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Learning subject 

1. Butler-Volmer equation

2. Tafel plot

3. Mass transport

Learning objective 

1. Understanding the relation between potential and current

2. Understanding Butler-Volmer equation and Tafel plot

3. Understanding limiting current from mass transport

A.J. Bard, L. R. Faulkner, Electrochemical Methods, Wiley, 2001.



1. Butler-Volmer equation

Nernst equation : equilibrium expression  electrode reaction rate?

(kinetics)

Electron transfer at an electrode

Reduction & oxidation at electrode are accomplished by heterogeneous electron

transfer reactions since electron transfer occurs at the interface between

electrode and solution  relationship between potential and rate of electrode

reaction (which determine current)





Review of homogeneous kinetics

Dynamic equilibrium
kf

O + e  =  R
kb

Rate of the forward process

vf (M/s) = kfCA

Rate of the reverse reaction

vb = kbCB

Rate const, kf, kb: s
-1

Net conversion rate of A & B

vnet = kfCA – kbCB

At equilibrium, vnet = 0

kf/kb = K = CB/CA

*kinetic theory predicts a const conc ratio at equilibrium, just as thermodynamics

At equilibrium, kinetic equations → thermodynamic ones

→ dynamic equilibrium (equilibrium: nonzero rates of kf & kb, but equal) 

Exchange velocity 

v0 = kf(CA)eq = kb(CB)eq



Relationship between current and heterogeneous rate constants

Faraday’s law: chemical reaction  electric current  an indicator of reaction

rate

Amount of electricity,

q = nFN

n: electron number, N: number of moles, F: Faraday constant (96485 C/mol)

e.g., PbSO4(s) + 2H2O(l)  2e- + PbO2(s) + HSO4
-(aq) + 3H+(aq)

q/2F = -NPbSO4 = -NH2O/2 = NPbO2 = NHSO4- = NH+/3

The passage of two moles of electrons = destroy one mole of PbSO4, destroy two

moles of water, create one mole of PbO2…



If we generalize this result and apply it to the oxidation reaction,

R  ne- + O

Then,

q/nF = -NR = NO

I = dq/dt = nFdN/dt

I/nF = -dNR/dt = dNO/dt = rate

O + e- = R

En = E0 – RT/F ln(cR/cO)

depends on the concentrations of the two species and E0’

“=” means,

R  e- + O

O + e-  R

At En (Eeq), the rates

rox(En) = rrd(En)

because no net reaction occurs. The rate r depend on the electrode potential E.



What exactly is meant by the “rate” of an electrode reaction?

At the potential of E,

rnet(E) = rox(E) - rrd(E)

net reaction rate: the rate at which R is destroyed , or the rate at which O is

created, per unit area of electrode (unit of molm-2s-1) “heterogeneous reaction

rate”

rnet(E) = -(1/A)(dNR/dt) = (1/A)(dNO/dt)

rox(E) = kox(E)cR
s

“s” means that the concentrations at the electrode surface

kox(E): oxidative rate constant (ms-1)

rrd(E) = krd(E)cO
s

krd(E): reductive rate constant

rnet(E) = I/nAF = i/nF



From rnet(E) = rox(E) - rrd(E), rox(E) = kox(E)cR, rrd(E) = krd(E)cO

Relate the faradaic current and rate constants

i = nF[koxcR
s - krdcO

s]

cf) kox = ka of anode, krd = kc of cathode

when kox(E)cR
s = krd(E)cO

s  zero current  equilibrium

when kox(E)cR
s > krd(E)cO

s  anodic current (ia)  oxidation of R to O

when kox(E)cR
s < krd(E)cO

s  cathodic current (ic)  reduction of O to R



Potential dependence of heterogeneous rate constants

O + ne- = R

Transition state model,

krd = kf = Aexp(-Gf
‡/RT)

where Gf
‡ is the free energy of activation and A is a frequency factor which

accounts for the rate of collision of the electroactive molecule with the

electrode surface

cf) kox = kb of anode, krd = kf since forward direction () is reduction one.



(a) equilibrium between O and R

O  R: pass over the activation free energy barrier, Gf
‡

R  O: pass over the activation free energy barrier, Gb
‡

At equilibrium, Gf
‡ = Gb

‡  probability of electron transfer is the same in each

direction  no net curent  ic + ia = 0

No net current means same rates between forward and backward (not zero current)

 exchange current i0 at equilibrium; i0 = ic = -ia

i0  as G 

(b) net reduction

applying negative potentials

reduction: more negative potential  kf , kb 

E E

krd kox



Negative potential E  lower Gf
‡ and raise Gb

‡

Potential change E – E0  free energy change –nF(E-E0)  part of this 

energy change (factor )  decrease in the activation barrier for reduction 

(forward reaction) ; part (factor (1 - ))  increase in the activation barrier 

for oxidation

Gf
‡ = G0‡ - nF(E-E0’)

Gb
‡ = G0‡ + (1-)nF(E-E0’)

Applying potential to the electrode  activation free energy barrier

; “transfer coefficient” or “symmetry factor” since  is a measure of the 

symmetry of the energy barrier  a symmetrical energy barrier ( = 0.5), real 

systems: 0.3 ~ 0.7 semiconductor: ~ 0 or ~ 1

O + ne-  R

Actually,                       O + ne-  R – (1 - )ne-

, -(1-); orders of the reductive and oxidative processes



another interpretation of : increasing electrochemical activity of electrons  it

accelerates the reductive process and retards the oxidative process   is the

fraction of the increase rrd, (1-) is the fraction that diminishes rox

= 0.5; perfect symmetric, these fractions are equal

Arrhenius form,

kf = k0exp[-nF(E-E0)/RT]

kb = k0exp[(1-)nF(E-E0)/RT]

Where k0 is the standard rate constant, kf = kb = k0 at E0. k0,   rate constant.

Relationship between potential and rate



Relationship between current and potential

ic = nFcO
skf and   ia = -nF cR

skb

ic = nFk0cO
sexp{-nF(E-E0)/RT}

ia = - nFk0cR
sexp{(1-)nF(E-E0)/RT}

i = ic + ia

Butler-Volmer equation

i = nFk0[cO
sexp{-nF(E-E0)/RT} - cR

sexp{(1-)nF(E-E0)/RT}]

This relationship links the faradaic current, electrode potential, the concentrations

of electroactive species at the electrode surface



i and ic and ia as a function of potential E; negative E  ic  (forward reaction),

positive E  ia  (backward)

k0; 1 ~ 50 cm s-1 for very fast reactions, 10-9 cm s-1 for very slow reactions.

Exchange current density i0; 10 Acm-2 ~ 1 pAcm-2



The effect of the value of k0 on the current density close to Eeq (a) k0 large (b) k0

smaller

At equilibrium, zero net current, ic = -ia

Butler-Volmer equation (kinetics)  Nernst equation (thermodynamics)

E = E0 – (RT/nF)ln(cR
s/cO

s)

i0 = ic = nFk0cO
sexp{-nF(E-E0)/RT}= ia = - nFk0cR

sexp{(1-)nF(E-E0)/RT} 

i0 = nFk0(cO
s)1-(cR

s)

high exchange current density  high reaction rate



Essentials of electrode reactions

*accurate kinetic picture of any dynamic process must yield an equation of the 

thermodynamic form in the limit of equilibrium
kf

O + ne  =  R
kb

Equilibrium is characterized by the Nernst equation

E = E0′ + (RT/nF)ln(Co
*/CR

*)

bulk conc

Kinetic: dependence of current on potential

Overpotential                     η = a + blogi Tafel equation

2. Tafel plot



The effect of exchange current density on overpotential

Butler-Volmer equation/i0

i = nFk0[cO
sexp{-nF(E-E0)/RT} - cR

sexp{(1-)nF(E-E0)/RT}]

and let F/RT = f, overpotential  = E –E0  current-overpotential equation

i = i0[exp(-nf) – exp((1-)nf)]

>>0 (oxidation, only O in bulk)  exp(-nf) << exp((1-)nf)

i = -i0 exp((1-)nf)



apply log,

 = -(RT/(1-)nF)lni0 + (RT/(1-)nFlni

for << 0 (reduction),  = (RT/nF)lni0 - (RT/(nF)lni

Tafel plot  measure i0 and 

E-E0 =  = alni0  blni

Plot of lni vs. E showing how to measure i0 and  from the slopes of the 

lines 



Tafel plots (i vs. η) → evaluating kinetic parameters (e.g., i0, α)

anodic cathodic



e.g., real Tafel plots for Mn(IV)/Mn(III) system in concentrated acid

- At very large overpotential: mass transfer limitation





3. Mass Transport

Mass transport

rate = kaCR
s - kcCO

s

Electrochemical reaction at electrode/solution interface: molecules in bulk

solution must be transported to the electrode surface  “mass transfer”

CO
b =  CO

s =  CR
s =  CR

b

Mechanisms for mass transport:

(a) Migration: movement of a charged body under the influence of an electric

field (a gradient of electric potential)

(b) Diffusion: movement of species under the influence of gradient of chemical

potential (i.e., a concentration gradient)

(c) Convection: stirring or hydrodynamic transport



Nernst-Planck equation (diffusion + migration + convection)

Ji(x) = -Di(Ci(x)/x) –(ziF/RT)DiCi((x)/x) + Civ(x)

Where Ji(x); the flux of species i (molsec-1cm-2) at distance x from the surface,

Di; the diffusion coefficient (cm2/sec), Ci(x)/x; the concentration gradient at

distance x, (x)/x; the potential gradient, zi and Ci; the charge and

concentration of species i, v(x); the velocity (cm/sec)

1. Steady state mass transfer

steady state, (C/t) = 0; the rate of transport of electroactive species is equal to

the rate of their reaction on the electrode surface

In the absence of migration,

R = O + ne-

The rate of mass transfer,

vmt  (CR(x)/x)x=0 = (CR
b – CR

s)/

where x is distance from the electrode surface & : diffusion layer





Electrode

vmt = mR[CR
b – CR

s]

where CR
b is the concentration of R in the bulk solution, CR

s is the

concentration at the electrod surface

mR is “mass transfer coefficient”

i = nFmR[CR
b – CR

s]

i = -nFmO[CO
b – CO

s]

Cs

Cb





largest rate of mass transfer of R when CR
s = 0  “limiting current”

il,a = nFmRCR
b

CR
s/CR

b = 1 – (i/il,a)

And

CR
s = [1 – (i/il,a)] [ il,a/nFmR] = (il,a – i)/(nFmR)

Same method,

CO
s/CO

b = 1 – (i/il,c)

il,c = nFmOCO
b

CO
s = [1 – (i/il,c)] [ il,c/nFmO] = (il,c – i)/(nFmO)

Cb

Cs

x0

Cs = 0



Put these equations to E = E0 –(RT/nF)ln(CR
s/CO

s)

E = E0 – (RT/nF)ln(mO/mR) - (RT/nF)ln[(il,a – i)/(i - il,c)]

Let

E1/2 = E0 – (RT/nF)ln(mO/mR)

Then,

E = E1/2 - (RT/nF)ln[(il,a – i)/(i - il,c)]

E

i

i l, a

i l, c



E1/2, half-wave potential, independent of CO
b and CR

b  characteristic of the R/O

system.

Reversibility:

reversible: k0 >> mO or mR  kinetic rate constant >> mass transport rate

constant  system is at equilibrium at the electrode surface and it is possible to

apply the Nernst equation at any potential

irreversible: k0 << mO or mR

i l,

i 

EE1/2



2. Non-steady state mass transport: diffusion control

The rate of diffusion depends on the concentration gradients

J = -D(C/x)    Fick’s first law

D: diffusion coefficient (cm2/sec)

The variation of concentration with time due to diffusion  Fick’s second law

C/t = -D(2C/x2)         1-D

J = -D(C/x) = i/nF

D(C/x) = D(Cb – Cs)/ = i/nF 

Time-dependent, applying potential step E

))



(t1) (t2) (t3) (t4)

Moles of species in diffusion layer = idt/nF  [Cb –Cs](A(t)/2)

Differentiating,

i/nF = [Cb –Cs](Ad(t)/2dt) = D(Cb – Cs)/(t)

d(t)/dt = 2D/(t), (t) = 0 at t = 0

(t) = 2(Dt)

i/nF = (D1/2/2t1/2) [Cb –Cs]

diffusion layer grows with t1/2 and current decays with t -1/2

E

No reaction

Reaction

t = 0 t

Cb

t=0 t1 t2 t3 t4



potential step (chronoamperometry), planar electrode: Cottrell equation (in

Table)

constant current  potential variation at time (chronopotentiometry): Sand

equation (t =  (transition time) at Cs = 0)

I

t



1. Polarization curve

hydrogen-air FC



-5 regions

(i) Region I: activation (kinetic) overpotential at the electrodes

(ii) Region II: ohmic polarization. Electric & ionic conduction loss

(iii) Region III: concentration polarization. Mass transport limitations

(iv) Region IV. Departure from Nernst thermodynamic equilibrium

potential; undesired species crossover through

electrolyte, internal currents from electron leakage,

other contamination or impurity

(v) Region V: the departure from the maximum thermal voltage; a

result of entropy change which cannot be engineered

-Regions I, II, III are not discrete → all modes of loss contribute

throughout the entire current range

-Heat: current x (thermal voltage – FC voltage)

& electrical generation: cell current x FC voltage

-FC voltage:


