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Chapter 4

Continuity Equation and Reynolds
Transport Theorem
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Contents —

4.1 Control Volume
4.2 The Continuity Equation for One-Dimensional Steady Flow
4.3 The Continuity Equation for Two-Dimensional Steady Flow

4.4 The Reynolds Transport Theorem

Objectives

- Apply the concept of the control volume to derive equations for the

conservation of mass for steady one- and two-dimensional flows

- Derive the Reynolds transport theorem for three-dimensional flow

- Show that continuity equation can recovered by simplification of the

Reynolds transport theorem
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4.1 Control Volume
E————————————————————— .

= System approach vs Control volume approach

- A= AFEH oSSt FHNY &3 A E5t= SHE 7K1 e
Z 27le| &AM g g
- System approach Lagrangian {4441} & AFSOH, Control volume

approach= Euleriand A8} S AHEL.

- System approach (Lagrangian S{AE) 0| M= BE X7 KA ZAIE
M FA7F 22U M O|E el 7HHEM ASHM 82 &
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4.1 Control Volume

g
1) Physical system

is defined as a collection of matter of fixed identity (always the same
atoms or fluid particles) - = & o] £&Hx

They can move, flow, and interact with its surroundings

System may consist of a relatively large amount of mass (such as all
of the air in the Earth’s atmosphere)

or it may be an infinitesimal size (such as a single fluid particle)

The system may interact with its surroundings by various means (by
transfer of heat or the exertion of a pressure force).

It may continually change size and shape, but it always contains the

Sdame Mass.
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4.1 Control Volume

System vs Control volume
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4.1 Control Volume

Imaginary
Moving boundary  Real boundary
/ boundary \nﬂ s
i H |
3 = | = _\_i | .\\ |
;l . | | “Moving l'
| & " | boundary |
: {a nozzle) I ‘ l
: e | v |
P | |
/ | Fixed |
| _{/ boundary:

(a} A control volume (CV) with real and (h) A contro] volume (CV) with fixed and
boundary imaginary boundaries moving houndaries

Closed system Control volume
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4.1 Control Volume

g
» Disadvantage of system approach
- In particle mechanics, the system is a convenient physical entity.

- A system-based analysis of fluid flow leads to the Lagrangian equations

of motion in which particles of fluid are tracked.

- However, a fluid system is mobile and very deformable.

- Further, a large number of engineering problems involve mass flow in

and out of a system.

— This suggests the need to define a more convenient object for analysis.

— Control volume (Eulerian view)
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4.1 Control Volume

g

2) Control volume (ZHAMA| &)

M BEF UolM 3I3cHa o2 TRists SR A

- avolume which is fixed in space and through whose boundary matter,
mass, momentum, energy can flow
- Control volume can be any size (finite or infinitesimal), any space.

- In this course, we assume that the control volume can be fixed in size

and shape.

— This approach is consistent with the Eulerian view of fluid motion, in

which attention is focused on particular points in the space filled by the

fluid rather than on the fluid particles.

« Control surface (AAtE™): boundary of control volume
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4.1 Control Volume

#

Jet engine
Balloon

(a) (b) (c)
— — — = Control volume surface [ ] System at time 1 I System at time 1, > 1

a) Fixed control volume  b) Moving control volume  c¢) Deforming control volume
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4.1 Control Volume

S 4
Control volume 27N
and system at time ¢ // A W=V-V
———— System at time

t + Ot Flow as seen by an
observer moving with
_~ velocity V

- cv
~
Pathlines as

seen from the
moving control
volume

System vs Control volume
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4.2 Continuity Equation for One-Dimensional Steady Flow

é

* Principle of conservation of mass
The application of principle of conservation of mass to a steady flow

in a stream tube results in the continuity equation.

[Re] Continuity equation
~ describes the continuity of flow from section to section of the

stream tube (control volume) 1 |

Streamtube boundary
===

=
]

Control surface and
system boundary at time ¢

NN EENEEERNRERE
s ]

System boundary}
attime z+ dr
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4.2 Continuity Equation for One-Dimensional Steady Flow

é

= One-dimensional steady flow

- Consider the element of a finite stream tube through which passes a

steady, 1D flow of a compressible fluid

- no net velocity normal to a streamline

- no fluid can leave or enter the stream tube except at two ends

RN

Control surface and
system boundary at time ¢

System boundary
at time ¢ + dt
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4.2 Continuity Equation for One-Dimensional Steady Flow

g

- Now, define the control volume as marked by the control surface that

bounds the region between sections 1 and 2 and lies along the inner wall

of the streamtube

— To be consistent with the assumption of one-dimensional steady flow,

the velocities at sections 1 and 2 are assumed to be uniform.

— The control volume comprises volumes /and Rat time ¢

— The control volume is fixed in space, but in df the system moves

downstream. .

( Streamtube boundary

Vi

T

Control surface and
system boundary at time ¢

System boundary}
at time r + dr
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4.2 Continuity Equation for One-Dimensional Steady Flow

é

From the conservation of system mass

(ml U mR)t = (mR u mO)t+At (1)

For steady flow, the fluid properties at points in space are not functions of

time, 8m
ot
—> (Mg); = (M) (2) 1 |
Streamtube bounda S y—
Substituting (2) into (1) yields =

Control surface and
system boundary at time ¢

(M), = (M), (3)
- N

System boundaryT

|nﬂOW OUtﬂOW attime ¢ + dr
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4.2 Continuity Equation for One-Dimensional Steady Flow
é

Express inflow and outflow in terms of the mass of fluid moving across

the control surface in time dt

(M), = pAds,
(Mo )iear = P2 AS,

Substituting (4) into (3) yields

P Ads, = p,Ads,

Dividing by dt gives

—

ds,
dt

=V1

m=p, AV, = p, AV,

— Continuity equation

(4)

(4.1)
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4.2 Continuity Equation for One-Dimensional Steady Flow

é

In steady flow, the mass flow rate (2 2), M

passing all sections of a stream tube is constant.

M = p AV = constant (kg/sec)

d(pAV)=0 (4.2a)
~ dp(AV) +dA(pV ) +dV (pA) = 0 (5)
Dividing (a) by pAV results in
dp [ OA &V _y (4.2b)
o AV

— 1-D steady compressible fluid flow
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4.2 Continuity Equation for One-Dimensional Steady Flow

é

For incompressible fluid flow; constant density

ap
dp=0, p =0 (4.3)
From Eq. (4.2a)
pd(AV)=0 (4.4)
d(AV)=0 (6)

Set Q = volume flowrate (&) (m3/s, cms)

Then (6) becomes

Q= AV =const.= AV, = AV, (4.5)
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4.2 Continuity Equation for One-Dimensional Steady Flow

é

* For 2-D flow, flowrate is usually quoted per unit distance normal to the

plane of the flow.
— ( = flowrate per unit distance normal to the plane of flow (m3/s-m)

Q AV
i =hV (4.6)

hlvl = h2V2 (4.7)

[Re] For unsteady flow

mass,, . = mass,+ inflow —outflow

t+At

(mR)t+At - (mR)t — (ml )t - (mO)t+At
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4.2 Continuity Equation for One-Dimensional Steady Flow

g

Divide by dt

(mR)t+At - (mR)t _
dt - (m| )t

_ (mO)t+At

Define

om _ (Mg )i, —(Mg), _ O(pvol)

ot dt ot

Then
XX _ (),

o (mO)t+At

ot
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4.2 Continuity Equation for One-Dimensional Steady Flow

é

* Non-uniform velocity distribution through flow cross section

Eq. (4.5) can be applied. However, velocity in Eq. (4.5) should be the

mean velocity.

v_Q
A

No slip

Q=[,d0- ], w0

V:%LWA
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4.2 Continuity Equation for One-Dimensional Steady Flow

g
*The fact that the product Al/remains constant along a streamline in a fluid

of constant density allows a physical interpretation of streamline pictures.

— As the cross-sectional area of stream tube increases, the velocity
must decrease.

— Streamlines widely spaced indicate regions of low velocity,

streamlines closely spaced indicate regions of high velocity.

A1\/1:'6‘2\/2
A>A -V <V, v

(Absolute
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4.2 Continuity Equation for One-Dimensional Steady Flow

[IP 4.3] p. 113
The velocity in a cylindrical pipe of radius Ris represented by an

axisymmetric parabolic distribution (laminar flow).

Whatis V' in terms of maximum velocity, V. ?

dA=2nrdr




24/48
4.2 Continuity Equation for One-Dimensional Steady Flow

2
v="__11yaa=t ijc(l—r—z)Zﬂrdr
: R

A A°A 7R’

_2VC_[R r—r—3 dr—2v° rz— s R—ZVC RZ—RZ =% Laminar flow
R* Jo R? R®| 2 4R*| R*| 2 4 2

[Cf] Turbulent flow

— logarithmic velocity distribution

“H“‘ﬂuﬂ Laminar
I~ Eq.95
. ==

¥ f'l B

T

| b

Turbulent | N SO -
&) f=0.025 A
e SR S R l SRR ':;‘:..
X I
N | N
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4.3 Continuity Equation for Two-Dimensional Steady Flow

(1) Finite control volume
- Consider a general control volume and apply

conservation of mass

- REHEAA AR

AN

Area of parallelogram
= (dscosd)dA

System\boundary
at time\p+dr

Control surface and
system boundary
at time ¢
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4.3 Continuity Equation for Two-Dimensional Steady Flow

- Apply conservation of mass

dsA System boundary

(ml + mR)t — (mR + mO)t+At (a) A

For steady flow: (Mg); +(Mg),, A ot
/ g’f

Then (a) becomes 1

(ml )t = (mo )t+At (b) °°ﬁ'“£dq“/
1) Mass in O moving out through control surface

(Mo )it = cs tp(dSCOS@)dA

.0.0u
¥

mass = p vol = pxareax1= pdsdAcosd
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4.3 Continuity Equation for Two-Dimensional Steady Flow

g

 Displacement along a streamline is
ds = vdt (c)
Substituting (c) into (b) gives

(Mo)esae = p(vcosd)dAdt (d)

C.S.out

By the way, vcosé = normal velocity component normal to C.S. at dA

Set N = outward unit normal vector at dA ([fi|=1)

VAR V-N=Vvcosé « scalar or dot product (e)
Substitute (e) into (d)
=d v-ndA=d v-dA (4-8)
(Mg )y o0 =0t csonPY MOA= tJ.c.s.out'OV.

where dA=ndA =directed area element
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4.3 Continuity Equation for Two-Dimensional Steady Flow

[Cf] Tangential component of velocity does not contribute to flow through the C.S.

— |t contributes to circulation
i) Mass flow into CV

(m,), = L .. p(dscosd)dA /7 6>90"—>cos <0

jc __p(vcosf)dAdt=dt| _ pv-(-n)dA

C.S.in

= dt{_jc.s.in PV ndA} - dt{_.[c.s.in PV dA} raﬁ/j\/ y
For steady flow, mass in = mass out J(;“ /
dtJ.C.S.outpV.dA: dt {_j i deA}

Divide by dt
- pV.ﬂ:JCSoutpg'ﬁ

C.S.in

System boundary
at time 1+dr

Control surface and
system boundary
at lime

\
~ | %
{
.
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4.3 Continuity Equation for Two-Dimensional Steady Flow

jC.S.outpV.dA+ deA:O

C.S.in

Combine C.S.inand C.S.out

Cﬁc.s.p\? -dA = CJSC.S.’O\? . ﬁd;: 0

Integral form

where ¢__=integral around the control surface in

the counterclockwise direction

— Continuity equation for 2-D steady flow of

compressible fluid

(f)

(4.9)
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4.3 Continuity Equation for Two-Dimensional Steady Flow

#

(2) Infinitesimal control volume

- O|AAARK A

ou dx
1 — +
ox 2
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4.3 Continuity Equation for Two-Dimensional Steady Flow

é
Apply (4.9) to control volume ABCD

IABpV-ﬁdA+IBCp\7-ﬁdA+J-CDpV-ﬁdA+IDAp\7-ﬁdA:O (f)

Expand to first-order accuracy dp dx
/ Pas = P “ox 2

oy 2
¥ ~ - ov d
I QﬁdAz( +a_p%j(u iu%jdy v n:—( ___y]
s’ =P X 2 OX 2 %y 2

- - op dy ov dy
LD pV-ndA = (p + —7j(v + —?] dx (9)




32/48
4.3 Continuity Equation for Two-Dimensional Steady Flow

Substitute (g) to (f), and expand products, and then retain only terms of lowest

order (largest order of magnitude)

—&(+p—ﬂdx vapdyd 6p8v}/d/y) dx
oy 2 oy gy 4
+0 dX+p@ﬂdX VapddeJrap&y/dy) dx
y2 oy 2  oypy 4

+>5Qy+pg—Ud—2Xdy+u6—p% y+a’0 aU/(dx) dy
X

oX 2 éx/éx 4
2
—P\Qwa—Ud_xdwu@p Koy -2 oy (o) dy =0
X X
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4.3 Continuity Equation for Two-Dimensional Steady Flow

0
—+V—+p—+U—=0 '
p 6y ay IO 6X a)(/ POInt form

0 0
o 9 () = (4.10)
™ (pu)+—(pv)=0

— Continuity equation for 2-D steady flow of compressible fluid

 Continuity equation of incompressible flow for both steady and unsteady

flow ( p = const.)

—+—=0 (4.11)
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4.3 Continuity Equation for Two-Dimensional Steady Flow

g

Continuity equation for unsteady 3-D flow of compressible fluid

(’9,0+ 0
ot oX

(pu)+%<pv)+8—az<pw)=o

For steady 3-D flow of incompressible fluid

ou ov ow
+—+—=0

X oy o7
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4.3 Continuity Equation for Two-Dimensional Steady Flow

 Continuity equation for polar coordinates
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4.3 Continuity Equation for Two-Dimensional Steady Flow

é
Apply (4.9) to control volume ABCD

-“Apr.ﬁdA_l_J‘Bva.ﬁdA+J‘CDp\7'ﬁdA+..‘DA'0\7°ﬁdA:O
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4.3 Continuity Equation for Two-Dimensional Steady Flow

g
2
v do 6pd«9dr_8pﬁvt (d6) i
0 2 ‘00 2 00 00
ov, d@ opdo  dpdv, (w)
+pV ar + ——dr+ —dr +
pf/ P02 Vo0 2 M o000 aC
ov, dr oV, dr

+pvrdl + pv.drd6 +

2
w P9 oy a”O"rd o+ a"(d{ a" d9+5p(drj Ve drdo

“or 2 “or 2

—pV d9+p?—£rd9 Z’Odr de—apav (\%\j rdé =0

»p M dodr 1, a—pdedmpa"r rdrd6 +v. 2P rdrde
P50 ae or T

5,08V 1

+pv.drdé +
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4.3 Continuity Equation for Two-Dimensional Steady Flow

é
Divide by drd@

,oﬁvt +V, 8p+pavr +V, a'0r+,ovr +p6vr£dr+vra—p1dr +8_p8vr£dr:0
06 06 or or or 2 or 2 or or 2
oV, op oV, op
r+v.——r+pv + +V,—=
o o P50 e
Divide by r
oV, op 5 oV, v P op
or "or r "re0 ‘roo
o(pv,) . pv,  9(pV,)
4L+ =0
or r roé (4.12)
For incompressible fluid
Ve Mo O (4.13)
r ar r@&
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4.3 Continuity Equation for Two-Dimensional Steady Flow

é

[IP4.4]p. 117
A mixture of ethanol and gasoline, called "gasohol," is created by pumping

the two liquids into the "wye" pipe junction. Find Qe and V.,

pmix — 6911 kg/m3

No flow 1n
and out+

V. =1.08m/s
Qges =301/5=30x10"m"/s
Pyas = 680.3 kg/m® ‘

Pery = 788.6 kg/m’
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4.3 Continuity Equation for Two-Dimensional Steady Flow

é
Sol
=0l A =%(0.2)2 =0.031m* A, =0.0079 m* A = 0.031m?
V, =30 x107°/0.031=0.97 m/s

.1pv-ndA+Lpv-ndA+.[3pV-ndA=O

'1 ov-ndA=-680.3x0.97 x0.031=—20.4 kg/s

[ pv-ndA=-788.6xV, x0.0079 =—6.23V,
J2

'3 ov-ndA=691.1x1.08x0.031=23.1 kg/s
b pv-ndA=—-20.4-6.23V, +23.1=0

V, =0.43 m/s
— Q. =V, A =(0.43)(0.0079) =3.4x10"° m°/s=3.4 I/s
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4.4 The Reynolds Transport Theorem

- Reynolds Transport Theorem (RTT; BlOo|&== &8 2|)
* A general relationship that converts the laws such as mass

conservation and Newton’s 2"d [aw from the system (Lagrangian

approach) to the control volume (Eulerian approach)

* Most principles of fluid mechanics are adopted from solid mechanics,

where the physical laws dealing with the time rates of change of
extensive properties are expressed for systems.

e Thereis a need to relate the changes in a control volume to the

changes in a system.
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4.4 The Reynolds Transport Theorem

« Consider two types of properties
Extensive properties (S & EiZ) ( E ): total system mass, momentum, energy

Intensive properties (&S ENZE) (1): mass, momentum, energy per unit mass

E 1 f
system mass, M 1 Y
system momentum, m\7 \7 ‘
system energy, m(V)? (V) m

= [ an=[][__ip v wso
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4.4 The Reynolds Transport Theorem

= Derivation of RTT

5 System boundary
at time t+dt

EN

NN

-_ ol 4
Control surface and
system boundary
at time ¢




4.4 The Reynolds Transport Theorem
EEEEEES— ——— — — ———————————. ..

Consider time rate of change of a system property, £

E.o —E = (Eg + Eo)t+dt —(Ez + E )t (a)
(E )t+dt - dt.” sout (b-1)
() =dt(-[[ ipv-d_A’) b.2)
(Er)iar = (_U . pdVOI)t+dt (b.3)

(E). =[] ipdvol) (b4
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4.4 The Reynolds Transport Theorem
EEEEEES— ——— — — ———————————. ..

Substitute (b) into (a) and divide by dt

=gl ([Iipavot) ([T ieavol) |
e[, ioV-dA+[] ipvV-dA

G =l 1 ieowl) =S ioovol) o _ipr 88| 019

time rate of change time rate change fluxes of £
within the control  across the control

of Ein the system

volume surface
— unsteady term - advective term




46/48

4.4 The Reynolds Transport Theorem

= Application of RTT to conservation of mass
For application of RTT to the conservation of mass,

in Eq. (4.15), E=m, i=1and C;—T:O because mass is conserved.

%—T:O:%(H C.ledvol)+<J‘><JSC.S.,0\7-d_A

.'.%%pdvol):—<JS<j'>ClSlp\7-d_A>:—(‘[IClSloutpV-d_,A'+ [ pv-dA) (4.16)

Unsteady flow: mass within the control volume

may change if the density changes
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4.4 The Reynolds Transport Theorem
—

For flow of uniform density or steady flow, (4.16) becomes

ch.s.outpv.ﬂ+j c.s.ian.d_AZO ~ Same as Eq (49)

For one-dimensional flow
JJC.s.out pv . dA - pzvz Az
JJc.s.in ,0\7 . EAI - _pllei

S oAV = P AV, (4.1)

———~—Control surface

*In Ch. 5 & 6, RTT is also used to derive the work-energy,

impulse-momentum, and moment of momentum principles.
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« Consider system of flow through a variable area pipe

At time f: System =CV
At time £+0f:. System=CV-I+ll

Esys (t) — ECV (t)
E,(t+dt)=E, (t+dt)-E (t+dt)+E, (t+dt)
OB, _ E,(t+dt)—E (1)

ot St
_ [Ecy (t+dt)+E, (t+dt)|-[Ec, (t) + E, (t+dt)]
ot
[Eqy (@ +dt) — Eq, )] +[E, (t+dt) — E, (t+dt)]
B st

— —— Fixed control surface and system
boundary at time ¢

— —— System boundary at time 1 + &1
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EEEEEES— ——— — — ———————————. ..

In the limit st >0

lim Eo (t+dt) —Eg, (1) _ OE,

St—0 ot ot
. E,(t+dt) -

lim == =B = 0,AV,
. E (t+dt) -

lim == =B, = pAV,
o Esvs — aEcv —E

« oloj&=Z +=&H-e: AlAHEM £29] AlZtHstE 2 AARXM A LHo| A 2
7 S |.
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Homework Assignment # 4

g

Homework Assignment # 4

Due: 1 week from today

1. (Prob. 4.9)

At a point in a two-dimensional fluid flow, two streamlines are parallel

and 75 mm apart. At another point these streamlines are parallel but only

25 mm apart. If the velocity at the first point is 3 m/s, calculate the velocity

at the second.
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Homework Assignment # 4

g

2. (Prob. 4.12)

Calculate the mean velocities for these two-dimensional velocity

profiles if v, =3 m/s.
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Homework Assignment # 4

é
3. (Prob. 4.14)
If the velocity profile in a passage of width 2R is given by the equation

vl v, =(y/R)Y derive an expression for V / v, in terms of n: (a) for a

two-dimensional passage, and (b) for a cylindrical passage.
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Homework Assignment # 4

é
4. (Prob. 4.20)

Find /for this mushroom cap (shower head) on a pipeline.

asPN
| 4

5. (Prob. 4.31)

For a differential control volume, show that Eq. 4.16 reduces to Eq. 4.11

for a steady flow with a uniform constant density.

ou ov
—_t—=
oX oYy

0
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