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Continuity Equation and Reynolds 
Transport Theorem  

Chapter 4 
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4.1 Control Volume

4.2 The Continuity Equation for One-Dimensional Steady Flow

4.3 The Continuity Equation for Two-Dimensional Steady Flow

4.4 The Reynolds Transport Theorem

Objectives

- Apply the concept of the control volume to derive equations for the 

conservation of mass for steady one- and two-dimensional flows

- Derive the Reynolds transport theorem for three-dimensional flow

- Show that continuity equation can recovered by simplification of the 

Reynolds transport theorem



3/48

 자연계 3대 법칙

1) 질량 보존의 법칙:  시스템내에 존재하는 질량은 새로이 생성되거나 소멸되지

않는다.

→ 연속방정식

2) 에너지 보존의 법칙:  시스템안에 존재하는 모든 에너지의 합은 그 형태가 변해

도 보존된다.

→ 베르누이 방정식

3) 뉴턴의 제2법칙:  시스템(물체)에 가한 힘의 합은 운동량의 시간에 대한 변화율

과 같다.

→ 운동량 방정식
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4.1 Control Volume

 System approach vs Control volume approach

- 유체는 자유롭게 이동하고 주변과 상호 작용하는 특성을 가지고 있으므

로 2개의 해석 방법을 사용함.

- System approach는 Lagrangian 해석법과 유사하며, Control volume 

approach는 Eulerian해석법과 유사함.

- System approach (Lagrangian 해석법)에서는 관찰자가 유체에 표시를

해서 유체가 움직일 때 이를 따라 가면서 계속해서 특성을 관찰함

- Control volume approach (Eulerian해석법)에서는 관찰자가 이동하지 않

고 고정된 지점(영역)을 통과하는 유체의 운동을 관찰함
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4.1 Control Volume

1) Physical system

- is defined as a collection of matter of fixed identity (always the same 

atoms or fluid particles) → 물질의 집합체

- They can move, flow, and interact with its surroundings

- System may consist of a relatively large amount of mass (such as all 

of the air in the Earth’s atmosphere)

- or it may be an infinitesimal size (such as a single fluid particle)

- The system may interact with its surroundings by various means (by 

transfer of heat or the exertion of a pressure force).

- It may continually change size and shape, but it always contains the 

same mass.
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4.1 Control Volume

System vs Control volume
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4.1 Control Volume

Closed system Control volume
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4.1 Control Volume

 Disadvantage of system approach

- In particle mechanics, the system is a convenient physical entity.

- A system-based analysis of fluid flow leads to the Lagrangian equations

of motion in which particles of fluid are tracked.

- However, a fluid system is mobile and very deformable. 

- Further, a large number of engineering problems involve mass flow in 

and out of a system.

→ This suggests the need to define a more convenient object for analysis. 

→ Control volume (Eulerian view)
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4.1 Control Volume

2) Control volume (검사체적)

- 유체 흐름장 내에서 취급대상으로 고려하는 한정된 체적

- a volume which is fixed in space and through whose boundary matter, 

mass, momentum, energy can flow

- Control volume can be any size (finite or infinitesimal), any space.

- In this course, we assume that the control volume can be fixed in size 

and shape.

→ This approach is consistent with the Eulerian view of fluid motion, in 

which attention is focused on particular points in the space filled by the 

fluid rather than on the fluid particles.

• Control surface (검사표면):  boundary of control volume 
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4.1 Control Volume

a) Fixed control volume b) Moving control volume c) Deforming control volume
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4.1 Control Volume

System vs Control volume
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4.2 Continuity Equation for One-Dimensional Steady Flow

 Principle of conservation of mass

The application of principle of conservation of mass to a steady flow 

in a stream tube results in the continuity equation.

[Re] Continuity equation

~ describes the continuity of flow from section to section of the 

stream tube (control volume)
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4.2 Continuity Equation for One-Dimensional Steady Flow

 One-dimensional steady flow

- Consider the element of a finite stream tube through which passes a 

steady, 1D flow of a compressible fluid

- no net velocity normal to a streamline

- no fluid can leave or enter the stream tube except at two ends
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4.2 Continuity Equation for One-Dimensional Steady Flow

- Now, define the control volume as marked by the control surface that 

bounds the region between sections 1 and 2 and lies along the inner wall 

of the streamtube

→ To be consistent with the assumption of one-dimensional steady flow, 

the velocities at sections 1 and 2 are assumed to be uniform.

→ The control volume comprises volumes I and R at time t.
→ The control volume is fixed in space, but in dt the system moves 

downstream.
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4.2 Continuity Equation for One-Dimensional Steady Flow

From the conservation of system mass

( ) ( )I R t R O t tm m m m +∆+ = + (1)

For steady flow, the fluid properties at points in space are not functions of 

time, 0m
t

∂
=

∂

( ) ( )R t R t tm m +∆→ = (2)

Substituting (2) into (1) yields

( ) ( )I t O t tm m +∆=
Inflow Outflow

(3)
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4.2 Continuity Equation for One-Dimensional Steady Flow

Express inflow and outflow in terms of the mass of fluid moving across 

the control surface in time dt

1 1 1( )I tm A dsρ=

2 2 2( )O t tm A dsρ+∆ = (4)

Substituting (4) into (3) yields

1 1 1 2 2 2A ds A dsρ ρ=

Dividing by dt gives

1 1 1 2 2 2m AV A Vρ ρ= =

1
1

ds V
dt

=

(4.1)

→ Continuity equation
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4.2 Continuity Equation for One-Dimensional Steady Flow

In steady flow, the mass flow rate (질량유량), m
passing all sections of a stream tube is constant.

m AVρ= = constant (kg/sec) 

( ) 0d AVρ =

→ ( ) ( ) ( ) 0d AV dA V dV Aρ ρ ρ+ + =

(4.2b)

(4.2a)

(5)

Dividing (a) by AVρ results in

0d dA dV
A V

ρ
ρ

+ + =

→ 1-D steady compressible fluid flow
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4.2 Continuity Equation for One-Dimensional Steady Flow

→ 

Set

For incompressible fluid flow; constant density 

0d
t
ρρ ∂

= 0, =
∂

(4.3)

From Eq. (4.2a) 

( ) 0d AVρ =

( ) 0d AV =

Q = volume flowrate (유량) (m3/s, cms)

Then (6) becomes

1 1 2 2const.Q AV AV A V= = = =

(4.4)

(4.5)

(6)



19/48

4.2 Continuity Equation for One-Dimensional Steady Flow

→

• For 2-D flow, flowrate is usually quoted per unit distance normal to the 

plane of the flow.
q = flowrate per unit distance normal to the plane of flow ( )3m s m⋅

Q AVq hV
b b

= = =

1 1 2 2hV h V=

(4.6)

(4.7)

[Re] For unsteady flow

+ inflow outflowt t tmass mass+∆ = −

( ) ( ) ( ) ( )R t t R t I t O t tm m m m+∆ +∆− = −
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4.2 Continuity Equation for One-Dimensional Steady Flow

Divide by dt
( ) ( ) ( ) ( )R t t R t

I t O t t
m m m m

dt
+∆

+∆
−

= −

Define 

( ) ( ) ( )R t t R tm m m vol
t dt t

ρ+∆∂ − ∂
= =

∂ ∂

Then
( ) ( ) ( )I t O t t

vol m m
t

ρ
+∆

∂
= −

∂



21/48

4.2 Continuity Equation for One-Dimensional Steady Flow

• Non-uniform velocity distribution through flow cross section

Eq. (4.5) can be applied. However, velocity in Eq. (4.5) should be the 

mean velocity.

No slip
QV
A

=

A A
Q dQ vdA= =∫ ∫

1
A

V vdA
A

∴ = ∫
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4.2 Continuity Equation for One-Dimensional Steady Flow

•The fact that the product  AV remains constant along a streamline in a fluid 

of constant density allows a physical interpretation of streamline pictures.

→ As the cross-sectional area of stream tube increases, the velocity 

must decrease.

→ Streamlines widely spaced indicate regions of low velocity, 

streamlines closely spaced indicate regions of high velocity.

1 1 2 2

1 2 1 2

AV A V
A A V V

=
> → <
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4.2 Continuity Equation for One-Dimensional Steady Flow

[IP 4.3] p. 113

The velocity in a cylindrical pipe of radius R is represented by an 

axisymmetric parabolic distribution (laminar flow).

What is V in terms of maximum velocity, ?cv

r

dr
dA=2πrdr
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4.2 Continuity Equation for One-Dimensional Steady Flow

2

2 20

1 1 1 2
R

cA

Q rV v dA v r dr
A A R R

π
π

 
= = = − 

 
∫ ∫

3 2 4 2 2

2 2 2 2 20
0

2 2 2
2 4 2 4 2

R
R

c c c cv v v vr r r R Rr dr
R R R R R

     
= − = − = − =     

     
∫ → Laminar flow

[Cf] Turbulent flow  

→ logarithmic velocity distribution
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4.3 Continuity Equation for Two-Dimensional Steady Flow

(1) Finite control volume

Area of parallelogram 
= ( cos )ds dAθ

- Consider a general control volume and apply 

conservation of mass

- 유한검사체적법
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4.3 Continuity Equation for Two-Dimensional Steady Flow

- Apply conservation of mass

( ) ( )I R t R O t tm m m m +∆+ = + (a)

For steady flow: ( ) ( )R t R t tm m +∆+

Then (a) becomes

( ) ( )I t O t tm m +∆= (b)

ⅰ) Mass in O moving out through control surface 

. .
( ) ( cos )O t t C S out
m ds dAρ θ+∆ = ∫

mass area 1 cosvol ds dAρ ρ ρ θ= = × × =
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4.3 Continuity Equation for Two-Dimensional Steady Flow

• Displacement along a streamline is 

ds vdt=
Substituting (c) into (b) gives

. .
( ) ( cos )O t t C S out
m v dAdtρ θ+∆ = ∫

(c)

(d)

By the way, cosv θ = normal velocity component normal to C.S. at dA

n


dA ( )1n =


Set  = outward unit normal vector at 
cosnv v n v θ∴ = ⋅ =

 

← scalar or dot product (e)

Substitute (e) into (d)

. . . .
( )O t t C S out C S out
m dt v ndA dt v dAρ ρ+∆ = ⋅ = ⋅∫ ∫

   

dA ndA=
 

where =directed area element

(4.8)
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4.3 Continuity Equation for Two-Dimensional Steady Flow

[Cf] Tangential component of velocity does not contribute to flow through the C.S. 

→ It contributes to circulation
ⅱ) Mass flow into CV

. .
( ) ( cos )I t C S in
m ds dAρ θ= ∫

. . . .
( cos ) ( )

C S in C S in
v dAdt dt v n dAρ θ ρ= ⋅ −∫ ∫

 

90 cos 0θ θ> → <

{ } { }. . . .C S in C S in
dt v ndA dt v dAρ ρ= − ⋅ = − ⋅∫ ∫

   

For steady flow, mass in = mass out

{ }. . . .C S out C S in
dt v dA dt v dAρ ρ⋅ = − ⋅∫ ∫

   

Divide by 

. . . .C S in C S out
v dA v dAρ ρ− ⋅ = ⋅∫ ∫
   

dt
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4.3 Continuity Equation for Two-Dimensional Steady Flow

where integral around the control surface in 

the counterclockwise direction

→ Continuity equation for 2-D steady flow of 

compressible fluid

Combine C.S. in and C.S. out

. . . .
0

C S C S
v dA v ndAρ ρ⋅ = ⋅ =∫ ∫
   

 

Integral form

. .C S
=∫

. . . .
0

C S out C S in
v dA v dAρ ρ⋅ + ⋅ =∫ ∫
   

(f)

(4.9)
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4.3 Continuity Equation for Two-Dimensional Steady Flow

(2) Infinitesimal control volume 

- 미소검사체적법

2
v dyv
y
∂

+
∂

2
v dyv
y
∂

−
∂
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4.3 Continuity Equation for Two-Dimensional Steady Flow

Expand to first-order accuracy 

Apply (4.9) to control volume ABCD

0
AB BC CD DA

v ndA v ndA v ndA v ndAρ ρ ρ ρ⋅ + ⋅ + ⋅ + ⋅ =∫ ∫ ∫ ∫
       

(f)

2 2AB

dy v dyv ndA v dx
y y
ρρ ρ  ∂ ∂

⋅ ≅ − − −  ∂ ∂  
∫

 

2AB
dx

x
ρρ ρ ∂

≈ −
∂

2
v dyv n v
y

 ∂
⋅ = − − ∂ 

 

(g)

2 2BC

dx u dxv ndA u dy
x x
ρρ ρ ∂ ∂  ⋅ ≅ + +  ∂ ∂  ∫

 

2 2CD

dy v dyv ndA v dx
y y
ρρ ρ

  ∂ ∂
⋅ ≅ + +  ∂ ∂  

∫
 

2 2DA

dx u dxv ndA u dy
x x
ρρ ρ ∂ ∂  ⋅ ≅ − − −  ∂ ∂  ∫

 
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4.3 Continuity Equation for Two-Dimensional Steady Flow

Substitute (g) to (f), and expand products, and then retain only terms of lowest 

order (largest order of magnitude)
2( )

2 2 4
v dy dy v dyvdx dx v dx dx
y y y y

ρ ρρ ρ ∂ ∂ ∂ ∂
− + + −

∂ ∂ ∂ ∂
2( )

2 2 4
v dy dy v dyvdx dx v dx dx
y y y y

ρ ρρ ρ ∂ ∂ ∂ ∂
+ + + +

∂ ∂ ∂ ∂
2( )

2 2 4
u dx dx u dxudy dy u dy dy
x x x x

ρ ρρ ρ ∂ ∂ ∂ ∂
+ + + +

∂ ∂ ∂ ∂
2( ) 0

2 2 4
u dx dx v dxudy dy u dy dy
x x x x

ρ ρρ ρ ∂ ∂ ∂ ∂
− + + − =

∂ ∂ ∂ ∂

0v udxdy v dxdy dxdy u dxdy
y y x x

ρ ρρ ρ∂ ∂ ∂ ∂
∴ + + + =

∂ ∂ ∂ ∂
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4.3 Continuity Equation for Two-Dimensional Steady Flow

0v uv u
y y x x

ρ ρρ ρ∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂

( ) ( ) 0u v
x y
ρ ρ∂ ∂

+ =
∂ ∂

Point form

→ Continuity equation for 2-D steady flow of compressible fluid

(4.10)

ρ =

• Continuity equation of incompressible flow for both steady and unsteady 

flow (       const.)

0u v
x y
∂ ∂

+ =
∂ ∂ (4.11)
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4.3 Continuity Equation for Two-Dimensional Steady Flow

For steady 3-D flow of incompressible fluid

0u v w
x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

Continuity equation for unsteady 3-D flow of compressible fluid

( ) ( ) ( ) 0u v w
t x y z
ρ ρ ρ ρ∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
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4.3 Continuity Equation for Two-Dimensional Steady Flow

• Continuity equation for polar coordinates 
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4.3 Continuity Equation for Two-Dimensional Steady Flow

Apply (4.9) to control volume ABCD

0
AB BC CD DA

v ndA V ndA V ndA V ndAρ ρ ρ ρ⋅ + ⋅ + ⋅ + ⋅ =∫ ∫ ∫ ∫
       

2 2
t

tAB

d v dV ndA v drρ θ θρ ρ
θ θ
∂ ∂  ⋅ ≅ − − −  ∂ ∂  ∫

 

( )
2 2

r
rBC

dr v drV ndA v r dr d
r r
ρρ ρ θ∂ ∂  ⋅ ≅ + + +  ∂ ∂  ∫

 

2 2
t

tCD

d v dV ndA v drρ θ θρ ρ
θ θ
∂  ⋅ ≅ + +  ∂ ∂  ∫

 

2 2
r

rDA

dr v drV ndA v rd
r r
ρρ ρ θ∂ ∂  ⋅ ≅ − − −  ∂ ∂  ∫

 
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4.3 Continuity Equation for Two-Dimensional Steady Flow

2( )
2 2 4

t t
t t

v d d v dv dr dr v dr drθ ρ θ ρ θρ ρ
θ θ θ θ
∂ ∂ ∂ ∂

− + + −
∂ ∂ ∂ ∂

2( )
2 2 4

t t
t t

v d d v dv dr dr v dr drθ ρ θ ρ θρ ρ
θ θ θ θ
∂ ∂ ∂ ∂

+ + + +
∂ ∂ ∂ ∂

2 2
r r

r r
v dr v drv rd v drd rd drd
r r

ρ θ ρ θ ρ θ ρ θ∂ ∂
+ + + +

∂ ∂
2 2

2 2 2 2
r r

r r
dr dr dr v dr vv rd v drd rd drd

r r r r r r
ρ ρ ρ ρθ θ θ θ∂ ∂ ∂ ∂ ∂ ∂   + + + +   ∂ ∂ ∂ ∂ ∂ ∂   

2

0
2 2 2

r r
r r

v dr dr v drv rd rd v rd rd
r r r r

ρ ρρ θ ρ θ θ θ∂ ∂ ∂ ∂  − + + − = ∂ ∂ ∂ ∂  

t r
t r

v vd dr v d dr rdrd v rdrd
r r

ρ ρρ θ θ ρ θ θ
θ θ
∂ ∂ ∂ ∂

+ + +
∂ ∂ ∂ ∂

2 2 31 1 1( ) ( ) ( ) 0
2 2 2

r r
r r

v vv drd dr d v dr d dr d
r r r r

ρ ρρ θ ρ θ θ θ∂ ∂ ∂ ∂
+ + + + =

∂ ∂ ∂ ∂
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4.3 Continuity Equation for Two-Dimensional Steady Flow

Divide by drdθ
1 1 1 0
2 2 2

t r r r
t r r r

v v v vv v r v dr v dr dr
r r r r r r

ρ ρ ρ ρρ ρ ρ ρ
θ θ
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + + + + + =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

0r t
r r t

v vr v r v v
r r

ρ ρρ ρ ρ
θ θ

∂ ∂ ∂ ∂
∴ + + + + =

∂ ∂ ∂ ∂

Divide by r 

0r r t
r t

v v vv v
r r r r r

ρ ρρ ρ ρ
θ θ

∂ ∂ ∂ ∂
+ + + + =

∂ ∂ ∂ ∂
( )( ) 0tr r vv v

r r r
ρρ ρ
θ

∂∂
∴ + + =

∂ ∂ (4.12)

For incompressible fluid

0tr r vv v
r r r θ

∂∂
+ + =
∂ ∂

(4.13)
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4.3 Continuity Equation for Two-Dimensional Steady Flow

ethQ ethV

[IP 4.4] p. 117

A mixture of ethanol and gasoline, called "gasohol," is created by pumping

the two liquids into the "wye" pipe junction. Find and

3691.1 kg mmixρ =

1.08 m smixV =

3 330 / 30 10 m /sgasQ l s −= = ×

3680.3 kg mgasρ =

3788.6 kg methρ =
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4.3 Continuity Equation for Two-Dimensional Steady Flow

[Sol] 
2 2

1 (0.2) 0.031m
4

A π
= = 2

2 0.0079mA = 2
3 0.031mA =

3
1 30 10 / 0.031 0.97 m/sV −= × =

1 2 3
0v n dA v n dA v n dAρ ρ ρ⋅ + ⋅ + ⋅ =∫ ∫ ∫

     

1
680.3 0.97 0.031 20.4 kg/sv n dAρ ⋅ = − × × = −∫

 

2 22
788.6 0.0079 6.23v n dA V Vρ ⋅ = − × × = −∫

 

3
691.1 1.08 0.031 23.1 kg/sv n dAρ ⋅ = × × =∫

 

2.
20.4 6.23 23.1 0

c s
v ndA Vρ∴ ⋅ = − − + =∫
 



2 0.43 m/sV =
3 3

2 2 (0.43)(0.0079) 3.4 10 m /s 3.4 /sethQ V A l−→ = = = × =
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4.4 The Reynolds Transport Theorem

• Reynolds Transport Theorem (RTT; 레이놀즈 수송정리)

• A general relationship that converts the laws such as mass 

conservation and Newton’s 2nd law from the system (Lagrangian

approach) to the control volume (Eulerian approach)

• Most principles of fluid mechanics are adopted from solid mechanics, 

where the physical laws dealing with the time rates of change of 

extensive properties are expressed for systems. 

• There is a need to relate the changes in a control volume to the 

changes in a system. 
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4.4 The Reynolds Transport Theorem

system momentum, 

E i

m

mv


2( )m v
v


2( )v


system mass, 

system energy, 

1

system system
E i dm i dvolρ= =∫∫∫ ∫∫∫ (4.14)

• Consider two types of properties

Extensive properties (종량상태량) ( E ):  total system mass, momentum, energy

Intensive properties (강성상태량) ( i ):  mass, momentum, energy per unit mass
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4.4 The Reynolds Transport Theorem

▪ Derivation of RTT
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4.4 The Reynolds Transport Theorem

Consider time rate of change of a system property, E

(a)

(b.1)

(b.3)

(b.2)

(b.4)

0( ) ( )t dt t R t dt R I tE E E E E E+ +− = + − +

0 . .
( )t dt c s out
E dt i v dAρ+ = ⋅∫∫

 

( ). .
( )I t c s in
E dt i v dAρ= − ⋅∫∫

 

( )( )R t dt R t dt
E i dvolρ+

+
= ∫∫∫

( )( )R t R t
E i dvolρ= ∫∫∫
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4.4 The Reynolds Transport Theorem

dtSubstitute (b) into (a) and divide by 

( ) ( ){ }1t dt t
R Rt dt t

E E i dvol i dvol
dt dt

ρ ρ+

+

−
∴ = −∫∫∫ ∫∫∫

. . . .c s out c s in
i v dA i v dAρ ρ+ ⋅ + ⋅∫∫ ∫∫
   

( ) ( ). . . .sys c v c s

dE d i dvol i dvol i v dA
dt dt t

ρ ρ ρ∂
= = + ⋅

∂∫∫∫ ∫∫∫ ∫ ∫
 

 

(4.15)

time rate of change 

of E in the system

time rate change 
within the control 
volume
→ unsteady term

fluxes of E 
across the control 
surface
→ advective term
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4.4 The Reynolds Transport Theorem

▪ Application of RTT to conservation of mass

For application of RTT to the conservation of mass, 

in Eq. (4.15),           ,        and            because mass is conserved.E m= 1i = 0dm
dt

=

( ) ( ). . . . . . . .c v c s c s out c s in
dvol v dA v dA v dA

t
ρ ρ ρ ρ∂

∴ = − ⋅ = − ⋅ + ⋅
∂ ∫∫∫ ∫ ∫ ∫∫ ∫∫

     

 

(4.16)

Unsteady flow: mass within the control volume

may change if the density changes

( ). . . .
0

c v c s

dm dvol v dA
dt t

ρ ρ∂
= = + ⋅

∂ ∫∫∫ ∫ ∫
 

 
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4.4 The Reynolds Transport Theorem

For one-dimensional flow

For flow of uniform density or steady flow, (4.16) becomes

. . . .
0

c s out c s in
v dA v dAρ ρ⋅ + ⋅ =∫∫ ∫∫
   

~ same as Eq. (4.9)

2 2 2. .c s out
v dA V Aρ ρ⋅ =∫∫
 

1 1 1. .c s in
v dA V Aρ ρ⋅ = −∫∫
 

1 1 1 2 2 2AV A Vρ ρ∴ =

• In Ch. 5 & 6, RTT is also used to derive the work-energy, 

impulse-momentum, and moment of momentum principles.

(4.1)
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• Consider system of flow through a variable area pipe

At time t :  System = CV

At time t +δt :  System=CV-I+II

[ ] [ ]

[ ] [ ]

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

sys CV

sys CV I II

sys sys sys

CV II CV I

CV CV II I

E t E t
E t dt E t dt E t dt E t dt

E E t dt E t
t t
E t dt E t dt E t E t dt

t
E t dt E t E t dt E t dt

t

δ
δ δ

δ

δ

=

+ = + − + + +

+ −
=

+ + + − + +
=

+ − + + − +
=
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In the limit

0

0

( ) ( )lim CV CV CV
t

t

E t dt E t E
t tδ

δ

δ→

→

+ − ∂
=

∂

2 2 20

1 1 10

( )lim

( )lim

II
outt

I
int

E t dt E A V
t

E t dt E AV
t

δ

δ

ρ
δ

ρ
δ

→

→

+
= =

+
= =





SYS CV
out in

E E E E
t t

δ
δ

∂
= + −

∂
 

• 레이놀즈 수송정리:  시스템에서 E의 시간변화율은 검사체적내에서의
E의 시간변화율과 (유출량-유입량)의 합과 같다.
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Homework Assignment # 4

Homework Assignment # 4

Due:  1 week from today

1. (Prob. 4.9)

At a point in a two-dimensional fluid flow, two streamlines are parallel

and 75 mm apart. At another point these streamlines are parallel but only

25 mm apart. If the velocity at the first point is 3 m/s, calculate the velocity

at the second.
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2. (Prob. 4.12)

Calculate the mean velocities for these two-dimensional velocity 

profiles if  υc = 3 m / s.

Homework Assignment # 4
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3. (Prob. 4.14)

If the velocity profile in a passage of width 2R is given by the equation

υ / υc = ( y / R )1/n , derive an expression for V / υc in terms of n: (a) for a

two-dimensional passage, and (b) for a cylindrical passage.

Homework Assignment # 4
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5. (Prob. 4.31)

For a differential control volume, show that Eq. 4.16 reduces to Eq. 4.11

for a steady flow with a uniform constant density.

Homework Assignment # 4

4. (Prob. 4.20)

Find V for this mushroom cap (shower head) on a pipeline.

0u v
x y
∂ ∂

+ =
∂ ∂
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