Lecture Note #4 (Fall, 2020)

Transport

Nernst-Planck equation

I-V curve in mass transfer
Limiting current

Electrolyte transport
Overpotential or polarization

b owhE

Fuller & Harb (textbook), ch.4, Bard (ref.), ch.1,4, Oh (ref.), ch.3,4



Oinp < Obuik

Rinp > Rpuik

Figure 4.1 Multistep process for reduction.
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Mass Transport

Mass transport
rate = k,Cg5 - K.C°

Electrochemical reaction at electrode/solution interface: molecules in bulk
solution must be transported to the electrode surface — “mass transfer”

Mechanisms for mass transport:

(a) Migration: movement of a charged body under the influence of an
electric field (a gradient of electric potential)

(b) Diffusion: movement of species under the influence of gradient of
chemical potential (i.e., a concentration gradient)

(c) Convection: stirring or hydrodynamic transport




Nernst-Planck equation (diffusion + migration + convection)
J.(x) = -D,(0C.(x)/ox) —(z,F/RT)D,C.(0d(x)/ox) + Cv(X)

Where J(x); the flux of species i (molseclcm™) at distance x from the
surface, D;; the diffusion coefficient (cm?/sec), 0C,(x)/0x; the concentration
gradient at distance X, 0¢(x)/ox; the potential gradient, z, and C; the
charge and concentration of species I, v(x); the velocity (cm/sec)

1. Steady state mass transfer
steady state, (0C/ot) = O; the rate of transport of electroactive species is
equal to the rate of their reaction on the electrode surface

In the absence of migration,
R =0 + ne-
The rate of mass transfer,

V. ¢ (OCK(X)/0X),-o = (CP — C8)/0
where X is distance from the electrode surface & o: diffusion layer



IR

Concentration

Distance from electrode surface

Figure 4.2 Concentration gradients associated with reduction of a
solution-phase reactant at an electrode surface to form a soluble product.
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Vi = M[CRP — C.f]

where CgP is the concentration of R in the bulk solution, C.S is the
concentration at the electrode surface
mg, Is “mass transfer coefficient”

i = nFmy[CLP — C5]

i = -nFmg[C,P — C.f]



largest rate of mass transfer of R when C,5 = 0 — “limiting current”

S b
|| = nFmM;Cy,

CS

CSICP=1- (ifi; )
And
Cr®=[1— (/i )] [i; /nFmg] = (i) , — D)/(nFmMy)
Same method,
CoSICP=1- (ii; )
- I ¢ = nFmM,C.P | |
Cos=[1- ()1 JnFmg] = (i, . — )/(nFmy)



Put these equations to E = E° —(RT/nF)In(C:s/C%)

E = E° = (RT/nF)In(my/mg) - (RT/F)In[(i, , =)/ -1, )]
Let
E,, = E?— (RT/nF)In(my/my)
Then,
E=E,,- (RT/nF)In[(i ,—/(i-i/]

A

, C

" E




E,,, half-wave potential, independent of C,* and C;P — characteristic of
the R/O system.

Reversibility:

reversible: k° >> m, or m; — kinetic rate constant >> mass transport rate
constant — system is at equilibrium at the electrode surface and it is
possible to apply the Nernst equation at any potential

irreversible: k® << mg or my




2. Non-steady state mass transport: diffusion control

The rate of diffusion depends on the concentration gradients
J=-D(0C/ox) Fick’s first law
D: diffusion coefficient (cm?/sec)

The variation of concentration with time due to diffusion — Fick’s second
law

0CIot = -D(62CIx2) 1-D

J = -D(8C/éx) = iInF
D(AC/3x) = D(CP — CS)/8 = ilnF

Time-dependent, applying potential step E
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E I Reaction //
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reaction - _t

6(t)) () S(ty) d(ty)

Moles of species in diffusion layer = [idt/nF ~ [CP —CS](AS(t)/2)

Differentiating,
iI/nF = [CP —Cs](Add(t)/2dt) = D(CP — Cs)/5(t)
do(t)/dt = 2D/o(t), 8(t) =0 att=0
5(t) = 2V(Dt)
i/nF = (DY2/2t12) [CP —C3]

diffusion layer grows with t2 and current decays with t -1/2



potential step (chronoamperometry), planar electrode: Cottrell equation

(in Lecture #6)
constant current — potential variation at time (chronopotentiometry):

Sand equation (t =t (transition time) at Cs = 0)
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Electrolyte

Mobility and transport number

Mobilities: conduction from the standpoint of the charge carriers
Electric current = rate at which charge crosses any plane = [number of
carriers per unit volume][cross sectional area][charge on each
carrier][average carrier speed]

| = dafdt = (N,)(A)(@)(v)

I: particular charge carrier, c¢; concentration, g; charge, v, average
velocity,
N,; Avogadro’s constant (6.0220 x 1022 mol?), A; area
z;; charge number = g/q, where ¢, (1.6022 x 10'1° C),
e.g., electrons:-1, Mg?*; +2

v, o foc X oc d/dx

f.; force exerted on the charge carrier, X; electric field strength



mobility of the carrier, u, (m2s1V-1 unit) = velocity to field ratio (v, / X)
v, = +uX =-(z/|z])udd/dx

| Z, |- absolute value of the charge number

u,_ of electrons: 6.7 x 103 m2s-tVv! for Ag, less mobile in other metals
mobility of ions in aqueous solution: smaller than the factor of 10° (factor
10° slower); u_ ,.°=5.9 x 108 m2s-1V-1 in extremely diluted solution

cuz2+
Current I,

| =-AN,Q, | Z, | u.c.d¢/dx
If there are several kind of charge carriers,

| = -AFd¢/dxs | Z, | u.c.

i = -Fd¢/dxz | Z, | u.c.



Transport number t; the fraction of the total current carried by one
particular charge carrier
t=(lzluc)=(lz|uc)
From i = «X = -xd¢/dX,
conductivity k

K:Fz\zi\uici

molar ionic conductivity (&;); Fu.



lon mobilities at extreme dilution in agueous solution at 298 K

lon ue/mas-1\-1
H* 362.5 x 10-°
K* 76.2 x 10°
Ag* 64.2 x 10
Cu?* 58.6 x 10
Na* 51.9 x 10°
Lit 40.1 x 10
OH- 204.8 x 10-°
SO, 82.7 x 10°°
Cl- 79.1 x 10°°
Clo, 69.8 x 10°
C;HCOO- 33.5x 10

cf. u,_of electrons: 6.7 x 103 m2s-tVv for Ag



Conductivity
Electricity flows either by electron motion or ion motion
In both cases,
the intensity of the flow (= current density) « electric field strength

| = kX = -xdd/dx
conductivity k

1<:F2|zi|uici
determined by the concentration of charge carriers and their mobilities

one form of Ohm’s law
AE = -RI

potential difference across resistor to the current flowing through it

Resistor: dissipate energy
Capacitor: store energy



Transference number (or transport number)
The fraction of the current carried by H* and Cl-: t, and t_
t, +t =1
>t=1
e.g., Figure above: t, =0.8,t. = 0.2

Conductance (S = Q1), L = A/l
conductivity (k, S-cm): contribution from all ionic species
oc lon conc, charge magnitude (|z;]), index of migration
velocity (u))



Mobility (u;): limiting velocity of the ion in an electric field of unit strength
unit: cm?V-1s1 (cm/s per Vicm)
electric field, E — electric force — counterbalance with frictional drag —
terminal velocity

Direction of movement

Drag force \./ Electric force

Electric force = |z)|eE e: electronic charge
Frictional drag (Stokes law) = 61Tnrv

n :viscosity of medium, r: ion radius, v: velocity
When the terminal velocity is reached:

u, = V/IE = |zj|e/ 6TTNr
Conductivity
K =F2|z]uC



Transference number for species i = conductivity by i /total conductivity
t = [z|uCi2|z|u,C
For pure electrolytes(e.g., KCI, CaCl,, HNO;) — equivalent conductivity (A)

N\ =«kIC,, (conductivity per unit concentration of charge)
Ceq: concentration of + (or -) charges = C|z]|

N=Fu,+u)=A+A
equivalent ion conductivity, A, = Fu,

t=AA=u/(u, +u)
- Table: t, — individual ionic conductivities, A,
- N\, t depend on concentration of pure electrolyte because interactions
between ions tend to alter mobilities

— Table : Ay (extrapolated to infinite dilution) — calculate t;

For pure electrolyte: t. = A/



For mixed electrolytes:  t; = [z[CA/2 |z|CA;

Ion Ao, em® Q7 equiv ! u, em?sec ! VI
Concentration, C,, 2 H' 349.82 3.6253% 10
, K 7359 7.619 x 10~*
Electrolyte  0.01 0.05 0.1 0.2 Na* 50.11 5193 % 10~
HCl 0.8251 0.8292 0.8314 0.8337 i iy HOlhma
NaCl 0.3918 03876 03854 0.3821 oo ri L
KCl 04902 04899 0.4898 0.4894 o 6% bt
NH,Cl 0.4907 0.4905 0.4907 0.4911 Cl 76.34 7912 % 10~*
KNO; 0.5084 0.5093 0.5103 0.5120 Br 78.4 8.13 x10°*
Na->SO, 0.3848 03829 0.3828 0.3828 I 76.85 7.96 X 10°
K>SO, 0.4829  0.4870 0.4890 0.4910 NO; 7144 7.404.X 10:

OAc 40.9 424 X 10

1517 68.0 7.05 x107*
1807 79.8 8§27 1674
HCO; 44.48 4.610 X 1074
{Fe(CN);~  101.0 1.047 X 103
1Fe(CN); 110.5 1. 1455% 107

Solid electrolyte: ions move under electric field without solvent —
conductivity — batteries, fuel cells, and electrochemical devices



Classes of conductors
Materials 1.Conductors Electronic conductors
lonic conductors
2. Insulators

Conductors: metals
Insulators: plastics, ceramics, gases
No clear cut distinction between conductor and insulator

Typical value of electrical conductivity

Material k/Sm-t
lonic conductors lonic crystals 10-16 — 102
Solid electrolytes 101 -103
Strong(liquid) electrolytes 101 - 108
Electronic conductors Metals 103 - 107
Semiconductors 103 - 104
Insulators <1010

S/m — x102 for S/cm



Electrical conductivity of various materials (most at 298 K)

Material

Superconductors (low temp)

Ag

Cu

Hg

C (graphite)
Doped polypyrrole

Molten KCI (at 1043 K)
5.2 M H,SO, (battery acid)

Seawater

Ge

0.1 M KCI

H20

Typical glass

Teflon, (CF,)n
Vacuum & most gases

k/Sm-1

o0
6.3 x 107
6.0 x 107
1.0 x 1068
4 x 10*
6 x 103
217
82
5.2
2.2
1.3
5.7 x 106
3 x 1010
10-15
0

Charge carriers

Electron pairs
Electrons
Electrons
Electrons

Pi electrons

Pi electrons
K*and Cl-

H* and HSO,
Cations & anions
Electrons and holes
K*and Cl-

H* and OH-

Univalent cations
2



Measurement of electrical conductivity

1. Four terminal method: k calculation from measured I, Ap, A and x

2. a.c. impedance method



The nature of the charge carriers

1) Electronic conductors: mobile electrons; metals, some inorganic oxides
and sulfides (e.g., PbO, and Ag,S which are slightly non-stoichiometric),
semiconductors (n-type: electrons, p-type: holes, intrinsic: both),
conducting polymer (pi-electrons), graphite(pi-electrons), organic metals
(organic salts, e.g., TTE-TCNQ(tetrathiafulvalene
tetracyanoquinodimethane, pi-electrons)

» Metals: shared valence electrons with all atoms in solid (delocalized
electrons) — high electric and thermal conductivity

cf. insulator vs. conductor: valence band completely filled vs. partially
filled



e.g., Diamond (insulator); sp? orbital (completely filled valence band), E,
5.6 eV
Na (alkali metal); 11 electrons (10 filled 1s & 2p, 1 valence electron 3s
(half filled — electric conduction using unfilled part of VB)
Alkaline earth metal (divalent, 12 e’'s) — good conductors because their
valence band overlaps another band

Conductivity of metal increases as temperature lowered or impurities
reduced since low resistance

* Semiconductors: E is smaller than insulator (1 ~ 2 eV; relatively small
excitation energy, cf) 1eV = 12000 K = 1240 nm (1.2 um (IR))

Conductivity of semiconductors increases as temperature & impurity
concentration increased.

« Semimetals; between metals & semiconductors, e.g., graphite — planar
sheet of hexagons with weak van der Waals forces (2-dimensional
molecule), E, = 0 (top energy level of pi(n)-bonding orbitals (the valence
band) is at the same level of that of the anti-bonding orbital

« Conducting polymer: n-electrons



2) lonic conductors: motion of anions and/or cations; solutions of
electrolytes (salts, acids and bases) in water and other liquids, molten
salts, solid ionic conductors (solid electrolyte)( O% in ZrO, at high
temperature, Ag* in RbAg,l; at room temperature, fluoride ion holes Iin

EuF, doped LaF,)




3) Electronic & ionic conductors; plasmas (hot gases, positive ions and

free electrons), sodium metal in liquid ammonia(Na* cation and solvated
electrons), hydrogen dissolved in Pd metal(hydrogen ions(protons) and

electrons)

conductors electronic

mixed

jonic

lllustration 4.2, 4.3, 4.4, 4.5

metals
some inorganic oxides & sulfides
semiconductors n-type
Intrinsic
p-type
organic metals
conducting polymers

plasmas
some solids & solutions

solutions of electrolytes
molten salts

solid ionic conductors
doped crystals



Polarization

Voltammogram: historical one vs. new one
E > 0 — working electrode potential > O (positive: right of x-axis)
| >0 — oxidation at the working electrode

Polarization: the shift in the voltage across a cell caused by the passage
of current
Departure of the cell potential from the reversible(or equilibrium or
nernstian) potential
Ohmic polarization
Activation polarization
Concentration polarization

Overvoltage (n, overpotential, 1}&h): the voltage shift caused by each

kind of polarization
Extent of potential measured by the overpotential: n = E - E_,

E= En + T'lohm + nact + rlconc



() ohmic polarization

Nonm = IRgop IR drop”

Rsol = L/kA ! I

slope = 1/R,

WE <« » RE

If free of activation & concentration polarization, slope = 1/R,



Electrochemistry needs to minimize n,,

x (conductivity) T— m,,, v (by adding extra electrolyte: “supporting
electrolyte”)

three-electrode system

two-electrode cell vs. three-electrode cell

Epp = E + iRy = Egg + 1 + iR,

appl
IR;: ohmic drop in the solution (ohmic polarization) — should be
minimized — short distance between working and reference electrode &
three-electrode cell

Two-electrode cell: iR, problem due to high current flow
Three-electrode cell: current between WE and auxiliary electrode(or

counter electrode)
Potential measurement between WE and RE — almost no

current
to reference electrode

— Potentiostat, etc electrochemical system: three electrode system
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with and without supporting electrolyte. (b) Potential losses
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A.J. Bard, L. R. Faulkner, Electrochemical Methods, Wiley, 2001.
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<V> Ref
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- Two electrodes system
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(i) activation polarization

slow electrode reaction — activation polarization; slow Kkinetics o
activation energy

This can be overcome by increasing the temperature and
by applying extra voltage (activation overvoltage (1))



(i) concentration polarization

from difference between the electrode surface and bulk concentration
R — O+ ne

Neone = E —E,, = (RT/NF)In[(cPc,%)/csSc Pl
Limiting current (i,) StHIM &
Ideal polarizable electrode (totally polarized electrode): a very large
change in potential upon small current
Ideal nonpolarizable electrode: potential does not change upon passage
of current (e.g., reference electrode)

/
/
/

(a) Ideal polarizable electrode (b) Ideal nonpolarized electrode




Fuel cell polarization curve
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-5 regions

(i) Region I: activation (kinetic) overpotential at the electrodes

(i) Region Il: ohmic polarization. Electric & ionic conduction loss

(i) Region IIl: concentration polarization. Mass transport limitations

(iv) Region IV. Departure from Nernst thermodynamic equilibrium
potential; undesired species crossover through
electrolyte, internal currents from electron leakage,
other contamination or impurity

(v) Region V: the departure from the maximum thermal voltage; a
result of entropy change which cannot be engineered

-Regions 1, Il, Il are not discrete — all modes of loss contribute throughout
the entire current range

-Heat: current x (thermal voltage — FC voltage)

& electrical generation: cell current x FC voltage

-FC voltage:



I-V Curves in fuel cell
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I-\/ Curves in battery
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|-V curves in solar cell
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