Lecture Note #5 (Fall, 2020)

Electrode structures & configurations

1. Porous electrodes
2. Three-phase electrodes
3. Electrodes with flow

Fuller & Harb (textbook), ch.5



Electrode in electrochemical systems

v 3-D structures (rather than planar electrodes)
-to increase the reaction area per volume

-to provide storage volume for solid reactants
-to support dispersed catalysts

-to establish a so-called three-phase boundary
-to efficiently evolve gases

v' Examples of porous electrode

-electrochemical double-layer capacitors: capacitance is proportional to
the surface area

-the positive electrode of the lead-acid battery: need a large interfacial
area

-the cathode of a phosphoric acid fuel cell: three phases (gas, liquid.
Solid) needed



Porous electrode terminology
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Figure 5.16 Porous electrode terminology.
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Mathematical description of porous electrodes

v' Assume straight cylindrical pores in an electrically conductive matrix
-to increase surface area in a given electrode volume
— assume 10 x 10 cm, 1 mm thick, 10 ym diameter each pore, 2.5 ym

minimum distance between pores
— 64 million pores in 10 x 10 cm, 0.0004 cm? internal surface area of

each pore — 25,000 cm? (= 2.5 m?) total pore surface area
— 250 times greater than the flat area of original electrode

Figure 5.1 Straight pores of an idealized porous electrode.
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v Porous electrode theory

-1-D approach in textbook (3-D is beyond the scope of this lecture)

— X = 0 at the back of the porous electrode (in contact with the current
collector), x = L at the other side of the electrode (L is thickness)

-current density and potential at the electrode (solid phase): i, @,
-current density and potential in the electrolyte (liquid phase): i,, @,

I, =1/Aatx=0, i,=I/Aatx=L,
In between x = 0 and x = L, the current is split between the solid and
liquid phases (superficial area, e.a. 10 cm x 10 cm), i; + i, = I/A

Volumetric charge generation rate = ai,

I.: the current density normal to actual surface (A/m-?)
a: the surface area per volume or specific interfacial area (m-1)
— volumetric charge generation rate: unit of Am= or C-m=3s-

For Fig.5.1, a = combined surface area / superficial volume
=25m?/(0.1 mx 0.1 mx0.001 m)=250,000 m1

a.in: V°|—| - _V'iz , V'|—| + V'|2 - O



Characterization of porous electrodes
- Porosity (¢) or void volume fraction : the empty space of the electrode
available to the electrolyte (or gas phase) — most important feature of
any porous media
¢ = (total volume — volume occupied by solid phase) / total volume

- Specific interfacial area (a) : unit, m-

a = interfacial area / superficial volume

Figure 5.2 Typical porous electrode.
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- For a single sphere of radius r, a = 41rr2 / (4/311r3) = 3/r
- Smaller pore — af

a = (number of spheres)4tr? / volume =
{[V(1-¢) / (41313 41r} [V = 3(1 = €)lr

- Characteristic pore size (r,)

r, = Cross section available for transport / wetted perimeter
= volume available for transport / wetted surface

= (volume of voids / bed volume) / (wetted surface / bed volume )
=egla=[e/(1-¢)](r/3)

- smaller void volume — pore diameter|,
larger porosity — pore diameter?



A typical porous electrode has a distribution of pore sizes rather than
the single pore size

Pore size distribution : measured with Hg-intrusion porosimetry

— larger pores are easier to fill than small ones

— Hg volume vs. pressure to pore diameter

Primary pore volume : the volume inside the individual particles
Secondary pore volume : the volume between particles
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Figure 5.3 Bimodal distribution of pore sizes for a hypothetical
electrode containing metal catalyst on carbon.
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Impact of porous electrode on transport

- Effective transport properties in porous structure
(i) cross-sectional area available for transport is reduced by the

presence of the solid phase,
(1) effective area = (superficial area) x (porosity) — the path length
for transport is increased
- Tortuosity (1) : a tortuous path — 1 : as high as 6~20, typical 2~3 for

many applications

Figure 5.4 Tortuous path through porous media.
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- Tortuosity(T), porosity(g), conductivity in pore media & bulk(K.¢, Kyyk)

Keft = Kpui(€/T)

- Higher tortuosity — lower effective conductivity
- Bruggeman relationship

_ 15
Keft = Kpuik€

lllustration 5.2



Current distribution of porous electrodes

In the porous electrode,

Ko - the conductivity of the electrolyte

O . the conductivity of the solid

K, = klo

v2: the ratio of the ohmic and the kinetic resistances (eq. (5.31))
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Figure 5.5 One-dimensional porous electrode showing front and
back of the electrode.

Electrochemical Engineering, First Edition. Thomas F. Fuller and John N. Harb.
© 2018 Thomas F. Fuller and John N. Harb. Published 2018 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/fuller/electrochemicalengineering



Derivative of current density
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Figure 5.6 Dimensionless current density and its derivative across
the electrode. The back of the electrode is a z=0, the frontisatz=1,
adjacent to the electrolyte. Kr=0.1.
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Figure 5.8 Internal resistance of an electrode assuming linear kinetics.

Electrochemical Engineering, First Edition. Thomas F. Fuller and John N. Harb.
© 2018 Thomas F. Fuller and John N. Harb. Published 2018 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/fuller/electrochemicalengineering



Gas-liguid interface in porous electrodes

- Porous electrode — capillary action or capillarity
— surface tension(y) causes the fluid to rise in the capillary
- Contact angle : 8 <90" (hydrophilic or wetting, concave meniscus)
© > 90" (hydrophobic or non-wetting, convex meniscus)

h = 2ycosO / pgr
- Capillary pressure (p.), P. = Pnyw — Py = 2YC0SB /1

Figure 5.10 (a) Contact angle associated with capillary rise. (b)

Figure 5.9 Capillary rise in a small tbe. Contact angle for gas bubble attached to solid surface.
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£t Capillary rise

- Force balance at the top of the meniscus el
Total wetting force = gravitational force of the water column s
B B capillary capillary
2nrycos 8= (p—pg)(nr2h)g =Ap(xr2h)g rise depression
p = density of the liquid
po = density of the air Ye = V) Ve <Y
h=2ycosB/Apgr
Another view /’é\ﬁP
pressure difference between the points Q and Q, :AP=p,gh 1 ﬂ,‘
pressure difference between the points Pand P, :AP=-2y/R+pgh 8‘_ K,_,’
/«' = ;
The two AP ‘s should be the same. r=R cos 6 '«r—!"\ ~ Pa
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&t Capillary rise and depression

_ | Coﬂ‘!ﬁ(f /
- Wetting /"Z"*’;‘l o ang Ik
8=0° :complete wetting @ > 7O\
0 =180° :complete dewetting So/id Celid

- Wetting occurs to minimize the total free energy which
includes the surface and interfacial free energies

gas

- Force balance at the interface /ﬂ%
‘ \z(/‘zwmz
- Criteria for wetting ik B>\> =
When the interface area is increased by dA, % % s ,,/f/
dG =y, dA+y, cos 6 dA -y, dA Yecos & +%ps = Ts

:(YIS+YICOSG'Ys)dA:XdA

If x < 0 — wetting occurs, and
If x > 0 — dewetting occurs.

There is a certain contact angle for which x = 0 : equilibrium contact angle



- Hydrophilic materials will have a positive capillary pressure and
naturally wick up the fluid — hydrophobic materials will have a
negative capillary pressure and pressure must be applied to wet the
material

- Saturation level (S)) : fluid fill the void volume
(e.g. electrolyte in fuel cell electrode)

S, = volume filled by phase | / void volume
— S, depends on surface tension, contact angle, pore size distribution

s . lllustration 5.4
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Figure 5.11 Fill as a function of capillary pressure.
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Three-phase electrodes

- Example of three-phase electrode : the cathode of low temperature in
fuel cell — gas, liquid, solid in contact

Oxygen reduction reaction : 4H* + 4e- + O, —» 2H,0
— proton in the electrolyte, electron in solid phase, oxygen in gas
phase, water in gas or liquid phase
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Figure 5.12 Flooded-agglomerate model.
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Electrodes with flow

- Porous electrodes + fluid flow
— two basic categories : flow-through and flow-by
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Figure 5.14 Electrode configurations for flowing systems.
(a) Flow-through electrode. (b) Flow-by electrode.
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- example

Fluid flow
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Figure 5.15 Removal of Cu®* from stream.
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