a}=f(E)
\end{aligned}
$$

- The potential where the total current becomes 0 is the mixed potential.

$$
i_{\text {total }}=i_{c}+i_{a}
$$

Electrochemistry as closed loop: $i_{a}=i_{c}$

$$
i_{\mathrm{c}}=\left|i_{\mathrm{a}}\right|=i \text { (electrolyte) }
$$

The effect of the value of k_{0} on the current density close to $\mathrm{E}_{\text {eq }}$ (a) k_{0} large (b) k_{0} smaller

At equilibrium, zero net current, $i_{c}=-i_{a}$
Butler-Volmer equation (kinetics) \rightarrow Nernst equation (thermodynamics)

$$
E=E^{0}-(R T / n F) \ln \left(c_{R}{ }^{s} / c_{o}{ }^{s}\right)
$$

$\mathrm{i}_{0}=\mathrm{i}_{\mathrm{c}}=\mathrm{nFk} \mathrm{c}^{0} \mathrm{c}_{0}{ }^{\mathrm{s}} \exp \left\{-\alpha \mathrm{nF}\left(\mathrm{E}-\mathrm{E}^{0}\right) / R T\right\}=\mathrm{i}_{\mathrm{a}}=-\mathrm{nFk}{ }^{0} \mathrm{c}_{\mathrm{R}}{ }^{\mathrm{s}} \exp \left\{(1-\alpha) \mathrm{nF}\left(\mathrm{E}-\mathrm{E}^{0}\right) / R T\right\}$
\Rightarrow

$$
\mathrm{i}_{0}=\mathrm{nFk}^{0}\left(\mathrm{c}_{O^{s}}\right)^{1-\alpha}\left(\mathrm{c}_{\mathrm{R}}{ }^{\mathrm{s}}\right)^{\alpha}
$$

high exchange current density \rightarrow high reaction rate

i_{0} : 교환전류
(exchange current)

교환전류 (i_{0})

Plot I-V relation

 using Butler-Volmer equation if charge-transfer is rate-
determining step:

어떤 전기화학 반응 $(\mathrm{O}+e=\mathrm{R})$ 에서 전하 전달이 전체 속도를 결정한다고 가정하 고, 다음의 조건이 주어졌을 때 버틀러-볼머 식을 이용하여 전압과 전류의 관계
를 그리시오; $\mathrm{A}=0.1 \mathrm{~cm}^{2}, E^{0}=-0.15 \mathrm{~V}(v s . \mathrm{SCE}), k^{0}=10^{-4} \mathrm{~cm} / \mathrm{sec}, T=298$
$\mathrm{~K}, \alpha=0.5, C_{\mathrm{O}}{ }^{*}=5.0 \mathrm{mM}, C_{\mathrm{R}}{ }^{*}=1.0 \mathrm{mM}$

풀이 버틀러-볼머 식을 이용하여 전압에 따른 전류를 모사하기 위해서 먼저 평형 전압 $\left(E_{\mathrm{eq}}\right)$ 과 교환 전류 $\left(i_{0}\right)$ 를 알아야 한다. 평형 전압 $\left(\mathrm{E}_{\mathrm{eq}}\right)$ 을 계산하면 다음과 같다.

$$
\begin{aligned}
E_{\text {eq }} & =E^{0^{\prime}}+\frac{R T}{F} \ln \frac{C_{0}^{*}}{C_{\mathrm{R}}^{*}} \\
& =(-0.15 \mathrm{~V})+\frac{(8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(298 \mathrm{~K})}{\left(9.65 \times 10^{4} \mathrm{C} / \text { equiv. }\right)} \ln \frac{\left(5 \times 10^{-3} \mathrm{M}\right)}{\left(10^{-3} \mathrm{M}\right)}=-0.11 \mathrm{~V}
\end{aligned}
$$

주어진 조건에서 i_{0} 는 다음과 같이 계산된다.

$$
\begin{aligned}
i_{0}= & F A k^{0} C_{\mathrm{O}}^{(1-\alpha)} C_{\mathrm{R}}^{*} \\
= & \left(9.65 \times 10^{4} \mathrm{Coul} / \text { equiv }\right) \times\left(0.1 \mathrm{~cm}^{2}\right) \times\left(10^{-4} \mathrm{~cm} / \mathrm{sec}\right) \\
& \times\left(5 \times 10^{-6} \mathrm{~mol} / \mathrm{cm}^{3}\right)^{0.5} \times\left(1 \times 10^{-6} \mathrm{~mol} / \mathrm{cm}^{3}\right)^{0.5} \\
= & 2.2 \mu \mathrm{~A}
\end{aligned}
$$

위 계산에서 각 변수를 cgs 단위로 표현하고 농도의 단위를 반드시 $\mathrm{mol} / \mathrm{cm}^{3}$ 로 사용하여야 전류가 암페어(amperes)의 단위를 갖게 된다.

$$
\left(\frac{\text { Coul }}{\text { equiv. }}\right)\left(\mathrm{cm}^{2}\right)\left(\frac{\mathrm{cm}}{\mathrm{sec}}\right)\left(\frac{\mathrm{mol}}{\mathrm{~cm}^{3}}\right)^{0.5}\left(\frac{\mathrm{~mol}}{\mathrm{~cm}^{3}}\right)^{0.5}=\frac{\text { Coul }}{\mathrm{sec}}=\text { Amperes }
$$

Oh, ch. 4
$i_{a}, i_{c}, i_{\text {net }}, \eta_{c}, \eta_{a}, E_{\text {eq }}$

The effect of exchange current density on overpotential 교환전류 (i_{0})

Butler-Volmer equation/io
$\mathrm{i}=\mathrm{nFk}{ }^{0}\left[\mathrm{c}_{0}{ }^{5} \exp \left\{-\alpha \mathrm{nF}\left(\mathrm{E}-\mathrm{E}^{0}\right) / R T\right\}-\mathrm{c}_{\mathrm{R}}{ }^{\mathrm{s}} \exp \left\{(1-\alpha) \mathrm{nF}\left(\mathrm{E}-\mathrm{E}^{0}\right) / R T\right\}\right]$
and let $F / R T=f$, overpotential $\eta=E-E^{0} \Rightarrow$ current-overpotential equation

$$
i=i_{0}[\exp (-\alpha n f \eta)-\exp ((1-\alpha) n f \eta)]
$$

Table $3.1 i_{o}$ for Different Reactions

Reaction	$i_{o}\left[\mathrm{~A} \cdot \mathrm{~m}^{-2}\right]$
$\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}=2 \mathrm{H}_{2} \mathrm{O}$ on Pt	4×10^{-9}
$\mathrm{NiOOH}+\mathrm{H}_{2} \mathrm{O}+\mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{OH})_{2}+\mathrm{OH}^{-}$	6.1×10^{-1}
$\mathrm{H}_{2}=2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$on Pt in 1 N HCl	10
$\mathrm{Fe}^{3+}+\mathrm{e}^{-}=\mathrm{Fe}^{2+}$	20
$\mathrm{Zn}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Zn}(\mathrm{OH})_{2}+2 \mathrm{e}^{-}$	600
Ferri/ferrocyanide, 0.001 M	230

Table $3.2 i_{o}$ for Hydrogen Reaction in $1 \mathrm{~m} \mathrm{H}_{2} \mathrm{SO}_{4}$ at $25^{\circ} \mathrm{C}$, values provide order of magnitude estimates

Metal	$i_{o}\left[\mathrm{~A} \cdot \mathrm{~m}^{-2}\right]$
Pb, Hg	10^{-8}
Zn	10^{-7}
$\mathrm{Sn}, \mathrm{Al}, \mathrm{Be}$	10^{-6}
$\mathrm{Ni}, \mathrm{Ag}, \mathrm{Cu}, \mathrm{Cd}$	10^{-3}
$\mathrm{Fe}, \mathrm{Au}, \mathrm{Mo}$	10^{-2}
$\mathrm{~W}, \mathrm{Co}, \mathrm{Ta}$	10^{-1}
Rh, Ir	2.5
Pd, Pt	10

Figure 3.6 The area of the electrode with a rough surface is much larger than that of the one with the smooth surface.

Electrochemical Engineering, First Edition. Thomas F. Fuller and John N. Harb. © 2018 Thomas F. Fuller and John N. Harb. Published 2018 by John Wiley \& Sons, Inc. Companion Website: www.wiley.com/go/fuller/electrochemicalengineering

Exchange current density (i_{0})

hydrogen oxidation reaction (HOR)
D. A. Jones, Corrosion, Macmillan

```
TABLE 1.1 Galvanic Series in Seawater
Cathodic (noble)
    \uparrow
    platinum
    gold
    graphite
    titanium
                silver
        zirconium
AISI Type 316, }317\mathrm{ stainless steels (passive)
    AISI Type 304 stainless steel (passive)
    AISI Type 430 stainless steel (passive)
        nickel (passive)
        copper-nickel (70-30)
            bronzes
            copper
            brasses
            nickel (active)
                naval brass
                    tin
                            lead
AISI Type 316, }317\mathrm{ stainless steels (active)
    AISI Type 304 stainless steel (active)
                    cast iron
                    steel or iron
        aluminum alloy }202
            cadmium
        aluminum alloy 1100
            zinc
        magnesium and magnesium alloys
            Anodic (active)
```

D. A. Jones, Corrosion, Macmillan

Low polarization region $(\eta< \pm(118 / n) \mathrm{mV})$

As the current and overvoltage are proportional, following Ohm's law, so they are called ohmic regions \rightarrow slope $=$ Charge transfer resistance, $\mathrm{R}_{\mathrm{ct}}=\mathrm{RT} / \mathrm{i}_{0} \mathrm{~F}$

Tafel plot

High polarization region ($n> \pm(118 / \mathrm{n}) \mathrm{mV}$)
 $\rightarrow i_{\text {net }} \sim i_{a}$ or $i_{\text {net }} \sim i_{c}$

Essentials of electrode reactions

*accurate kinetic picture of any dynamic process must yield an equation of the thermodynamic form in the limit of equilibrium

$$
\mathrm{O}+\mathrm{ne} \underset{\mathrm{k}_{\mathrm{b}}}{=} \mathrm{R}
$$

Equilibrium is characterized by the Nernst equation

$$
E=E^{0^{\prime}}+(R T / n F) \ln \left(C_{0}{ }^{*} / C_{R}{ }^{*}\right)
$$

bulk conc
Kinetic: dependence of current on potential
$\eta=a+b l o g i$

Tafel equation
(경험식)

Butler-Volmer equation/i i_{0}
$\mathrm{i}=\mathrm{nFk}{ }^{0}\left[\mathrm{c}_{\mathrm{O}}{ }^{\mathrm{s}} \exp \left\{-\alpha \mathrm{nF}\left(\mathrm{E}-\mathrm{E}^{0}\right) / R T\right\}-\mathrm{c}_{\mathrm{R}}{ }^{\mathrm{s}} \exp \left\{(1-\alpha) \mathrm{nF}\left(\mathrm{E}-\mathrm{E}^{0}\right) / R T\right\}\right]$
and let $F / R T=f$, overpotential $\eta=E-E^{0} \Rightarrow$ current-overpotential equation

$$
i=i_{0}[\exp (-\alpha n f \eta)-\exp ((1-\alpha) n f \eta)]
$$

$\eta \gg 0$ (oxidation, only O in bulk) $\rightarrow \exp (-\alpha \mathrm{nf} \eta) \ll \exp ((1-\alpha) \mathrm{nf} \eta)$ $i=-i_{0} \exp ((1-\alpha) n f \eta)$
apply log,

$$
\eta=-(\mathrm{RT} /(1-\alpha) n F) \mid n i_{0}+(R T /(1-\alpha) n F|n| i \mid
$$

for $\eta \ll 0$ (reduction), $\eta=(R T / \alpha n F) \mid n i_{0}-(R T /(\alpha n F)|n| i \mid$
Tafel plot \rightarrow measure i_{0} and α

$$
\mathrm{E}-\mathrm{E}^{0}=\eta=\mathrm{a} / n \mathrm{i}_{0} \pm \mathrm{b} / n \mid \mathrm{i}
$$

Plot of $\ln |i|$ vs. E showing how to measure i_{0} and α from the slopes of the lines

Tafel plots (ivs. $\boldsymbol{\eta}$) \rightarrow evaluating kinetic parameters (e.g., $\mathrm{i}_{0}, \mathrm{a}$)

Figure 3.7 Classic Tafel plot. Parameters used are $i_{o}=10^{-4} \mathrm{~A} \cdot \mathrm{~m}^{-2}$, $25^{\circ} \mathrm{C}, \alpha=0.5$.

Electrochemical Engineering, First Edition. Thomas F. Fuller and John N. Harb. © 2018 Thomas F. Fuller and John N. Harb. Published 2018 by John Wiley \& Sons, Inc. Companion Website: www.wiley.com/go/fuller/electrochemicalengineering
e.g., real Tafel plots for $\mathrm{Mn}(\mathrm{IV}) / \mathrm{Mn}$ (III) system in concentrated acid

- At very large overpotential: mass transfer limitation

Determination of reaction rate (current) by mass transport (next Lecture)

Oh, ch. 4

Summary of Butler-Volmer Kinetics and Useful Simplifications

1. General kinetics, applicable under all current density conditions; the general BV expression for η (solve numerically):

$$
\begin{equation*}
i_{\text {cell }}=i_{o}\left\{\exp \left(\frac{\alpha_{a} F}{R_{u} T} \eta\right)-\exp \left(\frac{-\alpha_{c} F}{R_{u} T} \eta\right)\right\} \tag{array}
\end{equation*}
$$

2. Low polarization, facile kinetics, linearized BV approximation (explicit η expression):

$$
\begin{equation*}
\eta= \pm \frac{i}{i_{o}} \frac{R_{u} T}{\left(\alpha_{a}+\alpha_{c}\right) F} \tag{4.53}
\end{equation*}
$$

3. High polarization, Tafel approximation (explicit η expression):

$$
\begin{equation*}
\eta=\frac{R_{u} T}{\alpha_{j} F} \ln \left(\frac{i}{i_{o}}\right) \tag{4.54}
\end{equation*}
$$

4. Both regions, $\alpha_{a}=\alpha_{c}$ sinh simplification (explicit η expression):

$$
\begin{equation*}
\frac{R_{u} T}{\alpha F} \sinh ^{-1}\left(\frac{i_{\mathrm{cell}}}{2 i_{o}}\right)=\eta \tag{4.55}
\end{equation*}
$$

Illustration 3.3, 3.4

Current efficiency

$$
\eta_{c}=\frac{\text { current of desired reaction }}{\text { total current }}
$$

Illustration 3.5

