
Lecture Note #4 (Spring, 2022)

Transport

- 1. Nernst-Planck equation
- 2. I-V curve in mass transfer
- 3. Limiting current
- 4. Electrolyte transport
- 5. Overpotential or polarization

Figure 4.1 Multistep process for reduction.

Electrochemical Engineering, First Edition. Thomas F. Fuller and John N. Harb. © 2018 Thomas F. Fuller and John N. Harb. Published 2018 by John Wiley & Sons, Inc. Companion Website: www.wiley.com/go/fuller/electrochemicalengineering

Mass Transport

Mass transport

rate =
$$k_a C_R^s - k_c C_O^s$$

Electrochemical reaction at electrode/solution interface: molecules in bulk solution must be transported to the electrode surface → "mass transfer"

$$C_{O}^{b} \rightarrow C_{O}^{s} \rightarrow C_{R}^{s} \rightarrow C_{R}^{b}$$

Mechanisms for mass transport:

- (a) Migration: movement of a charged body under the influence of an electric field (a gradient of electric potential)
- (b) Diffusion: movement of species under the influence of gradient of chemical potential (i.e., a concentration gradient)
- (c) Convection: stirring or hydrodynamic transport

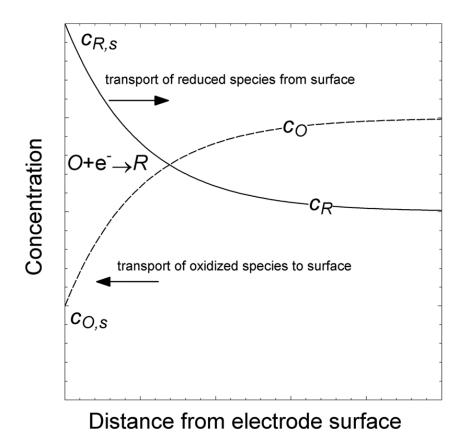
Nernst-Planck equation (diffusion + migration + convection)

$$J_{i}(x) = -D_{i}(\partial C_{i}(x)/\partial x) - (z_{i}F/RT)D_{i}C_{i}(\partial \phi(x)/\partial x) + C_{i}v(x)$$

Where $J_i(x)$; the flux of species i (molsec⁻¹cm⁻²) at distance x from the surface, D_i ; the diffusion coefficient (cm²/sec), $\partial C_i(x)/\partial x$; the concentration gradient at distance x, $\partial \phi(x)/\partial x$; the potential gradient, z_i and C_i ; the charge and concentration of species i, v(x); the velocity (cm/sec)

1. Steady state mass transfer

steady state, $(\partial C/\partial t) = 0$; the rate of transport of electroactive species is equal to the rate of their reaction on the electrode surface


In the absence of migration,

$$R = O + ne^{-}$$

The rate of mass transfer,

$$V_{mt} \propto (\partial C_R(x)/\partial x)_{x=0} = (C_R^b - C_R^s)/\delta$$

where x is distance from the electrode surface & δ : diffusion layer

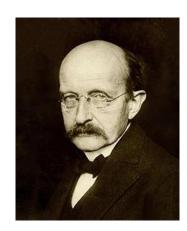
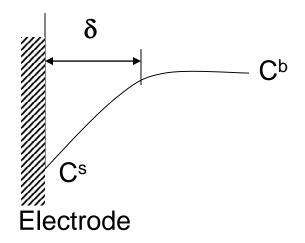


Figure 4.2 Concentration gradients associated with reduction of a solution-phase reactant at an electrode surface to form a soluble product.

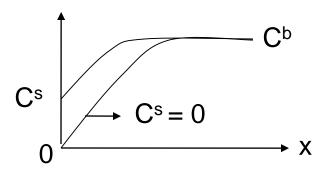

Electrochemical Engineering, First Edition. Thomas F. Fuller and John N. Harb. © 2018 Thomas F. Fuller and John N. Harb. Published 2018 by John Wiley & Sons, Inc. Companion Website: www.wiley.com/go/fuller/electrochemicalengineering

Walther Hermann Nernst (Nobel Chemistry, 1920)

Max Planck (Nobel Physics, 1918)

$$v_{mt} = m_R[C_R^b - C_R^s]$$

where C_R^b is the concentration of R in the bulk solution, C_R^s is the concentration at the electrode surface


m_R is "mass transfer coefficient"

$$i = nFm_R[C_R^b - C_R^s]$$

$$i = -nFm_O[C_O^b - C_O^s]$$

largest rate of mass transfer of R when $C_R^s = 0 \rightarrow$ "limiting current" 한계전류

$$i_{l,a} = nFm_R C_R^b$$

$$C_R^{s}/C_R^{b} = 1 - (i/i_{l,a})$$

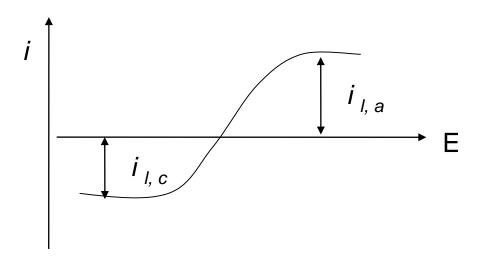
And

$$C_R^s = [1 - (i/i_{l,a})][i_{l,a}/nFm_R] = (i_{l,a} - i)/(nFm_R)$$

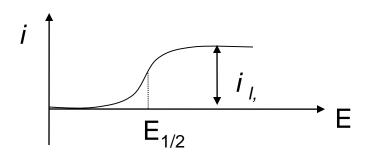
Same method,

$$\begin{split} C_{O}^{s}/C_{O}^{b} &= 1 - (i/i_{l,c}) \\ i_{l,c} &= nFm_{O}C_{O}^{b} \\ C_{O}^{s} &= [1 - (i/i_{l,c})] \left[i_{l,c}/nFm_{O} \right] = (i_{l,c} - i)/(nFm_{O}) \end{split}$$

Put these equations to $E = E^0 - (RT/nF) ln(C_R^s/C_O^s)$


$$E = E^0 - (RT/nF)ln(m_0/m_R) - (RT/nF)ln[(i_{l,a} - i)/(i - i_{l,c})]$$

Let


$$E_{1/2} = E^0 - (RT/nF)ln(m_0/m_R)$$

Then,

$$E = E_{1/2} - (RT/nF)ln[(i_{l,a} - i)/(i - i_{l,c})]$$

 $E_{1/2}$, half-wave potential, independent of C_O^b and $C_R^b \to characteristic of the R/O system.$

Reversibility:

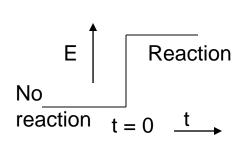
<u>reversible</u>: $k^0 >> m_O$ or $m_R \to kinetic$ rate constant >> mass transport rate constant \to system is at equilibrium at the electrode surface and it is possible to apply the Nernst equation at any potential

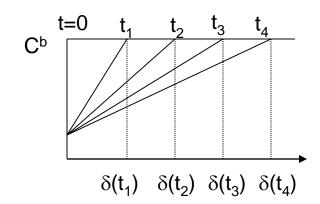
<u>irreversible</u>: k⁰ << m_O or m_R

2. Non-steady state mass transport: diffusion control

The rate of diffusion depends on the concentration gradients

$$J = -D(\partial C/\partial x)$$
 Fick's first law


D: diffusion coefficient (cm²/sec)

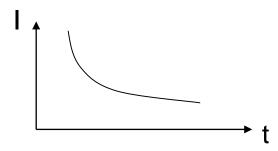

The variation of concentration with time due to diffusion → Fick's second law

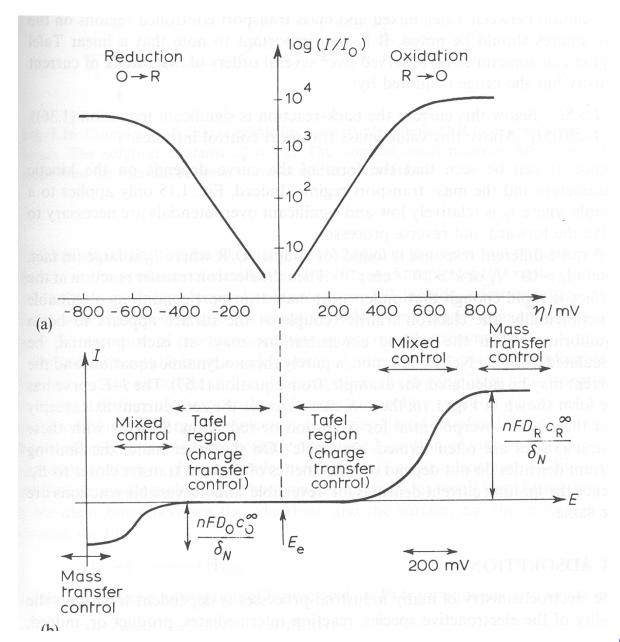
$$\partial C/\partial t = -D(\partial^2 C/\partial x^2)$$
 1-D

$$J = -D(\partial C/\partial x) = i/nF$$

$$D(\partial C/\partial x) = D(C^b - C^s)/\delta = i/nF$$

Time-dependent, applying potential step E


Moles of species in diffusion layer = $\int idt/nF \approx [C^b - C^s](A\delta(t)/2)$


$$\begin{split} i/nF &= [C^b - C^s](Ad\delta(t)/2dt) = D(C^b - C^s)/\delta(t) \\ d\delta(t)/dt &= 2D/\delta(t), \ \delta(t) = 0 \ \text{at} \ t = 0 \\ \delta(t) &= 2\sqrt{(Dt)} \\ i/nF &= (D^{1/2}/2t^{1/2}) \ [C^b - C^s] \end{split}$$

diffusion layer grows with t1/2 and current decays with t-1/2

potential step (chronoamperometry), planar electrode: Cottrell equation (in Lecture #6)

constant current \rightarrow potential variation at time (chronopotentiometry): Sand equation (t = τ (transition time) at C^s = 0)

Pletcher, Fig. 1.8

Electrolyte

Mobility and transport number

Mobilities: conduction from the standpoint of the charge carriers

Electric current = rate at which charge crosses any plane = [number of carriers per unit volume][cross sectional area][charge on each carrier][average carrier speed]

$$I = dq/dt = (N_A c_i)(A)(q_i)(v_i)$$

i: particular charge carrier, c_i ; concentration, q_i ; charge, v_i ; average velocity,

 N_A ; Avogadro's constant (6.0220 x 10^{23} mol⁻¹), A; area z_i ; charge number = q_i/q_e where q_e (=1.6022 x 10^{-19} C), e.g., electrons:-1, Mg^{2+} ; +2

$$v_i \propto f_i \propto X \propto d\phi/dx$$

f_i; force exerted on the charge carrier, X; electric field strength

mobility of the carrier, u_i (m²s⁻¹V⁻¹ unit) = velocity to field ratio (v_i / X)

$$v_i = \pm u_i X = -(z_i/|z_i|)u_i d\phi/dx$$

 $|z_i|$: absolute value of the charge number

 u_{e^-} of electrons: 6.7 x 10⁻³ m²s⁻¹V⁻¹ for Ag, less mobile in other metals. mobility of ions in aqueous solution: smaller than the factor of 10⁵ (factor 10⁵ slower); $u_{cu2+}^{\circ} = 5.9 \times 10^{-8} \text{ m}^2 \text{s}^{-1} \text{V}^{-1}$ in extremely diluted solution

Current I,

$$I = -A N_A q_e | z_i | u_i c_i d\phi/dx$$

If there are several kind of charge carriers,

$$I = -AFd\phi/dx\Sigma |z_i| u_i c_i$$

$$i = -Fd\phi/dx\Sigma | z_i | u_i c_i$$

Transport number t_i; the fraction of the total current carried by one particular charge carrier

$$t_{i} = (|z_{i}|u_{i}c_{i})/\Sigma(|z_{i}|u_{i}c_{i})$$

From $i = \kappa X = -\kappa d\phi/dx$,

conductivity **k**

$$\kappa = \mathsf{F}\Sigma \, \big| \, \mathsf{z}_{\mathsf{i}} \, \big| \, \mathsf{u}_{\mathsf{i}} \mathsf{c}_{\mathsf{i}}$$

molar ionic conductivity (λ_i); Fu_i

Ion mobilities at extreme dilution in aqueous solution at 298 K

Ion	u°/m²s-1V-1
H ⁺	362.5 x 10 ⁻⁹
K^{+}	76.2 x 10 ⁻⁹
Ag^+	64.2 x 10 ⁻⁹
Cu^{2+}	58.6 x 10 ⁻⁹
Na ⁺	51.9 x 10 ⁻⁹
Li ⁺	40.1 x 10 ⁻⁹
OH-	204.8 x 10 ⁻⁹
SO_4^{2-}	82.7 x 10 ⁻⁹
Cl ⁻	79.1 x 10 ⁻⁹
ClO ₄ -	69.8 x 10 ⁻⁹
C ₆ H ₅ COO-	33.5 x 10 ⁻⁹

cf. u_{e-} of electrons: 6.7 x 10⁻³ m²s⁻¹V⁻¹ for Ag

Conductivity

Electricity flows either by electron motion or ion motion In both cases,

the intensity of the flow (= current density) ∞ electric field strength

$$i = \kappa X = -\kappa d\phi/dx$$

conductivity κ

$$\kappa = F\Sigma | z_i | u_i c_i$$

determined by the concentration of charge carriers and their mobilities

one form of Ohm's law

$$\Delta E = -RI$$

potential difference across resistor to the current flowing through it

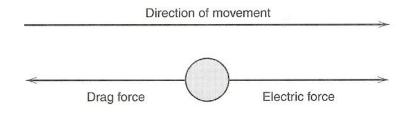
Resistor: dissipate energy

Capacitor: store energy

<u>Transference number (or transport number)</u>

The fraction of the current carried by H⁺ and Cl⁻: t₊ and t₋

$$t_{+} + t_{-} = 1$$


$$\sum t_{i} = 1$$

e.g., $t_{+} = 0.8$, $t_{-} = 0.2$ so on

Conductance (S =
$$\Omega^{-1}$$
), L = $\kappa A/I$ conductivity (κ , S·cm⁻¹): contribution from all ionic species ∞ ion conc, charge magnitude ($|z_i|$), index of migration velocity (u_i)

Mobility (u_i): limiting velocity of the ion in an electric field of unit strength unit: cm²V⁻¹s⁻¹ (cm/s per V/cm)

electric field, $E \rightarrow$ electric force \rightarrow counterbalance with frictional drag \rightarrow terminal velocity

Electric force = $|z_i|eE$

e: electronic charge

Frictional drag (Stokes law) = $6\pi\eta rv$

η :viscosity of medium, r: ion radius, v: velocity

When the terminal velocity is reached:

$$u_i = v / E = |z_i|e / 6\pi\eta r$$

Conductivity

$$\kappa = F \sum |z_i| u_i C_i$$

Transference number for species i = conductivity by i / total conductivity

$$t_i = |z_i|u_iC_i / \sum |z_j|u_jC_j$$

For pure electrolytes(e.g., KCl, CaCl₂, HNO₃) \rightarrow equivalent conductivity (\land)

$$\Lambda = F(u_{+} + u_{-}) = \lambda_{+} + \lambda_{-}$$
 equivalent ion conductivity, $\lambda_{i} = Fu_{i}$

$$t_i = \lambda_i / \Lambda = u_i / (u_+ + u_-)$$

- Table: $t_{+} \rightarrow individual ionic conductivities, \lambda_{i}$
- λ_i , t_i depend on concentration of pure electrolyte because interactions between ions tend to alter mobilities
- \rightarrow Table : λ_{0i} (extrapolated to infinite dilution) \rightarrow calculate t_i

For pure electrolyte: $t_i = \lambda_i / \Lambda$

For mixed electrolytes: $t_i = |z_i|C_i\lambda_i / \sum |z_j|C_j\lambda_j$

Electrolyte	Concentration, $C_{\rm eq}^{b}$				
	0.01	0.05	0.1	0.2	
HC1	0.8251	0.8292	0.8314	0.8337	
NaCl	0.3918	0.3876	0.3854	0.3821	
KCl	0.4902	0.4899	0.4898	0.4894	
NH ₄ Cl	0.4907	0.4905	0.4907	0.4911	
KNO_3	0.5084	0.5093	0.5103	0.5120	
Na ₂ SO ₄	0.3848	0.3829	0.3828	0.3828	
K_2SO_4	0.4829	0.4870	0.4890	0.4910	

Ion	λ_0 , cm ² Ω^{-1} equiv ^{-1a}	u, cm ² sec ⁻¹ V ^{-1b}
H^+	349.82	3.625×10^{-3}
K^+	73.52	7.619×10^{-4}
Na ⁺	50.11	5.193×10^{-4}
Li ⁺	38.69	4.010×10^{-4}
NH_4^+	73.4	7.61×10^{-4}
$\frac{1}{2}$ Ca ²⁺	59.50	6.166×10^{-4}
OH-	198	2.05×10^{-3}
Cl ⁻	76.34	7.912×10^{-4}
Br^-	78.4	8.13×10^{-4}
I^-	76.85	7.96×10^{-4}
NO_3^-	71.44	7.404×10^{-4}
OAc ⁻	40.9	4.24×10^{-4}
ClO_4^-	68.0	7.05×10^{-4}
$\frac{1}{2}SO_4^{2-}$	79.8	8.27×10^{-4}
HCO ₃	44.48	4.610×10^{-4}
$\frac{1}{3}$ Fe(CN) $_{6}^{3-}$	101.0	1.047×10^{-3}
${}_{4}^{1}\text{Fe}(\text{CN})_{6}^{4}{}^{-}$	110.5	1.145×10^{-3}

Solid electrolyte: ions move under electric field without solvent → conductivity → batteries, fuel cells, and electrochemical devices

Classes of conductors

Materials [1.Conductors [Electronic conductors Ionic conductors

2. Insulators

Conductors: metals

Insulators: plastics, ceramics, gases

No clear cut distinction between conductor and insulator

Typical value of electrical conductivity

	Material	к/Sm ⁻¹
Ionic conductors	Ionic crystals Solid electrolytes Strong(liquid) electrolytes	$10^{-16} - 10^{-2}$ $10^{-1} - 10^{3}$ $10^{-1} - 10^{3}$
Electronic conductors	Metals Semiconductors Insulators	$10^3 - 10^7$ $10^{-3} - 10^4$ < 10^{-10}

 $S/m \rightarrow x10^{-2}$ for S/cm

Electrical conductivity of various materials (most at 298 K)

Material	κ/Sm^{-1}	Charge carriers
Superconductors (low temp)	∞	Electron pairs
Ag	6.3×10^7	Electrons
Cu	6.0×10^7	Electrons
Hg	1.0×10^6	Electrons
C (graphite)	4×10^4	Pi electrons
Doped polypyrrole	6×10^3	Pi electrons
Molten KCl (at 1043 K)	217	K ⁺ and Cl ⁻
5.2 M H ₂ SO ₄ (battery acid)	82	H ⁺ and HSO ₄ ⁻
Seawater	5.2	Cations & anions
Ge	2.2	Electrons and holes
0.1 M KCl	1.3	K ⁺ and Cl ⁻
H_2O	5.7×10^{-6}	H ⁺ and OH ⁻
Typical glass	3×10^{-10}	Univalent cations
Teflon, (CF ₂)n	10^{-15}	?
Vacuum & most gases	0	

Measurement of electrical conductivity

- 1. Four terminal method: κ calculation from measured I, $\Delta \phi$, A and x
- 2. a.c. impedance method

The nature of the charge carriers

- 1) <u>Electronic conductors</u>: mobile electrons; metals, some inorganic oxides and sulfides (e.g., PbO₂ and Ag₂S which are slightly non-stoichiometric), semiconductors (n-type: electrons, p-type: holes, intrinsic: both), conducting polymer (pi-electrons), graphite(pi-electrons), organic metals (organic salts, e.g., TTF-TCNQ(tetrathiafulvalene tetracyanoquinodimethane, pi-electrons)
- Metals: shared valence electrons with all atoms in solid (delocalized electrons) → high electric and thermal conductivity

cf: insulator vs. conductor: valence band completely filled vs. partially filled

e.g., Diamond (insulator); sp 3 orbital (completely filled valence band), E_g : 5.6 eV

Na (alkali metal); 11 electrons (10 filled 1s & 2p, 1 valence electron 3s (half filled → electric conduction using unfilled part of VB)

Alkaline earth metal (divalent, 12 e's) → good conductors because their valence band overlaps another band

Conductivity of metal increases as temperature lowered or impurities reduced since low resistance

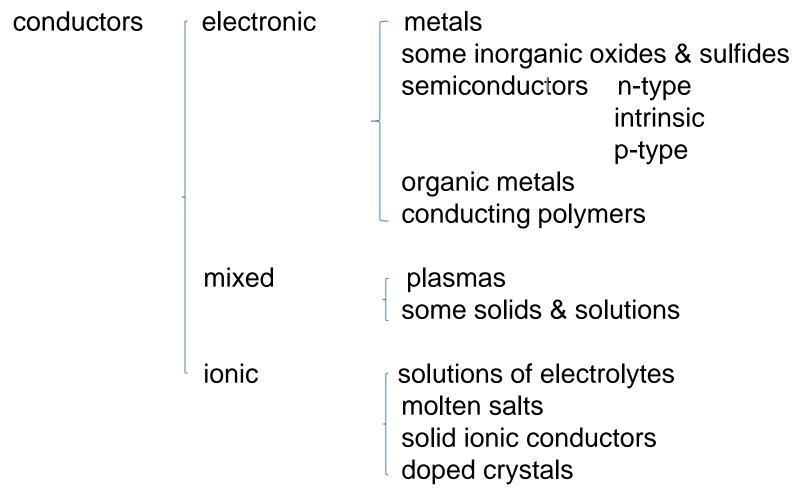
• Semiconductors: E_g is smaller than insulator (1 ~ 2 eV; relatively small excitation energy, cf) 1eV = 12000 K = 1240 nm (1.2 μ m (IR))

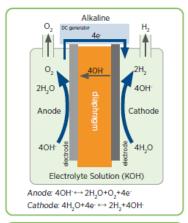
Conductivity of semiconductors increases as temperature & impurity concentration increased.

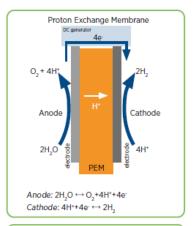
- Semimetals; between metals & semiconductors, e.g., graphite \rightarrow planar sheet of hexagons with weak van der Waals forces (2-dimensional molecule), $E_g = 0$ (top energy level of $pi(\pi)$ -bonding orbitals (the valence band) is at the same level of that of the anti-bonding orbital
- Conducting polymer: π -electrons

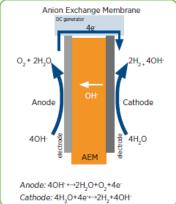
2) <u>Ionic conductors</u>: motion of anions and/or cations; solutions of electrolytes (salts, acids and bases) in water and other liquids, molten salts, solid ionic conductors (solid electrolyte)(O²⁻ in ZrO₂ at high temperature, Ag⁺ in RbAg₄I₅ at room temperature, fluoride ion holes in EuF₂ doped LaF₃)

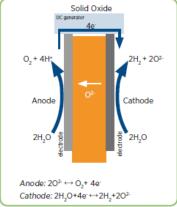
3) Electronic & ionic conductors; plasmas (hot gases, positive ions and free electrons), sodium metal in liquid ammonia(Na+ cation and solvated electrons), hydrogen dissolved in Pd metal(hydrogen ions(protons) and electrons)




Illustration 4.2, 4.3, 4.4, 4.5


All Soild State Battery (전고체 배터리)


	Main compounds	lonic conductivity	Temp. stability	Production	Humid stability
Oxide(LLZO)	Li, La, Zr, O	10 ⁻⁴ S/cm		\triangle	\circ
Polymer	Poly Ethylene	10 ⁻⁵ S/cm	\circ		\circ
Sulfide(LGPS)	Li, P, Ge, S	10 ⁻³ S/cm			\triangle


Electrolyzer (수전해)

Different types of commercially available electrolysis technologies.

자료: IRENA (2020)

Table 1. Characterisation of the four types of water electrolysers.

	Alkaline	PEM	AEM	Solid Oxide
Operating temperature	70-90 °C	50-80 °C	40-60 °C	700-850 °C
Operating pressure	1-30 bar	< 70 bar	< 35 bar	1 bar
Electrolyte	Potassium hydroxide (KOH) 5-7 moll ⁻¹	PFSA membranes	DVB polymer support with	Yttria-stabilized Zirconia (YSZ)
	5-/ MOIL'		KOH or NaHCO3 1molL ⁻¹	
Separator	ZrO ₂ stabilized with PPS mesh	Solid electrolyte (above)	Solid electrolyte (above)	Solid electrolyte (above)
Electrode / catalyst (oxygen side)	Nickel coated perforated stainless steel	Iridium oxide	High surface area Nickel or NiFeCo alloys	Perovskite-type (e.g. LSCF, LSM)
Electrode / catalyst (hydrogen side)	Nickel coated perforated stainless steel	Platinum nanoparticles on carbon black	High surface area nickel	Ni/YSZ
Porous transport layer anode	Nickel mesh (not always present)	Platinum coated sintered porous titanium	Nickel foam	Coarse Nickel-mesh or foam
Porous transport layer cathode	Nickel mesh	Sintered porous titanium or carbon cloth	Nickel foam or carbon Cloth	None
Bipolar plate anode	Nickel-coated stainless steel	Platinum-coated titanium	Nickel-coated stainless steel	None
Bipolar plate cathode	Nickel-coated stainless steel	Gold-coated titanium	Nickel-coated Stainless steel	Cobalt-coated stainless steel
Frames and sealing	PSU, PTFE, EPDM	PTFE, PSU, ETFE	PTFE, Silicon	Ceramic glass

Fuel cell (연료전지)

Table 9.1 Types of Fue	l Cells		ssion and design of the fuel cell depend dramatically c nature of the electrolyte. For example, while hyd
Fuel-cell type	Main application	Operating temperature [°C]	always reacts at the anode and oxygen at the calhode, can be produced at either the anode or the animode.
Direct methanol	Portable power	25–90	Uses same membrane as PEM FC
Proton-exchange membrane (PEMFC) 고분자전해질	Automotive, buses portable	60–90 and i	Tolerant to carbon dioxide in air Requires precious metal catalysts Rapid start-up and shutdown
Alkaline (AFC)	Space	80–100	Requires pure hydrogen and oxygen Nonprecious metal catalysts possible
Phosphoric acid (PAFC) 인산형	Stationary, combined heat and power	180–220 shorts	Operates on reformed fuels Long life Some cogeneration possible
Molten carbonate (MCFC)	Stationary, combined heat and power	600–650	High efficiency Good cogeneration
Solid oxide (SOFC) 고체산화물	Stationary, combined heat and power	650–1000	High efficiency High temperature limits materials available and makes thermal cycles challenging

Polarization

Voltammogram: historical one vs. new one

 $E > 0 \rightarrow$ working electrode potential > 0 (positive: right of x-axis)

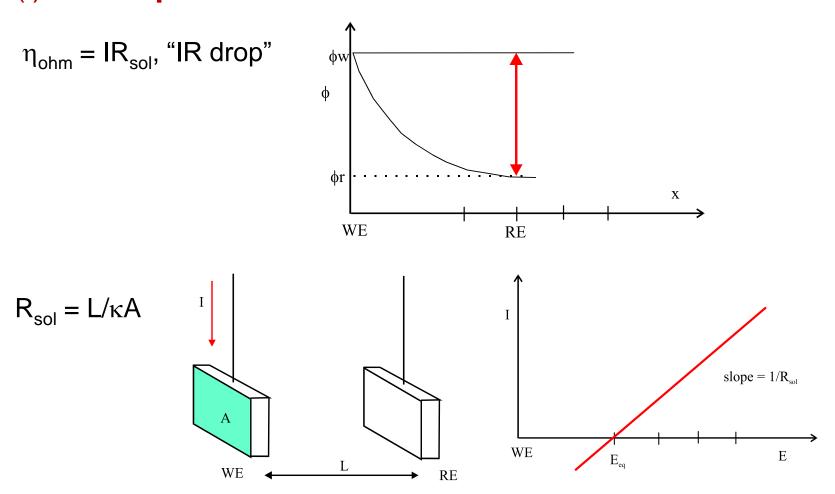
 $I > 0 \rightarrow$ oxidation at the working electrode

Polarization: the shift in the voltage across a cell caused by the passage of current

Departure of the cell potential from the reversible (or equilibrium or nernstian) potential

Ohmic polarization

Activation polarization


Concentration polarization

Overvoltage (η, overpotential, 과전압): the voltage shift caused by each kind of polarization

Extent of potential measured by the overpotential: $\eta = E - E_{eq}$

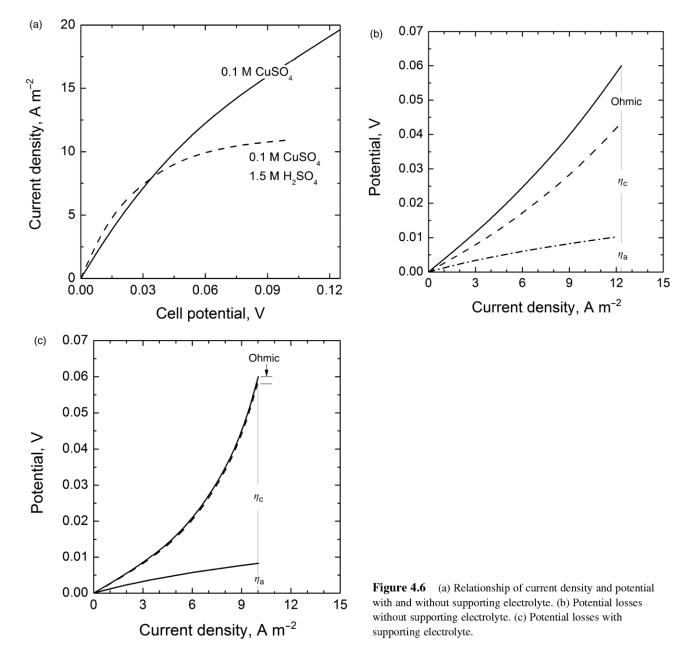
$$E = E_n + \eta_{ohm} + \eta_{act} + \eta_{conc}$$

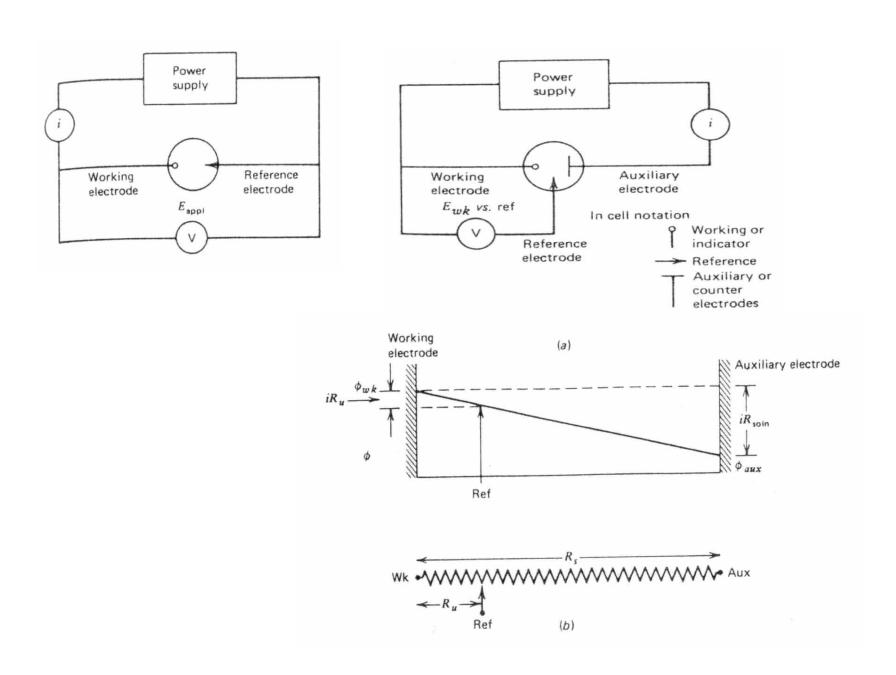
(i) ohmic polarization

If free of activation & concentration polarization, slope = $1/R_{sol}$

Electrochemistry needs to minimize η_{ohm} κ (conductivity) $\uparrow \rightarrow \eta_{ohm} \downarrow$ (by adding extra electrolyte: "supporting electrolyte") three-electrode system

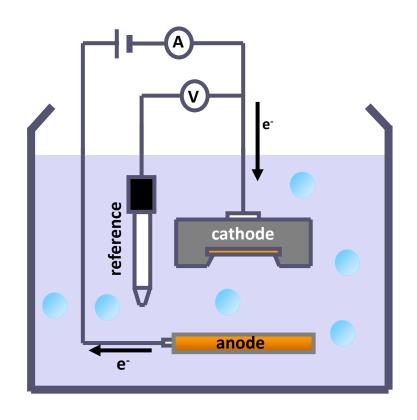
two-electrode cell vs. three-electrode cell

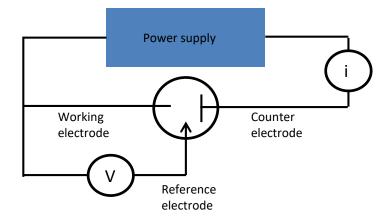

$$E_{appl} = E + iR_s = E_{eq} + \eta + iR_s$$


 IR_s : ohmic drop in the solution (ohmic polarization) \to should be minimized \to short distance between working and reference electrode & three-electrode cell

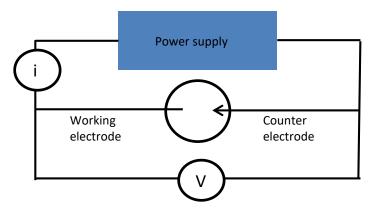
Two-electrode cell: iR_s problem due to high current flow Three-electrode cell: current between WE and auxiliary electrode(or counter electrode)

Potential measurement between WE and RE \rightarrow almost no current to reference electrode


→ Potentiostat, etc electrochemical system: three electrode system



A.J. Bard, L. R. Faulkner, Electrochemical Methods, Wiley, 2001.


Electrochemical measurement

- Three electrodes system

- Two electrodes system

그림제공: 권오중 교수(인천대)

(ii) activation polarization

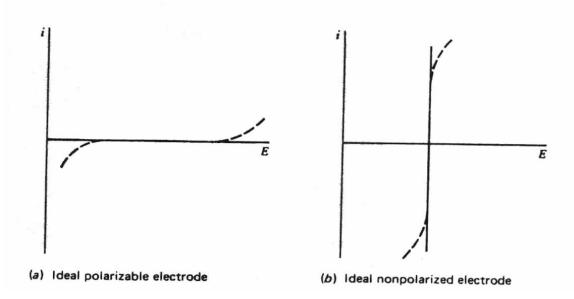
slow electrode reaction \rightarrow activation polarization; slow kinetics \propto activation energy

This can be overcome by increasing the temperature and

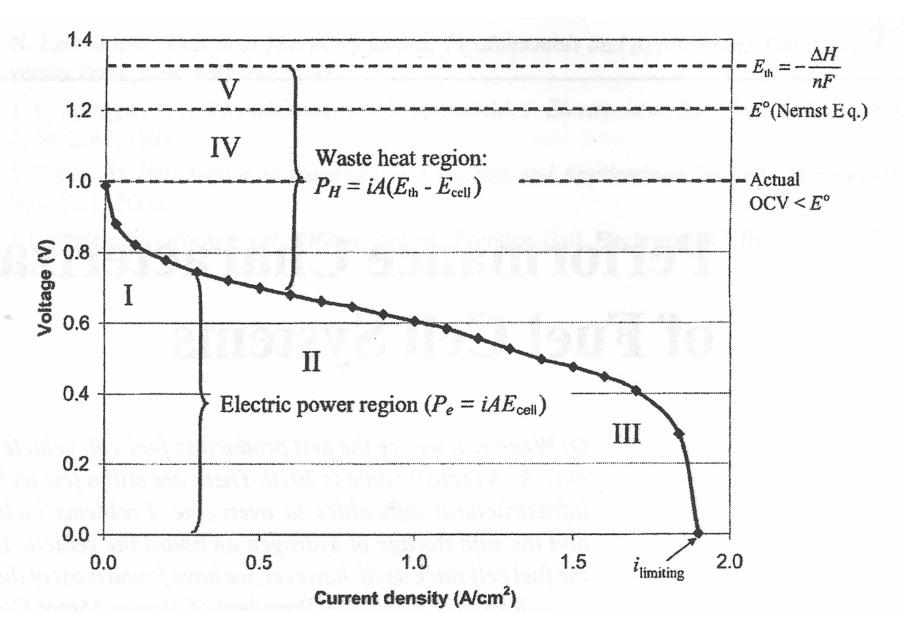
by applying extra voltage (activation overvoltage (η_{act}))

(iii) concentration polarization

from difference between the electrode surface and bulk concentration

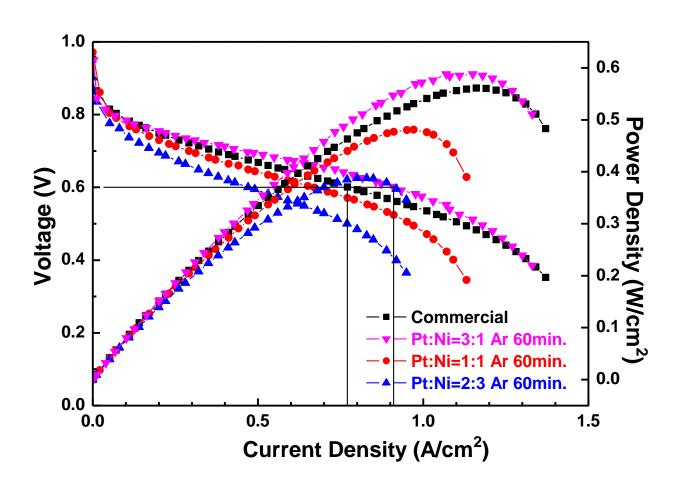

$$R \rightarrow O + ne^{-}$$

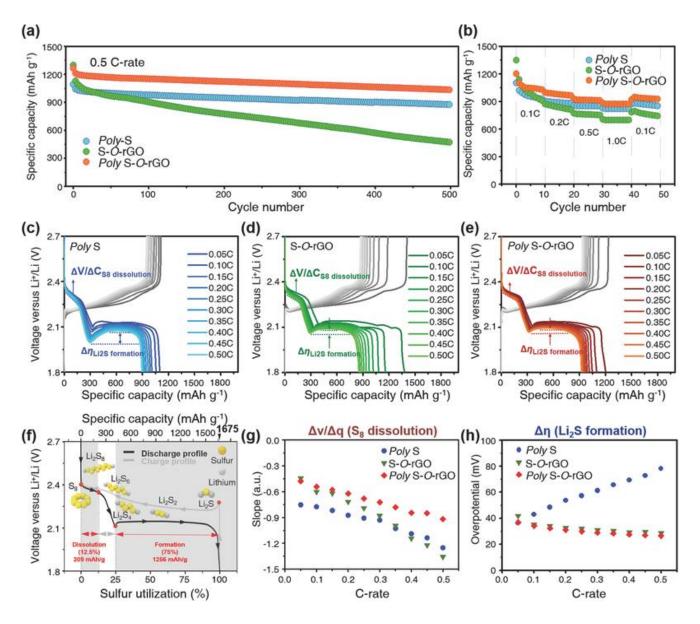
$$\eta_{conc} = E - E_n = (RT/nF) ln[(c_R^b c_O^s)/c_R^s c_O^b]]$$


Limiting current (i_i) **한계전류**

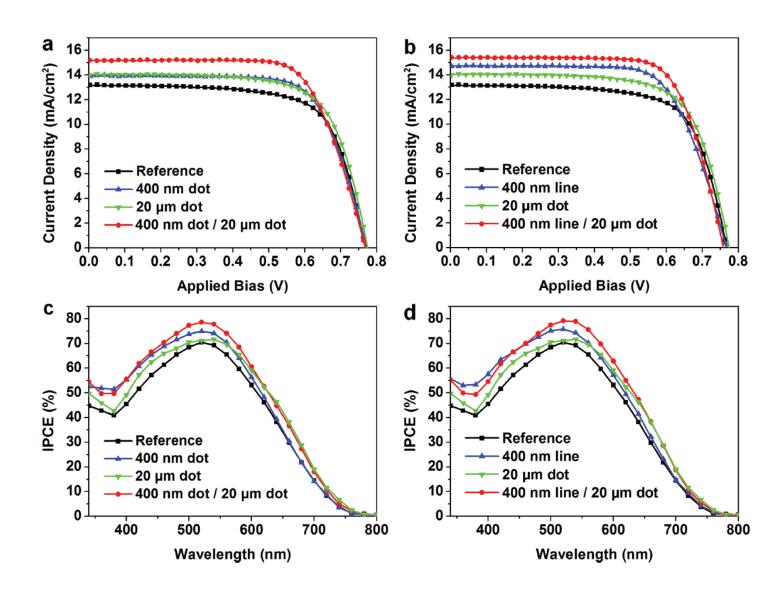
Ideal polarizable electrode (totally polarized electrode): a very large change in potential upon small current

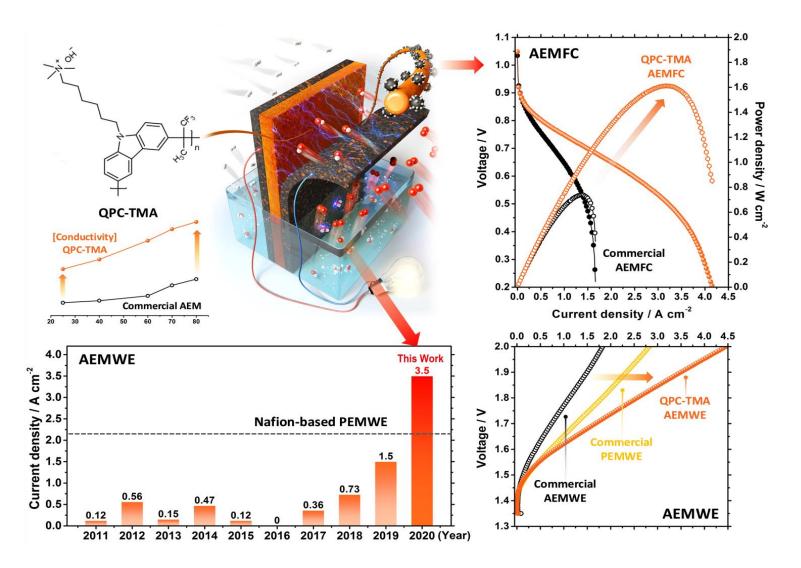
Ideal nonpolarizable electrode: potential does not change upon passage of current (e.g., reference electrode)


Fuel cell polarization curve


- -5 regions
- (i) Region I: activation (kinetic) overpotential at the electrodes
- (ii) Region II: ohmic polarization. Electric & ionic conduction loss
- (iii) Region III: concentration polarization. Mass transport limitations
- (iv) Region IV. Departure from Nernst thermodynamic equilibrium potential; undesired species crossover through electrolyte, internal currents from electron leakage, other contamination or impurity
- (v) Region V: the departure from the maximum thermal voltage; a result of entropy change which cannot be engineered
- -Regions I, II, III are not discrete \rightarrow all modes of loss contribute throughout the entire current range
- -Heat: current x (thermal voltage FC voltage)
- & electrical generation: cell current x FC voltage
- -FC voltage:

$$E_{\text{cell}} = E^{\circ}(T, P) - \eta_{a,a} - |\eta_{a,c}| - \eta_r - \eta_{m,a} - |\eta_{m,c}| - \eta_x \tag{4.1}$$


I-V Curves in fuel cell


I-V Curves in battery

I-V curves in solar cell

I-V Curves in fuel cell & electrolyzer

