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-Fuel cell: energy conversion device (cf. battery: energy storage device)

→ to convert the chemical energy of a fuel directly into electricity

-Operation of fuel cell

e.g. direct methanol fuel cell (DMFC)

CH3OH + H2O → CO2 + 6H+ + 6e- anode

1.5O2 + 6H+ + 6e- → 3H2O           cathode

CH3OH + 1.5O2 → CO2 + 2H2O    overall

-Fuels: H2, methanol, and so on

-Fuel cells are not thermal devices 

and are not limited by 

the Carnot efficiency of heat engines

Fuel cells (연료전지)



Galvanic cell: negative, positive, anode, cathode

Oh, ch.1

✓Fuel cell 

HOR

(hydrogen 

oxidation 

reaction)

ORR

(oxygen 

reduction 

reaction)





Principle of Fuel Cell
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Anode    : H2 → 2H+ + 2e-

Cathode : 1/2 O2 + 2H+ + 2e- → H2O 

Total      : H2 + 1/2 O2 → H2O  

Fuel cell : hydrogen + oxygen [air) → water + electric energy

Respiration : glucose + oxygen (air) → carbon dioxide+ water + energy



Types of fuel cell 

Hydrogen, alcohol, formic acid, 

carbon compounds, ammonia, 

nitrogen compounds, bio



Bio-fuel cell
“An electro-chemical device in which energy derived from chemical 
reactions maintained by a continuous supply of chemical reactants is 
converted to electrical energy by means of the catalytic activity of
living cells and/or their enzymes.”

electrode: enzyme, bacteria…



History of fuel cell

- 1839 Discovery of fuel cell (William Grove)

- ~1960 NASA, fuel cell in spacecraft

- ~1984 Development of fuel cell vehicle

- ~2000 Development of portable fuel cell



Hydrogen fuel cell vehicle
Power 113 kW

Power density 3 kW/l, 2kW/kg 

FC weight 56 kg + 

Efficiency 6 km/kWh

460 km driving distance

cf. Gasoline engine: ~800 km, 60~70 liter tank, 12 km/liter

(5 kg H2 in tank (87 kg) )
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✓ Thermodynamics

-Equilibrium potential (E0 or U0) for the methanol fuel cell using appendix 

C (thermodynamic data)

∆G0 = ∆G0
f,CO2 + 2∆G0

f, H2O – ∆G0
f,CH3OH = -394.359 + (-2 x 237.129) - (-

166.6) = -702.3306 kJ/mol

E0 = - ∆G0 / nF = (702,330.6 J/mol) / (6 x 96,485 C/mol) =  1.21 V

-Change of enthalpy: 

∆H0 = ∆H0
f,CO2 + 2∆H0

f, H2O – ∆H0
f,CH3OH = -726.5 kJ/mol (large exothermic)

∆H = Q - W

Q: heat transfer to the system

W: electrical work done by the system

∆G (or E): maximum electrical work

CH3OH + 1.5O2 → CO2 + 2H2O 



Mathew M. Mench, Fuel Cell Engines, Wiley, 2008.



✓ Efficiency of the fuel cell

= the electrical work produced / the energy available in the reactants

→ operate with the continuous flow of fuel and oxidant

→ rates of energy (power)

The voltage efficiency of a fuel cell

ηV
fc = rate of electrical energy from cell / maximum rate of electrical energy

= electrical power from cell / theoretical power from cell 

= IV / [(ṁi / Mi)(- ∆Grx)] = IV / [(I/nF)(nFE)] = V/E

Assuming ṁi [kg·s-1] of reactants

→ the cell voltage to be as high as possible in order to maximize efficiency

→ minimization of ohmic, kinetic, mass-transfer losses is desired

Illustration 9.1

Hydrogen fuel cell operating at 0.7 V. voltage efficiency?

→ ηV
fc = 0.7 / 1.229  = 0.57 (or 57%)



• At higher T → heat engine theoretically more efficient (not always 

efficient for a fuel cell)

• FC shows a decreasing efficiency with T
Mathew M. Mench, Fuel Cell Engines, Wiley, 2008.



-Types by the electrolyte used

Types of fuel cells

→ Anion-exchange membrane (AEM)



Pourbaix diagrams

at 25°C, pH = -log10a

2H+ + 2e- = H2

E = E0 - (RT/2F)ln(1/aH+
2)

= 0 + (RT/F) ln(aH+)

= -(RT/F)(2.303pH) 

= -0.0592pH

(1/2)O2 + 2H+ + 2e- = H2O

E = E0 - (RT/2F)ln(1/aH+
2)

= 1.229 + (RT/F) ln(aH+)

= 1.229 - (RT/F)(2.303pH) 

= 1.229 - 0.0592pH

E0 = - ∆G0 / nF 

= (237,180 J/mol) / (2 x 96,485 C/mol) 

=  1.229 V



-In acidic electrolyte

anode:  H2 → 2H+ + 2e- E0 = 0.000 V
cathode: 1/2O2 + 2H+ + 2e- → H2O   E0 = 1.229 V
Total:  H2 + 1/2O2 → H2O        E0 = 1.229 V 

-In alkaline electrolyte

anode:  H2 + 2OH- → 2H2O + 2e- E0 = -0.828 V
cathode: 1/2O2 + H2O + 2e- → 2OH- E0 = 0.401 V
Total:  H2 + 1/2O2 → H2O          E0 = 1.229 V 

-Overall H2-O2 fuel cell reaction:  H2 + 1/2O2 → H2O    E0 = 1.229 V 

-Hydrogen oxidation reaction(HOR): not single step → 
elementary steps

-Oxygen reduction reaction(ORR): reaction steps still unknown 

→ Alkaline, Anion-exchange membrane (AEM)

→ PEM, PAFC



ORR Electrocatalysis

Qingyu Li et al, 

Electrochemical Energy 

Reviews 2(2019)518

Dong Young Chung et al, 

Adv. Mat. (2018)

https://link.springer.com/journal/41918
https://link.springer.com/journal/41918


I-V and polarization

-Example polarization curves of 3 types of fuel cells

Galvanic cell: I↑ → V↓

Understanding using 

thermodynamics (open circuit voltage), 

Kinetics (low-current behavior),

ohmic losses (moderate-I behavior),

mass transfer (high-I behavior)



M. M. Mench, Fuel Cell Engines, Wiley, Fig. 4.1

Fuel cell polarization curve



-5 regions

(i) Region I: activation (kinetic) overpotential at the electrodes

(ii) Region II: ohmic polarization. Electric & ionic conduction loss

(iii) Region III: concentration polarization. Mass transport limitations

(iv) Region IV. Departure from Nernst thermodynamic equilibrium

potential; undesired species crossover through

electrolyte, internal currents from electron leakage,

other contamination or impurity

(v) Region V: the departure from the maximum thermal voltage; a

result of entropy change which cannot be engineered

-Regions I, II, III are not discrete → all modes of loss contribute throughout

the entire current range

-Heat: current x (thermal voltage – FC voltage)

& electrical generation: cell current x FC voltage

-FC voltage:
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ORR(oxygen reduction reaction)

HOR(hydrogen OR)

OER(oxygen evolution reaction)

HER(hydrogen ER)
2e- ORR(H2O2)

I-V Curves in fuel cell



-Thermodynamics → open circuit voltage (OCV at zero current density)

→ In Fig.9.3, none of OCV reaches 1.229 V (E0)

-Several factors lower voltage than OCV at zero current 

(i) Temperature

for T(K), 1.171 V at 80ºC, 0.9794 V at 800ºC

(ii) Effect of gas composition

For H2-O2 fuel cell

E = E0 + (RT/2F)ln[aH2aO2
0.5 / aH2O]

-For SOFC in Fig. 9.3

94% hydrogen & 6% water, 

Cathode pure oxygen,  800ºC 

→ E = 0.9794 + (RT/2F)ln[(0.94)(1)/(0.06)

= 1.11 V (E ~ E0 at high-T FC)

(1) Thermodynamics

E0(T) ≈ Eθ(Tθ)(T/Tθ) + (Hθ/nF)(T/Tθ – 1)        (9.3)



-For the alkaline(and AEM) FC operating pure oxygen

Mole fraction of water, hydrogen, and oxygen are all about 0.5

Standard pressure (p0 = 100 kPa), ai = p/p0

At 80ºC and 414 kPa (Fig. 9.3)

→ E = 1.171 + (RT/2F)ln[(2.07)(√2.07)/(2.07) = 1.172 V

(lower OCV than thermodynamics in Fig. 9.3 → permeation of oxygen 

and hydrogen across the separator)

-For PEMFC, operating on air, humidified air and fuel with 47 mol% water 

vapor → mole fractions yH2O = 0.47, yH2 = 0.53, yO2 = 0.21 x 0.53 = 0.11

→ E = 1.171 + (RT/2F)ln[(0.53)(√0.11)/(0.47) = 1.156 V

(well below OCV in Fig. 9.3 → permeation of reactants across the 

electrolyte ( a mixed-potential and depression of the OCV) and the 

sluggishness of the oxygen reduction reaction in acid at low temperatures 

(key reason!!) → the reaction is so slow that even minute impurities and 

contaminants can compete with the ORR → OCV↓ 



-Kinetics of electrochemical reactions depends strongly on overpotential, 

catalysts, and temperature

-In low-T FC in Fig. 9.3,  small-current region → cell potential to decrease 

rapidly → then followed by a more gradual decline

-Tafel plot in small-current region 

→ main differences between the polarization curve and Tafel plot

(i) Cell potential is plotted as a function of the logarithm of the current 

density, (ii) the ohmic resistance is removed

IR-corrected curve → kinetics → 

Well described by Butler-Volmer equation

Fast hydrogen oxidation + slow ORR 

→ only slow ORR kinetics in Tafel

Assume αc ≈ 1 →

Tafel slope = ln(RT/αcF) = 2.303(RT/αcF)

=2.303[(8.314x353) / (1 x 96485)]

= 0.07 V/dec

Illustration 9.2

(2) Kinetics



-At moderate current densities, the importance of ohmic polarization 

increases compared to the activation polarization

→ ohmic losses increase linearly with current (whereas kinetic losses are 

proportional to the logarithm of current density)

→ the absolute magnitude of the kinetic polarization is large for the 

PEMFC, but slowly at moderate current density

→ ohmic region at moderate current density → slope = ohmic resistance

→ dependent on the conductivity and thickness of the electrolyte 

slope = ∆V /∆i ≈ L/κ = RΩ [Ω·m2]

-In Fig. 9.3, the resistance of SOFC (0.04 Ω·m2) is three times higher 

than the resistance of the PEMFC

(3) Ohmic region



-As the current density increases further, mass-transfer effects become 

important

→ reactants and products are transported to and from the catalyst sites 

-Summary of polarization of SOFC and PEMFC

(4) Mass transfer



Effect of operating conditions

Vcell = E – iRΩ - │ηs, anode│ - │ηs,cathode│ - │ηconc,anode│ - │ηconc,cathode│

E = U in the textbook

E



Illustration 9.3



Electrode structure

-Contact between three phases is needed in FC electrode to carry out 

electrochemical reactions: (i) a solid phase that is electronically 

conductive to supply or remove electrons, (ii) an electrolyte phase (solid 

or liquid) that conducts ions, (iii) a gas phase that the reactants and 

products flow → “triple-phase boundary (TPB)”

-example of SOFC :        O2- +    H2 →  H2O  +      2e-

electrolyte      gas       gas    electronic conductor

→ a mixed ionic-electronic conductor (MIEC)



-FC with liquid electrolyte:  H2 +    2OH- →   2H2O  +      2e-

gas   electrolyte     gas     electronic conductor

→ flooded-agglomerate model: taking the solubility of gases (oxygen..)

Electrode-electrolyte interface, pore structure



Mathew M. Mench, Fuel Cell Engines, Wiley, 2008.



Proton-exchange membrane(PEM) FCs

-Using solid polymer material (H+ ionic conductor) : perfluorinated 

ionomers

→ Nafion: a copolymer of tetrafluoroethylene (Teflon) and sulfonyl 

fluoride vinyl ether

-Conducting mechanism: Fig. 9.10 

Lower 

water 

content

H+

hopping



-The 2nd role of ionomers: water uptake, 

λ = # water molecules / # sulfonic acid group

-Conductivity vs. water content

κ = A + Bλ

-other transport properties: 

electroosmotic drag coefficient (ξ), 

Diffusion coefficient (DO) 

Activity ~pw/po



-Current density is proportional to the 

molar flux of protons → water movement 

across the membrane

-Membrane as a barrier between the fuel 

and oxidant

-Importance of ORR

Illustration 9.5



Solid oxide fuel cells (SOFC)

-Using solid ceramic material (O2- ionic conductor) 

-Conductivity,           κ = F2∑zi
2uici

ui: mobility of the ion, zi: charge, ci: concentration of the species



-YSZ, O2- ionic conductor + a very small electronic conductor (σ)

-transference number, t02- = ionic conductivity / electronic conductivity 

= κ / (κ + σ) ≈ 1

Vcell = E – iRΩ - │ηs, anode│ -

│ηs,cathode│ - │ηconc,anode│ -

│ηconc,cathode│






