Lecture Note #4 (Fall, 2020)

Transport

- 1. Nernst-Planck equation
- 2. I-V curve in mass transfer
- 3. Limiting current
- 4. Electrolyte transport
- 5. Overpotential or polarization

Fuller & Harb (textbook), ch.4, Bard (ref.), ch.1,4, Oh (ref.), ch.3,4

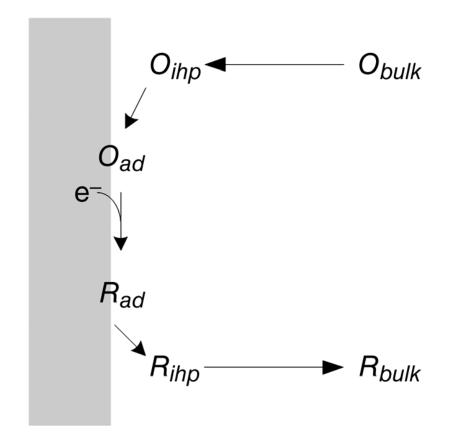


Figure 4.1 Multistep process for reduction.

Electrochemical Engineering, First Edition. Thomas F. Fuller and John N. Harb. © 2018 Thomas F. Fuller and John N. Harb. Published 2018 by John Wiley & Sons, Inc. Companion Website: www.wiley.com/go/fuller/electrochemicalengineering

Mass Transport

Mass transport

rate =
$$k_a C_R^s - k_c C_O^s$$

Electrochemical reaction at electrode/solution interface: molecules in bulk solution must be transported to the electrode surface \rightarrow "mass transfer"

$$C_O^{b} = C_O^{s} = C_R^{s} = C_R^{b}$$

Mechanisms for mass transport:

(a) Migration: movement of a charged body under the influence of an electric field (a gradient of electric potential)

(b) **Diffusion**: movement of species under the influence of gradient of chemical potential (i.e., a concentration gradient)

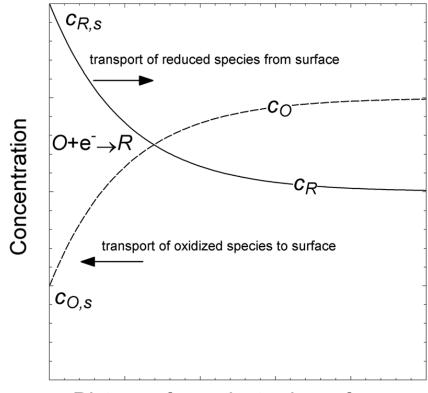
(c) Convection: stirring or hydrodynamic transport

Nernst-Planck equation (diffusion + migration + convection)

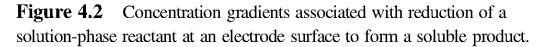
 $J_{i}(x) = -D_{i}(\partial C_{i}(x)/\partial x) - (z_{i}F/RT)D_{i}C_{i}(\partial \phi(x)/\partial x) + C_{i}v(x)$

Where $J_i(x)$; the flux of species i (molsec⁻¹cm⁻²) at distance x from the surface, D_i ; the diffusion coefficient (cm²/sec), $\partial C_i(x)/\partial x$; the concentration gradient at distance x, $\partial \phi(x)/\partial x$; the potential gradient, z_i and C_i ; the charge and concentration of species i, v(x); the velocity (cm/sec)

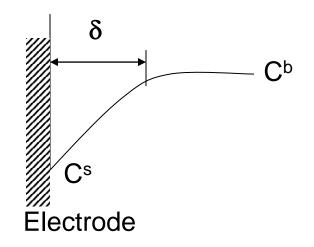
<u>1. Steady state mass transfer</u>


steady state, $(\partial C/\partial t) = 0$; the rate of transport of electroactive species is equal to the rate of their reaction on the electrode surface

In the absence of migration,


The rate of mass transfer,

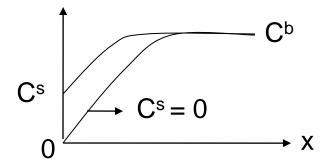
$$v_{mt} \propto (\partial C_R(x) / \partial x)_{x=0} = (C_R^{b} - C_R^{s}) / \delta$$


where x is distance from the electrode surface & δ : diffusion layer

Distance from electrode surface

Electrochemical Engineering, First Edition. Thomas F. Fuller and John N. Harb. © 2018 Thomas F. Fuller and John N. Harb. Published 2018 by John Wiley & Sons, Inc. Companion Website: www.wiley.com/go/fuller/electrochemicalengineering

$$v_{mt} = m_R [C_R^{b} - C_R^{s}]$$


where C_R^{b} is the concentration of R in the bulk solution, C_R^{s} is the concentration at the electrode surface m_R is "mass transfer coefficient"

 $i = nFm_R[C_R^b - C_R^s]$

$$i = -nFm_O[C_O{}^b - C_O{}^s]$$

largest rate of mass transfer of R when $C_R^s = 0 \rightarrow$ "limiting current"

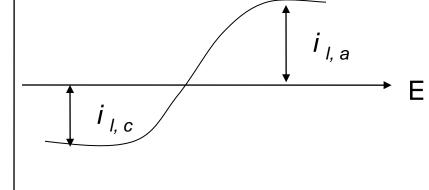
$$i_{I,a} = nFm_R C_R^{b}$$

$$C_{R}^{s}/C_{R}^{b} = 1 - (i/i_{I,a})$$

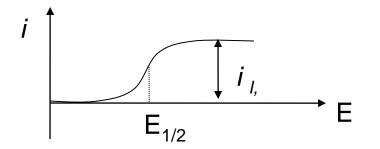
And

$$C_R^s = [1 - (i/i_{l,a})] [i_{l,a}/nFm_R] = (i_{l,a} - i)/(nFm_R)$$

Same method,


$$C_{O}^{s}/C_{O}^{b} = 1 - (i/i_{l,c})$$

$$i_{l,c} = nFm_{O}C_{O}^{b}$$


$$C_{O}^{s} = [1 - (i/i_{l,c})] [i_{l,c}/nFm_{O}] = (i_{l,c} - i)/(nFm_{O})$$

Put these equations to $E = E^0 - (RT/nF) ln(C_R^{s}/C_O^{s})$

 $E = E^{0} - (RT/nF)ln(m_{0}/m_{R}) - (RT/nF)ln[(i_{1,a} - i)/(i - i_{1,c})]$ Let $E_{1/2} = E^{0} - (RT/nF)ln(m_{0}/m_{R})$ Then, $E = E_{1/2} - (RT/nF)ln[(i_{1,a} - i)/(i - i_{1,c})]$ *i*

 $E_{1/2},$ half-wave potential, independent of $C_O{}^b$ and $C_R{}^b \to$ characteristic of the R/O system.

Reversibility:

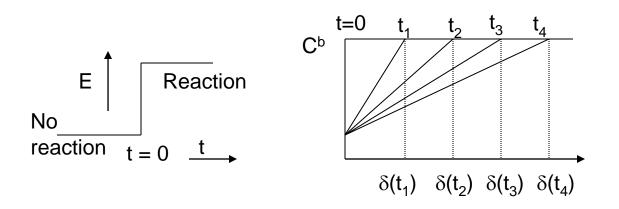
<u>reversible</u>: $k^0 \gg m_0$ or $m_R \rightarrow kinetic$ rate constant \gg mass transport rate constant \rightarrow system is at equilibrium at the electrode surface and it is possible to apply the Nernst equation at any potential

<u>irreversible</u>: k⁰ << m₀ or m_R

2. Non-steady state mass transport: diffusion control

The rate of diffusion depends on the concentration gradients

 $J = -D(\partial C/\partial x)$ Fick's first law

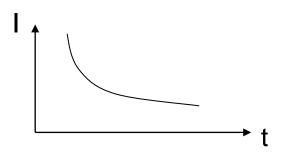

D: diffusion coefficient (cm²/sec)

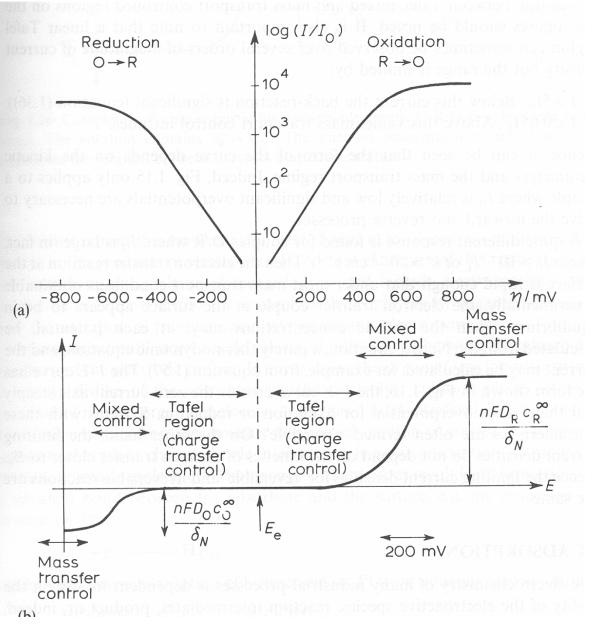
The variation of concentration with time due to diffusion \rightarrow Fick's second law

$$\partial C/\partial t = -D(\partial^2 C/\partial x^2) \qquad 1\text{-}D$$

$$\begin{split} J &= -D(\partial C/\partial x) = i/nF\\ D(\partial C/\partial x) &= D(C^b - C^s)/\delta = i/nF \end{split}$$

Time-dependent, applying potential step E




Moles of species in diffusion layer = $\int i dt/nF \approx [C^b - C^s](A\delta(t)/2)$

Differentiating, $i/nF = [C^{b} - C^{s}](Ad\delta(t)/2dt) = D(C^{b} - C^{s})/\delta(t)$ $d\delta(t)/dt = 2D/\delta(t), \ \delta(t) = 0 \text{ at } t = 0$ $\delta(t) = 2\sqrt{(Dt)}$ $i/nF = (D^{1/2}/2t^{1/2}) [C^{b} - C^{s}]$

diffusion layer grows with t^{1/2} and current decays with t^{-1/2}

potential step (chronoamperometry), planar electrode: <u>Cottrell equation</u> (in Lecture #6) constant current \rightarrow potential variation at time (chronopotentiometry): <u>Sand equation</u> (t = τ (transition time) at C^s = 0)

Pletcher, Fig. 1.8

Mobility and transport number

Mobilities: conduction from the standpoint of the charge carriers

Electric current = rate at which charge crosses any plane = [number of carriers per unit volume][cross sectional area][charge on each carrier][average carrier speed]

 $I = dq/dt = (N_A c_i)(A)(q_i)(v_i)$

i: particular charge carrier, c_i ; concentration, q_i ; charge, v_i ; average velocity,

 N_A ; Avogadro's constant (6.0220 x 10²³ mol⁻¹), A; area

- z_i ; charge number = q_i/q_e where q_e (1.6022 x 10⁻¹⁹ C),
 - e.g., electrons:-1, Mg²⁺; +2

$$v_{i} \propto f_{i} \propto X \propto d\phi/dx$$

f_i; force exerted on the charge carrier, X; electric field strength

mobility of the carrier, u_i (m²s⁻¹V⁻¹ unit) = velocity to field ratio (v_i / X)

$$v_i = \pm u_i X = -(z_i | z_i |) u_i d\phi/dx$$

 $|z_i|$: absolute value of the charge number

 $u_{e^{-}}$ of electrons: 6.7 x 10⁻³ m²s⁻¹V⁻¹ for Ag, less mobile in other metals mobility of ions in aqueous solution: smaller than the factor of 10⁵ (factor 10⁵ slower); $u_{cu2+}^{o} = 5.9 \times 10^{-8} m^2 s^{-1} V^{-1}$ in extremely diluted solution

Current I,

$$I = -A N_A q_e |z_i| u_i c_i d\phi/dx$$

If there are several kind of charge carriers,

 $I = -AFd\phi/dx\Sigma |z_i| u_i c_i$ $i = -Fd\phi/dx\Sigma |z_i| u_i c_i$

Transport number t_i; the fraction of the total current carried by one particular charge carrier

$$\mathbf{t}_{i} = (|\mathbf{z}_{i}| | \mathbf{u}_{i}\mathbf{c}_{i}) / \Sigma(|\mathbf{z}_{i}| | \mathbf{u}_{i}\mathbf{c}_{i})$$

From $i = \kappa X = -\kappa d\phi/dx$,

conductivity κ

 $\kappa = \mathsf{F}\Sigma \,\big|\, \mathsf{z}_{\mathsf{i}} \,\big|\, \mathsf{u}_{\mathsf{i}}\mathsf{C}_{\mathsf{i}}$

molar ionic conductivity (λ_i); Fu_i

Ion mobilities at extreme dilution in aqueous solution at 298 K

Ion	uº/m²s-1V-1
H+	362.5 x 10 ⁻⁹
K+	76.2 x 10 ⁻⁹
Ag^+	64.2 x 10 ⁻⁹
Cu ²⁺	58.6 x 10 ⁻⁹
Na ⁺	51.9 x 10 ⁻⁹
Li ⁺	40.1 x 10 ⁻⁹
OH-	204.8 x 10 ⁻⁹
SO ₄ ²⁻	82.7 x 10 ⁻⁹
Cl	79.1 x 10 ⁻⁹
ClO ₄ -	69.8 x 10 ⁻⁹
C ₆ H ₅ COO ⁻	33.5 x 10 ⁻⁹

cf. u_{e-} of electrons: 6.7 x 10⁻³ m²s⁻¹V⁻¹ for Ag

Conductivity

Electricity flows either by electron motion or ion motion In both cases,

the intensity of the flow (= current density) \propto electric field strength

 $i = \kappa X = -\kappa d\phi/dx$

conductivity κ

 $\kappa = \mathsf{F}\Sigma \,\big|\, \mathsf{z}_{\mathsf{i}} \,\big|\, \mathsf{u}_{\mathsf{i}}\mathsf{c}_{\mathsf{i}}$

determined by the concentration of charge carriers and their mobilities

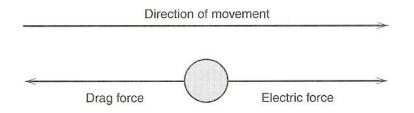
one form of Ohm's law

$$\Delta E = -RI$$

potential difference across resistor to the current flowing through it

Resistor: dissipate energy Capacitor: store energy

(a)
$$Pt/H_2/\frac{+}{-} \frac{+}{-} \frac$$


<u>Transference number (or transport number)</u> The fraction of the current carried by H⁺ and Cl⁻: t₊ and t₋ $t_+ + t_- = 1$

e.g., Figure above: $t_{+} = 0.8$, $t_{-} = 0.2^{-1}$

Conductance (S = Ω^{-1}), L = $\kappa A/I$ conductivity (κ , S·cm⁻¹): contribution from all ionic species ∞ ion conc, charge magnitude ($|z_i|$), index of migration velocity (u_i)

 $\sum t_i = 1$

Mobility (u_i): limiting velocity of the ion in an electric field of unit strength unit: $cm^2V^{-1}s^{-1}$ (cm/s per V/cm) electric field, $E \rightarrow$ electric force \rightarrow counterbalance with frictional drag \rightarrow terminal velocity

Electric force = $|z_i|eE$ e: electronic charge Frictional drag (Stokes law) = $6\pi\eta rv$ η :viscosity of medium, r: ion radius, v: velocity When the terminal velocity is reached:

$$u_i = v/E = |z_i|e/6\pi\eta r$$

Conductivity

 $\kappa = F \sum |z_i| u_i C_i$

Transference number for species i = conductivity by i /total conductivity

$$\mathbf{t}_{i} = |\mathbf{z}_{i}|\mathbf{u}_{i}\mathbf{C}_{i}/\sum|\mathbf{z}_{j}|\mathbf{u}_{j}\mathbf{C}_{j}|$$

For pure electrolytes(e.g., KCl, CaCl₂, HNO₃) \rightarrow equivalent conductivity (Λ)

 $\Lambda = \kappa/C_{eq} \ (conductivity \ per \ unit \ concentration \ of \ charge) \\ C_{eq}: \ concentration \ of \ + \ (or \ -) \ charges = C|z|$

$$\Lambda = \mathsf{F}(\mathsf{u}_+ + \mathsf{u}_-) = \lambda_+ + \lambda_-$$

equivalent ion conductivity, $\lambda_i = Fu_i$

$$t_i = \lambda_i / \Lambda = u_i / (u_+ + u_-)$$

- Table: $t_{\scriptscriptstyle +} \rightarrow$ individual ionic conductivities, λ_i
- λ_i , t_i depend on concentration of pure electrolyte because interactions between ions tend to alter mobilities
- \rightarrow Table : λ_{0i} (extrapolated to infinite dilution) \rightarrow calculate t_i

For pure electrolyte:

$$t_i = \lambda_i / \Lambda$$

For mixed electrolytes: $t_i = |z_i|C_i\lambda_i/\sum |z_j|C_j\lambda_j$

						2 1 14	
					Ion	$\lambda_0, \operatorname{cm}^2 \Omega^{-1} \operatorname{equiv}^{-1a}$	$u, \mathrm{cm}^2 \mathrm{sec}^{-1} \mathrm{V}^{-1}$
Concentratio			ation, $C_{ea}^{\ b}$		\mathbf{H}^+	349.82	3.625×10^{-3}
	0.01				K^+	73.52	7.619×10^{-4}
Electrolyte	0.01	0.05	0.1	0.2	Na ⁺	50.11	5.193×10^{-4}
HC1	0.8251	0.8292	0.8314	0.8337	Li ⁺	38.69	4.010×10^{-4}
NaCl	0.3918	0.3876	0.3854	0.3821	NH_4^+	73.4	7.61×10^{-4}
					$\frac{1}{2}Ca^{2+}$	59.50	6.166×10^{-4}
KCl	0.4902	0.4899	0.4898	0.4894	OH^{-}	198	2.05×10^{-3}
NH ₄ Cl	0.4907	0.4905	0.4907	0.4911	Cl^{-}	76.34	7.912×10^{-4}
KNO3	0.5084	0.5093	0.5103	0.5120	Br^-	78.4	8.13×10^{-4}
Na ₂ SO ₄	0.3848	0.3829	0.3828	0.3828	I^-	76.85	7.96×10^{-4}
K_2SO_4	0.4829	0.4870	0.4890	0.4910	NO_3^-	71.44	$7.404 imes 10^{-4}$
	0.102	011070			OAc ⁻	40.9	4.24×10^{-4}
					ClO_4^-	68.0	7.05×10^{-4}
					$\frac{1}{2}SO_{4}^{2-}$	79.8	8.27×10^{-4}
					HCO_3^-	44.48	$4.610 imes 10^{-4}$
					$\frac{1}{3}$ Fe(CN) ₆ ³⁻	101.0	1.047×10^{-3}
					$\frac{1}{4}$ Fe(CN) $_{6}^{4-}$	110.5	1.145×10^{-3}

Solid electrolyte: ions move under electric field without solvent \rightarrow conductivity \rightarrow batteries, fuel cells, and electrochemical devices

Classes of conductors

Materials 1.Conductors Electronic conductors Ionic conductors

2. Insulators

Conductors: metals Insulators: plastics, ceramics, gases No clear cut distinction between conductor and insulator

	Material	к/Sm ⁻¹
Ionic conductors	Ionic crystals Solid electrolytes Strong(liquid) electrolytes	10 ⁻¹⁶ – 10 ⁻² 10 ⁻¹ – 10 ³ 10 ⁻¹ – 10 ³
Electronic conductors	Metals Semiconductors Insulators	10 ³ - 10 ⁷ 10 ⁻³ - 10 ⁴ <10 ⁻¹⁰

Typical value of electrical conductivity

 $S/m \rightarrow x10^{-2}$ for S/cm

Electrical conductivity of various materials (most at 298 K)

Material	κ/Sm^{-1}	Charge carriers
Superconductors (low temp) Ag Cu Hg C (graphite) Doped polypyrrole Molten KCl (at 1043 K) 5.2 M H_2SO_4 (battery acid) Seawater Ge 0.1 M KCl H2O Typical glass Teflon, (CF ₂)n Vacuum & most gases		Electron pairs Electrons Electrons Electrons Pi electrons Pi electrons K ⁺ and Cl ⁻ H ⁺ and HSO ₄ ⁻ Cations & anions Electrons and holes K ⁺ and Cl ⁻ H ⁺ and Cl ⁻ H ⁺ and OH ⁻ Univalent cations ?

Measurement of electrical conductivity

- 1. Four terminal method: κ calculation from measured I, $\Delta \phi,$ A and x
- 2. a.c. impedance method

The nature of the charge carriers

1) <u>Electronic conductors</u>: mobile electrons; metals, some inorganic oxides and sulfides (e.g., PbO_2 and Ag_2S which are slightly non-stoichiometric), semiconductors (n-type: electrons, p-type: holes, intrinsic: both), conducting polymer (pi-electrons), graphite(pi-electrons), organic metals (organic salts, e.g., TTF-TCNQ(tetrathiafulvalene tetracyanoquinodimethane, pi-electrons)

• Metals: shared valence electrons with all atoms in solid (delocalized electrons) \rightarrow high electric and thermal conductivity

cf: insulator vs. conductor: valence band completely filled vs. partially filled

e.g., Diamond (insulator); sp³ orbital (completely filled valence band), E_g : 5.6 eV

Na (alkali metal); 11 electrons (10 filled 1s & 2p, 1 valence electron 3s (half filled \rightarrow electric conduction using unfilled part of VB)

Alkaline earth metal (divalent, 12 e's) \rightarrow good conductors because their valence band overlaps another band

Conductivity of metal increases as temperature lowered or impurities reduced since low resistance

• Semiconductors: E_g is smaller than insulator (1 ~ 2 eV; relatively small excitation energy, cf) 1eV = 12000 K = 1240 nm (1.2 μ m (IR))

Conductivity of semiconductors increases as temperature & impurity concentration increased.

• Semimetals; between metals & semiconductors, e.g., graphite \rightarrow planar sheet of hexagons with weak van der Waals forces (2-dimensional molecule), $E_g = 0$ (top energy level of pi(π)-bonding orbitals (the valence band) is at the same level of that of the anti-bonding orbital

• Conducting polymer: π -electrons

2) <u>Ionic conductors</u>: motion of anions and/or cations; solutions of electrolytes (salts, acids and bases) in water and other liquids, molten salts, solid ionic conductors (solid electrolyte)(O^{2-} in ZrO_2 at high temperature, Ag⁺ in RbAg₄I₅ at room temperature, fluoride ion holes in EuF₂ doped LaF₃)

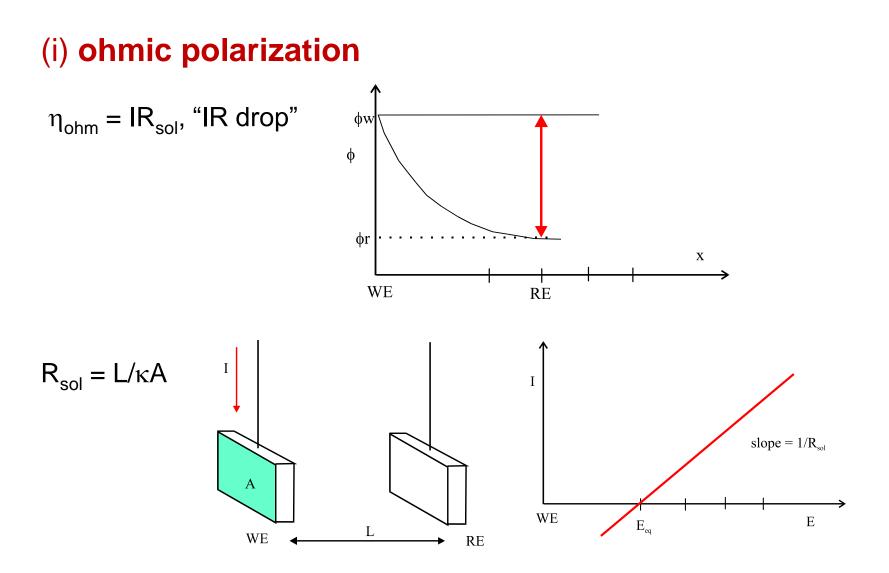
3) <u>Electronic & ionic conductors</u>; plasmas (hot gases, positive ions and free electrons), sodium metal in liquid ammonia(Na⁺ cation and solvated electrons), hydrogen dissolved in Pd metal(hydrogen ions(protons) and electrons)

conductors electronic	metals some inorganic oxides & sulfides semiconductors n-type intrinsic p-type organic metals conducting polymers	
	mixed	plasmas some solids & solutions
	ionic	solutions of electrolytes molten salts solid ionic conductors doped crystals

Т

Illustration 4.2, 4.3, 4.4, 4.5

Voltammogram: historical one vs. new one


 $E > 0 \rightarrow$ working electrode potential > 0 (positive: right of x-axis) I > 0 \rightarrow oxidation at the working electrode

Polarization: the shift in the voltage across a cell caused by the passage of current

Departure of the cell potential from the reversible(or equilibrium or nernstian) potential Ohmic polarization Activation polarization Concentration polarization

Overvoltage (η , overpotential, 과전압): the voltage shift caused by each kind of polarization Extent of potential measured by the overpotential: $\eta = E - E_{eq}$

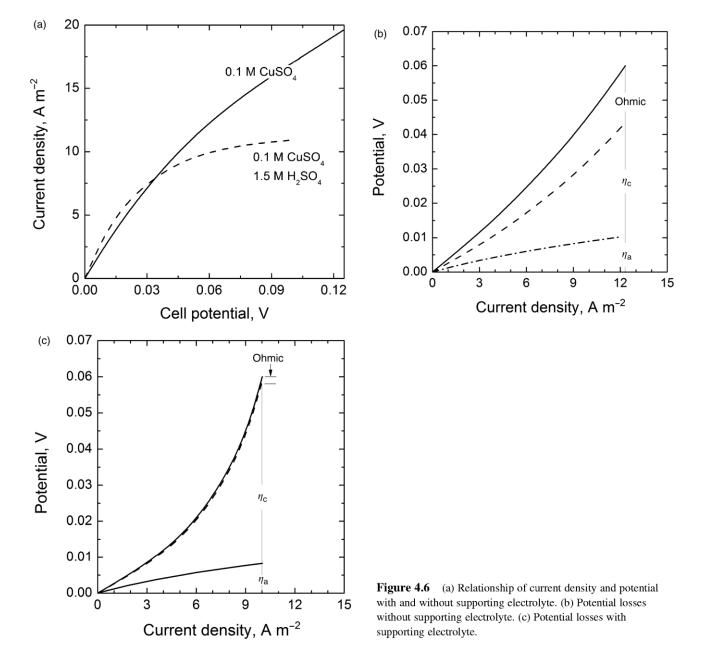
 $\mathbf{E} = \mathbf{E}_{n} + \eta_{ohm} + \eta_{act} + \eta_{conc}$

If free of activation & concentration polarization, slope = $1/R_{sol}$

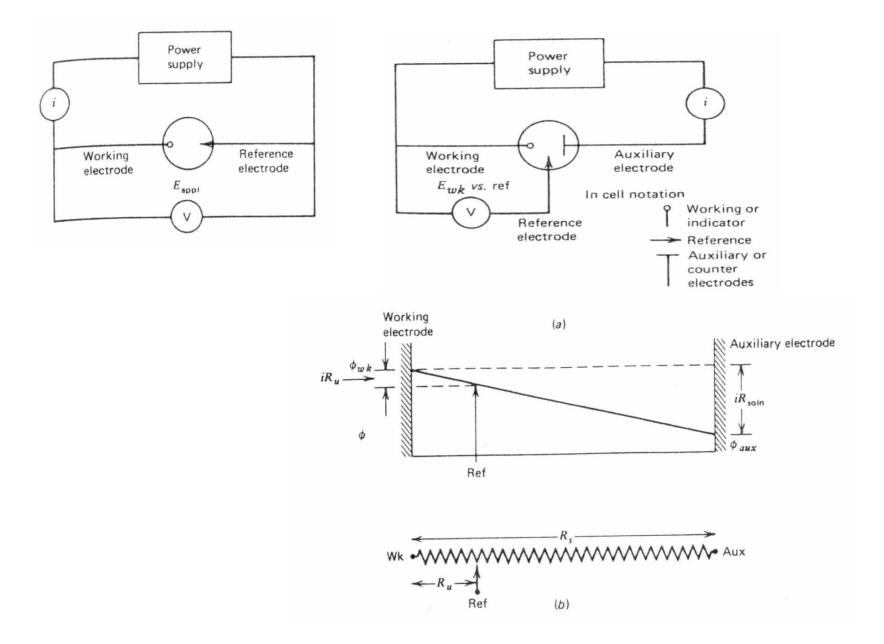
Electrochemistry needs to minimize η_{ohm} κ (conductivity) $\uparrow \rightarrow \eta_{ohm} \downarrow$ (by adding extra electrolyte: "supporting electrolyte") three-electrode system

two-electrode cell vs. three-electrode cell

$$E_{appl} = E + iR_s = E_{eq} + \eta + iR_s$$

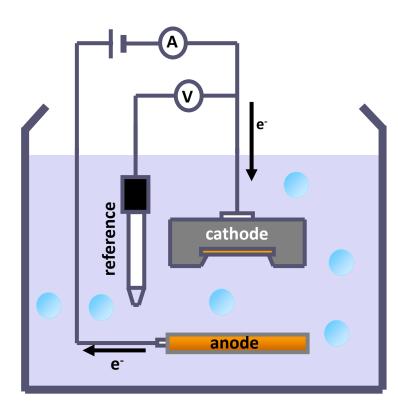

 $\rm IR_s:$ ohmic drop in the solution (ohmic polarization) \rightarrow should be minimized \rightarrow short distance between working and reference electrode & three-electrode cell

Two-electrode cell: iR_s problem due to high current flow Three-electrode cell: current between WE and auxiliary electrode(or counter electrode)

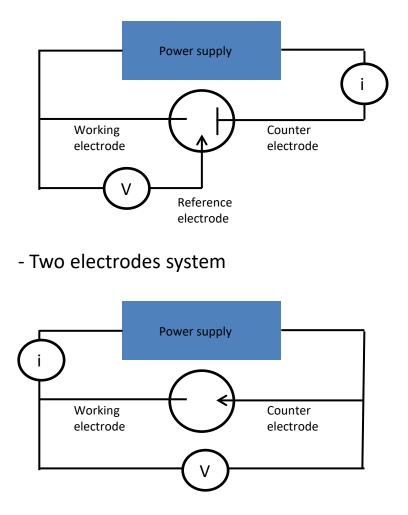

Potential measurement between WE and RE \rightarrow almost no current

to reference electrode

 \rightarrow Potentiostat, etc electrochemical system: three electrode system



Electrochemical Engineering, First Edition. Thomas F. Fuller and John N. Harb. © 2018 Thomas F. Fuller and John N. Harb. Published 2018 by John Wiley & Sons, Inc. Companion Website: www.wiley.com/go/fuller/electrochemicalengineering



A.J. Bard, L. R. Faulkner, Electrochemical Methods, Wiley, 2001.

- Three electrodes system

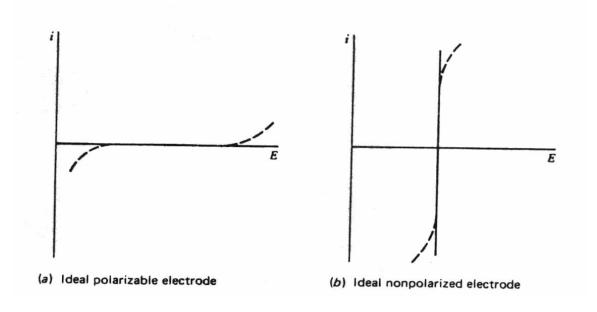
그림제공: 권오중 교수(인천대)

(ii) activation polarization

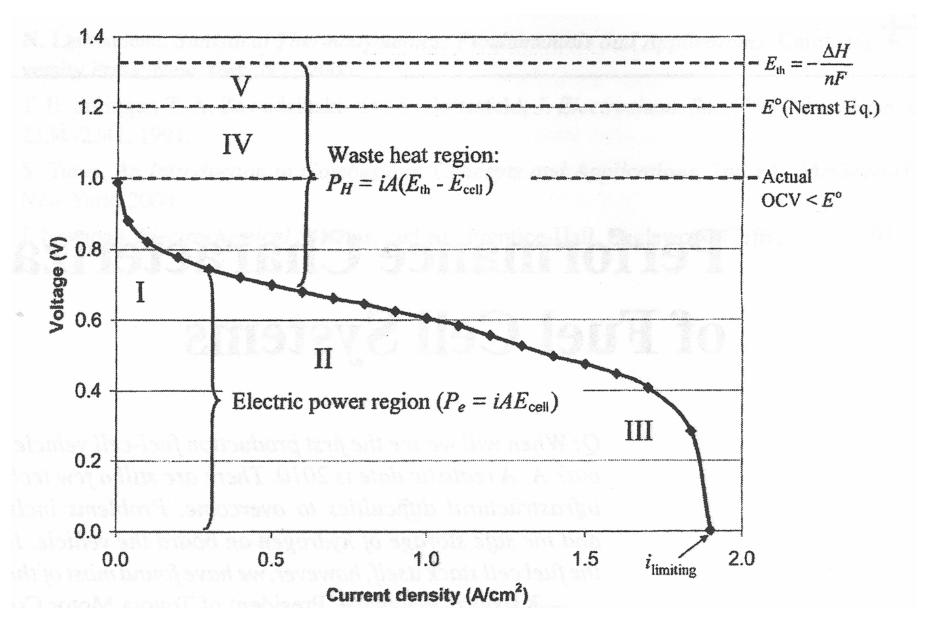
slow electrode reaction \rightarrow activation polarization; slow kinetics \propto activation energy

This can be overcome by increasing the temperature and

by applying extra voltage (activation overvoltage (η_{act}))


(iii) concentration polarization

from difference between the electrode surface and bulk concentration $$\begin{split} R \to O + ne^{-} \\ \eta_{conc} = E - E_n = (RT/nF) ln[(c_R{}^b c_O{}^s)/c_R{}^s c_O{}^b]] \end{split}$$


Limiting current (i₀) 한계전류

Ideal polarizable electrode (totally polarized electrode): a very large change in potential upon small current

Ideal nonpolarizable electrode: potential does not change upon passage of current (e.g., reference electrode)

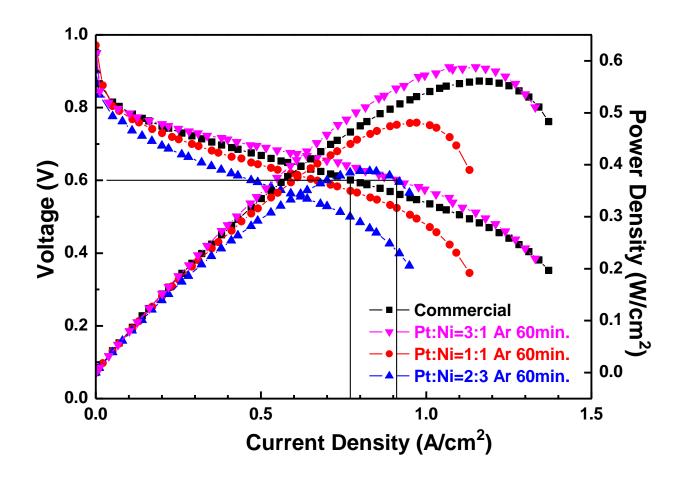
Fuel cell polarization curve

M. M. Mench, Fuel Cell Engines, Wiley, Fig. 4.1

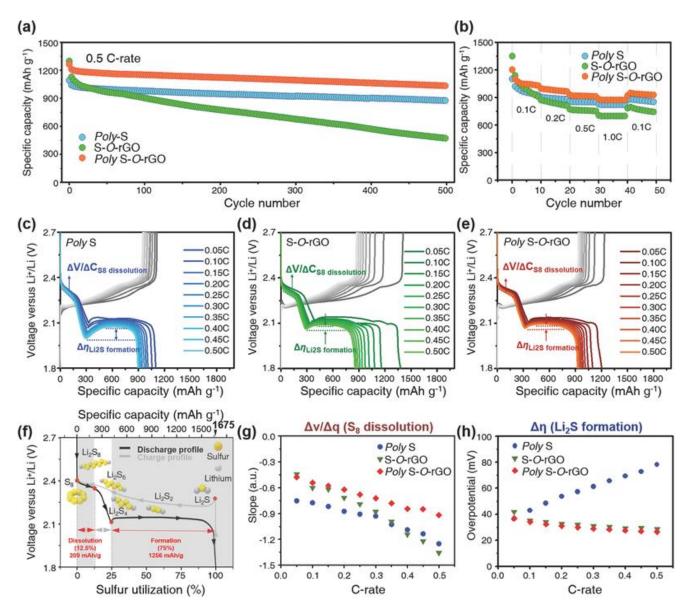
-5 regions

 (i) Region I: activation (kinetic) overpotential at the electrodes
 (ii) Region II: ohmic polarization. Electric & ionic conduction loss
 (iii) Region III: concentration polarization. Mass transport limitations
 (iv) Region IV. Departure from Nernst thermodynamic equilibrium potential; undesired species crossover through electrolyte, internal currents from electron leakage, other contamination or impurity

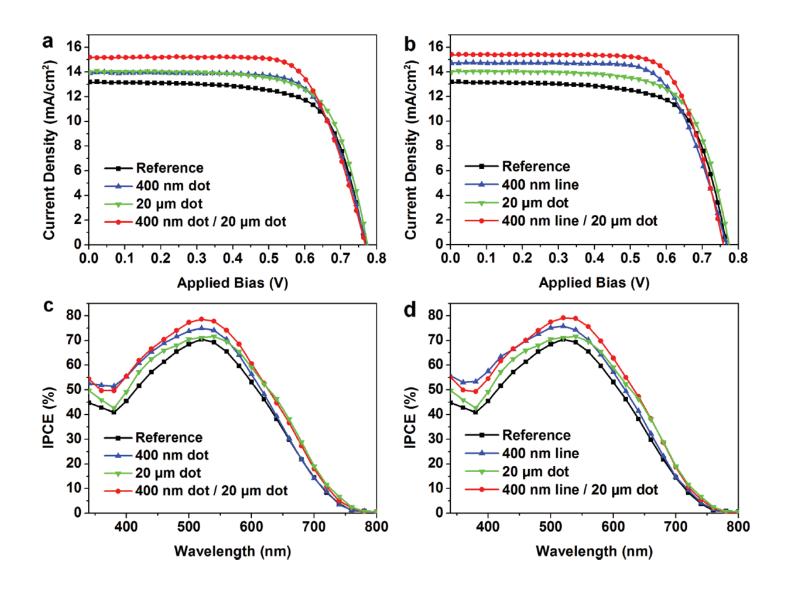
(v) Region V: the departure from the maximum thermal voltage; a result of entropy change which cannot be engineered


-Regions I, II, III are not discrete \rightarrow all modes of loss contribute throughout the entire current range

-Heat: current x (thermal voltage – FC voltage)


& electrical generation: cell current x FC voltage -FC voltage:

$$E_{\text{cell}} = E^{\circ}(T, P) - \eta_{a,a} - |\eta_{a,c}| - \eta_r - \eta_{m,a} - |\eta_{m,c}| - \eta_x$$
(4.1)



I-V Curves in battery

-V curves in solar cell

