Electrochemical Energy Engineering, 2019

5. Electrode Processes 2

Learning subject

1. Butler-Volmer equation
2. Tafel plot

3. Mass transport

Learning objective

1. Understanding the relation between potential and current
2. Understanding Butler-Volmer equation and Tafel plot

3. Understanding limiting current from mass transport

A.J. Bard, L. R. Faulkner, Electrochemical Methods, Wiley, 2001.



1. Butler-Volmer equation

Nernst equation : equilibrium expression — electrode reaction rate?
(kinetics)

Electron transfer at an electrode

Reduction & oxidation at electrode are accomplished by heterogeneous electron
transfer reactions since electron transfer occurs at the interface between
electrode and solution — relationship between potential and rate of electrode
reaction (which determine current)
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FIGURE19-10 Steps in the reaction Ox + ne = Red at an electrode. Note that
the surface layer is only a few molecules thick. (Adapted from: A. J. Bard
and L. R. Faulkner, Electrochemical Methods, p. 21, Wiley: New York, 1980.
Reprinted by permission of John Wiley & Sons, Inc.)



Review of homogeneous kinetics
Dynamic equilibrium

kf
O+e = R
kb
Rate of the forward process
V¢ (M/s) = k;C,
Rate of the reverse reaction
vy, = K,Cg
Rate const, ks, K,: s
Net conversion rate of A& B
Vet = kaA o kbCB
At equilibrium, v, =0
Kk, = K= Cg/C,
*Kinetic theory predicts a const conc ratio at equilibrium, just as thermodynamics
At equilibrium, Kinetic equations — thermodynamic ones
— dynamic equilibrium (equilibrium: nonzero rates of k; & ki, but equal)

Exchange velocity
Vo = Kl(Ca)eq = Kp(Cp)eq



Relationship between current and heterogeneous rate constants

Faraday’s law: chemical reaction — electric current — an indicator of reaction
rate
Amount of electricity,

d =nFN
n: electron number, N: number of moles, F: Faraday constant (96485 C/mol)
e.g., PbSO,(s) + 2H,0(l) —» 2e + PbO,(s) + HSO, (aq) + 3H*(aq)
Q/2F = -ANpys04 = -ANyp0/2 = ANppoy = ANygg,. = AN, /3

The passage of two moles of electrons = destroy one mole of PbSO,, destroy two
moles of water, create one mole of PbO,...



If we generalize this result and apply it to the oxidation reaction,
R—>ne+0
Then,
g/nF =-ANg = AN,
| = dg/dt = nFdN/dt
I/nF = -dNR/dt = dN/dt = rate

O+e =R

E, = E°— RT/F In(cg/c,)
depends on the concentrations of the two species and E”

“=" means,
R—>e+0
O+e >R
AtE, (E,), the rates
rox(En) = rrd(En)
because no net reaction occurs. The rate r depend on the electrode potential E.



What exactly is meant by the “rate” of an electrode reaction?
At the potential of E,

rnet(E) = rox(E) ) rrd(E)

net reaction rate: the rate at which R is destroyed , or the rate at which O is
created, per unit area of electrode (unit of molm=st) “heterogeneous reaction
rate”

r(E) = -(1/A)(dN/dt) = (L/A)(dN/dt)

r(E) =K, (E)cg’
“s” means that the concentrations at the electrode surface
k. (E): oxidative rate constant (ms™)
rro(E) = K y(E)Co
K.4(E): reductive rate constant
[ (E) = I/nAF = i/nF



From rnet(E) = I‘ox(E) B rrd(E)’ rox(E) = kox(E)CR’ rrd(E) = krd(E)CO

Relate the faradaic current and rate constants

| = nl:[koxCRS - krdCOS]

cf) k., = k, of anode, k.4 = k. of cathode

when k. (E)cg® = k,4(E)co® — zero current — equilibrium

when k, (E)cg® > k.4(E)c,® — anodic current (i,) — oxidation of Rto O

when k. (E)cg® < k. 4(E)cy® — cathodic current (i,) — reduction of O to R



Potential dependence of heterogeneous rate constants
O+ne =R

Transition state model,
K4 = K; = Aexp(-AG{/RT)

where AG is the free energy of activation and A is a frequency factor which
accounts for the rate of collision of the electroactive molecule with the
electrode surface

cf) k,, = k, of anode, k , = k; since forward direction (—) is reduction one.
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(a) Equilibrium (b) Net reduction



(a) equilibrium between O and R

O — R: pass over the activation free energy barrier, AG/

R — O: pass over the activation free energy barrier, AG,*

At equilibrium, AG¢ = AG_* — probability of electron transfer is the same in each

direction — no net curent - 1. +1,=0

No net current means same rates between forward and backward (not zero current)

— exchange current i, at equilibrium; i, =1, = -I,
i, TasAG J

(b) net reduction

applying negative potentials

reduction: more negative potential - k. T, k, ¥
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Negative potential E — lower AG¢ and raise AG*

Potential change E — E° — free energy change —nF(E-EY) = part of this
energy change (factor o) — decrease in the activation barrier for reduction
(forward reaction) ; part (factor (1 - a)) — increase in the activation barrier
for oxidation

AG¢# = AGY% - anF(E-E?”)

AG, T = AG% + (1-a)nF(E-E®)

Applying potential to the electrode — activation free energy barrier

o; “transfer coefficient” or “symmetry factor” since o is a measure of the
symmetry of the energy barrier — a symmetrical energy barrier (oo = 0.5), real

systems: 0.3 ~ 0.7 semiconductor: ~0or~ 1

O+ne—>R
Actually, O+ ane-—>R—-(1-a)ne-

o, -(1-a); orders of the reductive and oxidative processes



another interpretation of o.: increasing electrochemical activity of electrons — it
accelerates the reductive process and retards the oxidative process — o IS the
fraction of the increase r, 4, (1-c) Is the fraction that diminishes r,

o= 0.5; perfect symmetric, these fractions are equal
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Fig. 4.4 Energy profiles for the cases (a) a.=~0; (b) a.=3; (c) a.=1.

Arrhenius form,
K = k%exp[-anF(E-E°)/RT]
k, = K%exp[(1-a)nF(E-E°)/RT]

Where Kk° is the standard rate constant, k; = k, = k% at E°. k% o — rate constant.
Relationship between potential and rate



Relationship between current and potential

I.=nFc’k, and I, =-nF c’k,

i, = nFkOcsexp{-anF(E-E%)/RT}
I, = - nFkPc_sexp{(1-a)nF(E-E°)/RT}

=10+
C a
Butler-Volmer equation

| = nFK°[c sexp{-anF(E-E°%)/RT} - c%exp{(1-a)nF(E-E°)/RT}]

This relationship links the faradaic current, electrode potential, the concentrations
of electroactive species at the electrode surface
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iand i_and i, as a function of potential E; negative E T— i_ T (forward reaction),
positive E T— i_ T (backward)

k0: 1 ~ 50 cm s for very fast reactions, 10-° cm s1 for very slow reactions.
Exchange current density iy; 10 Acm? ~ 1 pAcm™



(a)

/ n=E-Eq

The effect of the value of k, on the current density close to E,, (a) k, large (b) k,
smaller

At equilibrium, zero net current, i, = -1,
Butler-Volmer equation (kinetics) — Nernst equation (thermodynamics)

E = E°— (RT/nF)In(cs¥/c,®)
I, = i, = NFkOcsexp{-anF(E-E%)/RT}=i, = - nFk°c,%exp{(1-a)nF(E-E°)/RT} =

I, = NFKO(c%)t(cd)*
high exchange current density — high reaction rate



2. Tafel plot

Essentials of electrode reactions
*accurate kinetic picture of any dynamic process must yield an equation of the
thermodynamic form in the limit of equilibrium

Equilibrium is characterized by the Nernst equation

E =E"Y + (RT/nF)In(C,"/CR")
bulk conc
Kinetic: dependence of current on potential
Overpotential n =a + blogi Tafel equation
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The effect of exchange current density on overpotential
Butler-Volmer equation/i,
| = nFKk°[cSexp{-anF(E-E°)/RT} - cSexp{(1-a)nF(E-E°)/RT}]
and let F/RT = f, overpotential n = E —E° = current-overpotential equation

| = i[exp(-anfn) —exp((1-a)nfn)]
n>>0 (oxidation, only O in bulk) — exp(-anfn) << exp((1-o)nfn)

| = -1,exp((1-a)nfn)



apply log,
N = -(RT/(L-c)nF)lnig + (RT/(L-o)nFInl i

for n<< 0 (reduction), n = (RT/anF)Ini, - (RT/(anF)Inl i

Tafel plot — measure iy and o
E-E° =1 = alni, + bin| i

In 4] 4

Slope <L

P

Plotof In|i| vs. E showing how to measure i, and o from the slopes of the
lines



Tafel plots (i vs. n) — evaluating kinetic parameters (e.g., iy, o)
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e.g., real Tafel plots for Mn(1V)/Mn(l1l) system in concentrated acid

- At very large overpotential: mass transfer limitation
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Summary of Butler-Volmer Kinetics and Useful Simplifications

1. General kinetics, applicable under all current density conditions; the general BV
expression for n (solve numerically):

. ; o F —a . F
lcell = i {exp (RZT n) — exp ( R,,CT n)] (4.52)
2. Low polarization, facile kinetics, linearized BV approximation (explicit n expres-
sion):
' R, T
TS (4.53)

io (0ta +atc) F

3. High polarization, Tafel approximation (explicit  expression):

o o &
— m(i) (4.54)
CZjF lp

4. Both regions, o, = a, sinh simplification (explicit n expression):

RUT i e
nh™!|{ =)= 4.55
aF % (21’0) h ( )




3. Mass Transport

Mass transport
rate = k C° - K.C

Electrochemical reaction at electrode/solution interface: molecules in bulk
solution must be transported to the electrode surface — “mass transfer”

Mechanisms for mass transport:
(a) Migration: movement of a charged body under the influence of an electric
field (a gradient of electric potential)
(b) Diffusion: movement of species under the influence of gradient of chemical
potential (i.e., a concentration gradient)
(c) Convection: stirring or hydrodynamic transport




Nernst-Planck equation (diffusion + migration + convection)
J.(X) = -D;(0Ci(x)/ox) —(z;F/RT)D,C.(0¢(x)/ox) + C.v(X)

Where J.(x); the flux of species i (molsecicm2) at distance x from the surface,
D.; the diffusion coefficient (cm?/sec), oC,(x)/0x; the concentration gradient at
distance X, o¢(x)/ox; the potential gradient, z. and C, the charge and
concentration of species i, v(x); the velocity (cm/sec)

1. Steady state mass transfer
steady state, (0C/ot) = 0; the rate of transport of electroactive species is equal to
the rate of their reaction on the electrode surface

In the absence of migration,
R=0+ne
The rate of mass transfer,

V. ¢ (OCH(X)/OX), -, = (CR? — C:o)/B
where X is distance from the electrode surface & o: diffusion layer
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Electrode

Vi = Mg[CR? — C&fl

where CZP is the concentration of R in the bulk solution, C8 is the
concentration at the electrod surface
My, is “mass transfer coefficient”

| = nFm,[CP — Cf]

| =-nFm,[CP — C,f]



largest rate of mass transfer of R when C;% =0 — “limiting current”

- b
.= nFm,Cy

CS

C/Cl=1- (ifi, )
And
Ce=[1- (/i )] [1, /nFmg] = (i, , — i)/(nFm_)
Same method,
CoS/Ct=1- (ifi; )
I, = nNFm,C.P
Co?=[1— (/i )] [, JnFmg] = (i, —i)/(nFmy)



Put these equations to E = EO —(RT/nF)In(C8/C*)

E = E°— (RT/nF)In(mg/my,) - (RT/nF)In[(i, , — /(1 -1 ;)]
Let
E,, = E?— (RT/nF)In(my/m,)
Then,
E = E,, - (RTF)I[(,, — )/(i - i )]

i “ ﬂ\il, |

, C




E,,, half-wave potential, independent of C,? and C,"> — characteristic of the R/O
system.

Reversibility:

reversible: k% >> mg or my — Kinetic rate constant >> mass transport rate
constant — system is at equilibrium at the electrode surface and it is possible to
apply the Nernst equation at any potential

irreversible: k% << mg or mg




2. Non-steady state mass transport: diffusion control

The rate of diffusion depends on the concentration gradients
J=-D(0Clox) Fick’s first law
D: diffusion coefficient (cm?/sec)
The variation of concentration with time due to diffusion — Fick’s second law
oClot = -D(0%Clox?) 1-D

J = -D(6CIdx) = iInF
D(AC/ox) = D(CP — CS)/5 = i/nF

Time-dependent, applying potential step E
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Moles of species in diffusion layer = [idt/nF ~ [CP —CS](A8(t)/2)

Differentiating,
i/nF = [CP —Cs](AdS(t)/2dt) = D(CP — Cs)/8(t)
do(t)/dt = 2D/5(t), o(t) =0 att=0
5(t) = 2N(Dt)
i/nF = (DY2/2t12) [CP —C9]

diffusion layer grows with t2 and current decays with t -1/2



potential step (chronoamperometry), planar electrode: Cottrell equation (in

Table)
constant current — potential variation at time (chronopotentiometry): Sand

equation (t =t (transition time) at C® = 0)




1. Polarization curve
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Figare 4.1 Typical polarization curve for fuel cell with significant kinetic, ohmic, concentration,
and crossover potential losses.

hydrogen-air FC



-5 regions

(1) Region I: activation (kinetic) overpotential at the electrodes

(i1) Region 11: ohmic polarization. Electric & ionic conduction loss

(i11) Region I11: concentration polarization. Mass transport limitations

(iv) Region IV. Departure from Nernst thermodynamic equilibrium
potential; undesired species crossover through
electrolyte, internal currents from electron leakage,
other contamination or impurity

(v) Region V: the departure from the maximum thermal voltage; a
result of entropy change which cannot be engineered

-Regions I, I, Il are not discrete — all modes of loss contribute
throughout the entire current range

-Heat: current x (thermal voltage — FC voltage)

& electrical generation: cell current x FC voltage

-FC voltage:
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