Chapter 5

Flow of an Incompressible Ideal Fluid

Contents

- 5.1 Euler's Equation
- 5.2 Bernoulli's Equation
- 5.3 Bernoulli Equation for the One-Dimensional flow
- 5.4 Application of Bernoulli's Equation
- 5.5 The Work-Energy Equation
- 5.6 Euler's Equation for Two-Dimensional Flow
- 5.7 Bernoulli's Equation for Two-Dimensional Flow
- 5.8 Stream Function and Velocity Potential

Objectives

- Apply Newton's 2nd law to derive equation of motion, <u>Euler's equation</u>
- Introduce the <u>Bernoulli and work-energy equations</u>, which permit us to predict pressures and velocities in a flow-field
- Derive Bernoulli equation and more general work-energy equation based on a control volume analysis

- What is ideal fluid?
- An ideal fluid is a fluid assumed to be inviscid.
- In such a fluid there are <u>no frictional</u> effects between moving fluid layers or between these layers and boundary walls.
- There is no cause for eddy formation or energy dissipation due to friction.
- Thus, this motion is analogous to the motion of a solid body on a frictionless plane.

- Why we first deal with the flow of ideal fluid instead of real fluid?
- Under the assumption of frictionless motion, equations are considerably simplified and more easily assimilated by the beginner in the field.
- These simplified equations allow solution of engineering problems to accuracy entirely adequate for practical use in many cases.
- The <u>frictionless assumption gives good results in real situations</u>
 where the actual effects of friction are small.
 [Ex] the lift on a wing

Incompressible fluid;

$$\frac{\partial \rho}{\partial(t, x, y, z)} = 0$$

- ~ constant density
- ~ negligibly small changes of pressure and temperature
- ~ thermodynamic effects are disregarded

Euler (1750) first applied Newton's 2nd law to the motion of fluid particles.

Consider a streamline and select a small cylindrical fluid system in the

streamline coordinates $\sum \vec{F} = m\vec{a}$ Pressure force (i) $dF = pdA - (p + dp)dA - dW \sin\theta$ $= -dp dA - \rho g dA ds \frac{dz}{ds}$ $= -dp dA - \rho g dA dz$ (ii) $dm = \rho dA ds$ (density × volume)

5.1 Euler's Equation

(iii)
$$a = \frac{dV}{dt} = \frac{dV}{ds}\frac{ds}{dt} = V\frac{dV}{ds}$$

 $\therefore -dpdA - \rho gdAdz = (\rho dsdA)V\frac{dV}{ds}$

Dividing by ρdA gives the one-dimensional Euler's equation

$$\frac{dp}{\rho} + VdV + gdz = 0$$

Divide by g

$$\frac{dp}{\gamma} + \frac{1}{g}VdV + dz = 0$$

$$\frac{dp}{\gamma} + d\left(\frac{V^2}{2g}\right) + dz = 0$$

5.1 Euler's Equation

For incompressible fluid flow,

$$d\left(\frac{p}{\gamma} + \frac{V^2}{2g} + z\right) = 0$$

 \rightarrow 1-D Euler's equation (Eq. of motion)

5.2 Bernoulli's Equation

For <u>incompressible fluid</u> flow, integrating 1-D Euler's equation yields Bernoulli equation

$$\frac{p}{\gamma} + \frac{V^2}{2g} + z = \text{const.} = H$$

where H = total head

Between two points on the streamline, (5.1) gives

$$\frac{p_1}{\gamma} + \frac{V_1^2}{2g} + z_1 = \frac{p_2}{\gamma} + \frac{V_2^2}{2g} + z_2$$

$$\frac{p}{\gamma} = \text{pressure head} \qquad \qquad \frac{\text{kg} \cdot \text{m/s}^2}{\text{m}^2} / \frac{\text{kg} \cdot \text{m/s}^2}{\text{m}^3} = \text{m}$$

$$z = \text{potential head (elevation head), m}$$

$$\frac{V^2}{2g} = \text{velocity head} \qquad \qquad \frac{(\text{m/s})^2}{\text{m/s}} = \text{m}$$

(5.1)

5.2 Bernoulli's Equation

5.2 Bernoulli's Equation

- Bernoulli Eq. is <u>valid for a single streamline</u> or infinitesimal streamtube across which variation of p, V and z is negligible.
- This equation can also be applied to large stream tubes such as pipes, canals.
- Consider a cross section of large flow through which all streamlines are precisely straight and parallel.

5.3 Bernoulli Equation for the One-Dimensional flow

i) Forces, normal to the streamlines, on the element of fluid are in equilibrium

 \rightarrow acceleration toward the boundary is zero.

$$\sum \vec{F} = 0$$

$$(p_1 - p_2)ds - \gamma h ds \cos \alpha = 0$$

$$\therefore \quad (p_1 - p_2)ds = \gamma(z_2 - z_1)ds$$

$$\frac{p_1}{\gamma} + z_1 = \frac{p_2}{\gamma} + z_2$$
(2.6)

 \rightarrow the same result as that in Ch. 2

→ quantity $\left(z + \frac{p}{\gamma}\right)$ is constant over the flow cross section normal to the streamlines when they are straight and parallel.

→ This is often called a hydrostatic pressure distribution

$$(z + \frac{p}{z} = \text{const. for fluid at rest}).$$

5.3 Bernoulli Equation for the One-Dimensional flow

ii) In <u>ideal fluid flows</u>, distribution of velocity over a cross section of a flow containing straight and parallel streamlines is <u>uniform</u> because of the absence of friction.

 \rightarrow All fluid particles pass a given cross section at the same velocity, V (average velocity)

$$V_1 = V_2$$

Combine (i) and (ii)

$$\frac{p_1}{\gamma} + \frac{V_1^2}{2g} + z_1 = \frac{p_2}{\gamma} + \frac{V_2^2}{2g} + z_2$$

- \rightarrow Bernoulli equation can be extended <u>from infinitesimal to the finite</u> <u>streamtube.</u>
- \rightarrow Total head H is the same for every streamline in the streamtube.
- \rightarrow Bernoulli equation of single streamline may be extended to apply to 2- and 3-dimensional flows.
- Bernoulli's equation

$$\frac{p}{\gamma} + \frac{V^2}{2g} + z = H = \text{const.}$$

 \rightarrow where velocity is high, pressure is low.

[IP 5.1] p. 129

Water is flowing through a section of cylindrical pipe.

 $p_{c} = 35 \text{ kPa}, \ \gamma = 9.8 \times 10^{3} \text{ N/m}^{3}$

5.3 Bernoulli Equation for the One-Dimensional flow

[Sol]

$$\frac{p_A}{\gamma} + z_A = \frac{p_B}{\gamma} + z_B = \frac{p_C}{\gamma} + z_C$$

$$p_A = p_C + \gamma (z_C - z_A) = 35 \times 10^3 - (9.8 \times 10^3) \left(\frac{1.2}{2}\right) \cos 30^\circ = 29.9 \text{ kPa}$$

$$p_B = p_C + \gamma (z_C - z_B) = 35 \times 10^3 + (9.8 \times 10^3) \left(\frac{1.2}{2}\right) \cos 30^\circ = 40.1 \text{ kPa}$$

→ The hydraulic grade line is $\frac{p_C}{\gamma} = \frac{35 \times 10^3}{9.8 \times 10^3} = 3.57 \text{ m}$ above point *C*.

- Use of Bernoulli equation
 - 1) Free jet problems
 - 2) Confined flows
 - 3) Flowrate measurement

(b)

(a)

- Bernoulli equation cannot be applied to the flows of
 - 1) Real fluid
 - 2) Eddies and flow separation
 - 3) Pump and turbine

- Torricelli's theorem (1643)
 - ~ special case of the Bernoulli equation.

Apply Bernoulli equation to points 1 and 2

$$\frac{p_1}{\gamma} + \frac{V_1^2}{2g} + z_1 = \frac{p_2}{\gamma} + \frac{V_2^2}{2g} + z_2$$

 $V_1 \cong 0$ (for very large reservoir); $p_1 = p_{atm} = 0$

$$z_1 = z_2 + \frac{V_2^2}{2g} + \frac{p_2}{\gamma}$$

$$z_1 - z_2 = h = \frac{p_2}{\gamma} + \frac{V_2^2}{2g}$$

(a)

Apply Newton's 2nd law in the vertical direction at section 2 $\Sigma F = ma$ $dF = -(p + dp)dA + pdA - \gamma dA dz = -dpdA - \gamma dA dz$ $dm = \rho dA dz$ a = -g $\therefore -dAdp - \gamma dAdz = -(\rho dAdz)g$ $-dp - \gamma dz = -\gamma dz$ $\therefore dp = 0$

 \rightarrow no pressure gradient across the jet at section 2.

$$\rightarrow p_A = p_B = p_C = p_2$$
$$\therefore p_A = p_{atm} = 0 \text{ (gage)}$$

(b)

Thus, combining (a) and (b) gives

$$h = \frac{V_2^2}{2g}$$
$$\rightarrow V_2 = \sqrt{2gh}$$

~ equal to <u>solid body</u> falling from rest through a height h.

[IP 5.2] p.131 Flow in the pipeline for water intake

Find: p_1 , p_2 , p_3 , p_4 and elevation at point 6

[Sol] use Continuity and Bernoulli equations

(i) Bernoulli's Eq. between \odot & 5

$$\frac{p_0}{\gamma} + \frac{V_0^2}{2g} + z_0 = \frac{p_5}{\gamma} + \frac{V_5^2}{2g} + z_5$$

$$p_0 = p_5 = p_{atm} = 0, \quad V_0 = 0$$

$$\rightarrow \quad 90 = 60 + \frac{V_5^2}{2g}$$

$$V_5 = 24.3 \text{ m/s}$$

Calculate Q using Eq. (4.4)

$$Q = AV = 24.3 \times \frac{\pi}{4} (0.125)^2 = 0.3 \text{ m}^3/\text{s}$$

(ii) Apply <u>Continuity equation</u>, Eq. (4.5)

$$A_{1}V_{1} = Q = A_{5}V_{5} \qquad \therefore \qquad V_{1} = \left(\frac{125}{300}\right)^{2}V_{5}$$
(4.5)
$$\frac{V_{1}^{2}}{2g} = \left(\frac{125}{300}\right)^{4}\frac{V_{5}^{2}}{2g} = \left(\frac{125}{300}\right)^{4}(30) = 0.9 \text{ m}$$
$$V_{1} = \sqrt{0.9(2 \times 9.8)} = 4.2 \text{ m/s} = V_{3} = V_{4}$$
Continuity equation
$$\frac{V_{2}^{2}}{2g} = \left(\frac{125}{200}\right)^{4}\frac{V_{5}^{2}}{2g} = \left(\frac{125}{200}\right)^{4}(30) = 4.58 \text{ m},$$

$$V_2 = \sqrt{4.58(2 \times 9.8)} = 9.5 \text{ m/s}$$

••••

$$90 = \frac{p_1}{\gamma} + \frac{V_1^2}{2g} + 72 \quad \text{of } H_2O \leftarrow \text{head}$$
$$\therefore \frac{p_1}{\gamma_w} = 18 - 0.9 = 17.1 \text{ m} \quad \text{of } H_2O \leftarrow \text{head}$$

$$p_1 = 17.1(9.8 \times 10^3) = 167.5$$
 kPa

(iv) B. E. (iv) & (iv) B. (iv) & (iv) & (iv) B. (iv) &

$$90 = \frac{p_2}{\gamma} + 87 + 4.58 \quad \therefore \frac{p_2}{\gamma} = -1.58 \text{ m}$$
$$p_2 = -1.58(9.8 \times 10^3) = -15.48 \text{ kPa} = \frac{-15.48 \times 10^3}{133.3} = \underline{116 \text{ mmHg vacuum}}$$

 \rightarrow 15.48 kPa below p_{atm}

 $p_{atm} = 760 \text{ mmHg} = 101.325 \text{ kPa}(10^5 \text{ pascal}) = 1013 \text{ mb}$

 $1 \text{ mmHg} = 133.3 \text{ Pa} = 133.3 \text{ N/m}^2$

(v) B. E. (i) & (i)

$$90 = \frac{p_3}{\gamma} + 0.9 + 78$$

$$\therefore \quad \frac{p_3}{\gamma} = 12 - 0.9 = 11.1 \text{ m}$$

$$p_3 = 108.8 \text{ kPa}$$

(vi) B. E. (i) & (i)

$$\frac{p_4}{\gamma} = 31 - 0.9 = 30.1 \text{ m}$$

 $p_4 = 295.0 \ kPa$

(vii) Velocity at the top of the trajectory

$$\rightarrow V_6 = 24.3 \cos 30^\circ = 21.0 \text{ m/s}$$
 (5.2)

Apply B. E. (2) & (6)

$$\therefore El. = 90 - \frac{21.0^2}{2g} = 67.5 \,\mathrm{m}$$

(5.3)

	Point 0	Point 1	Point 2	Point 3	Point 4
Gage pressure,	0	167.5	-15.48	108.7	294.9
kPa					
Velocity, m/s	0	4.22	4.61	4.22	4.22
Elevation, m	90	72	87	78	59

Cavitation

As velocity or potential head increase, the pressure within a flowing fluid drops.

~ Pressure does not drop below the absolute zero of pressure.

$$(p_{atm} \approx 10^3 \text{ millibar} = 100 \text{ kPa}$$
 \therefore $p_{abs} = 0 \Rightarrow p_{gage} = -100 \text{ kPa})$

~ Actually, in liquids the absolute pressure can drop only to the <u>vapor pressure</u> of the liquid.

Vapor pressure of water

Temperature	p_{v}
10 °C	1.23 kPa
15 ℃	1.70 kPa
20 °C	2.34 kPa

[IP 5.3] p.134 Cavitation at the throat of pipe constriction

 $p_B = 96.5 \text{ kPa} = \text{barometric pressure.}$

What diameter of constriction can be expected to produce <u>incipient</u> <u>cavitation</u> at the throat of the constriction?

```
Water at 40 °C

\gamma = 9.73 \text{ kN/m}^3; \quad p_v = 7.38 \text{ kPa}

\frac{p_v}{\gamma} = \frac{7.38 \times 10^3 \text{ N/m}^2}{9.73 \times 10^3 \text{ N/m}^3} = 0.76 \text{ m}

\frac{p_B}{\gamma} = \frac{p_{atm}}{\gamma} = \frac{96.5 \times 10^3 \text{ N/m}^2}{9.73 \times 10^3 \text{ N/m}^3} = 9.92 \text{ m}
```


(i) Bernoulli Eq. between and

$$z_{1} + \frac{p_{1}}{\gamma} + \frac{V_{1}^{2}}{2g} = z_{c} + \frac{p_{c}}{\gamma} + \frac{V_{c}^{2}}{2g}$$

$$V_{1} \approx 0, \quad p_{1} = p_{B}, \quad p_{c} = p_{v}$$
Incipient cavitation

$$\therefore 11 + 9.92 + 0 = 3 + 0.76 + \frac{V_c^2}{2g}$$

$$\frac{V_c^2}{2g} = 17.16 \text{ m} \rightarrow V_c = 18.35 \text{ m/s}$$

(ii) Bernoulli Eq. between ① and ②

$$z_1 + \frac{p_1}{\gamma} + \frac{V_1^2}{2g} = z_2 + \frac{p_2}{\gamma} + \frac{V_2^2}{2g}$$

$$V_1 \approx 0, \ p_1 = p_2 = p_B$$

$$11 + 9.92 + 0 = 0 + 9.92 + \frac{V_2^2}{2g}$$

$$V_2 = 14.69 \text{ m/s}$$

(iii) Continuity between (2) and (C)

$$Q = A_2 V_2 = A_c V_c$$

$$\frac{\pi}{4}(0.15)^2(14.69) = \frac{\pi}{4}d_c^2(18.35)$$

 $\therefore d_c = 0.134 \text{ m} = 134 \text{ mm} < 150 \text{ mm}$

[Cp] For incipient cavitation,

critical gage pressure at point C is

$$\frac{p_c}{\gamma})_{gage} = -\left(\frac{p_{atm}}{\gamma} - \frac{p_v}{\gamma}\right) = -(9.92 - 0.76) = -9.16 \text{ m}$$

Bernoulli Equation in terms of pressure

$$p_1 + \frac{1}{2}\rho V_1^2 + \gamma z_1 = p_2 + \frac{1}{2}\rho V_2^2 + \gamma z_2$$

$$p_1$$
 = static pressure (정압력)
 $\frac{1}{2}\rho V_1^2$ = dynamic pressure (동압력)

$$\gamma_z$$
 = potential pressure (위치압력)

[Re] 정체압력=정압력+동압력
$$p_s = p + \frac{1}{2}\rho V^2$$

• Stagnation pressure (정체압력), P_S

Apply Bernoulli equation between 0 and S

$$p_0 + \frac{1}{2}\rho V_0^2 + \gamma z_0 = p_s + \frac{1}{2}\rho V_s^2 + \gamma z_s$$

$$z_0 = z_s; V_s \approx 0$$

 $p_0 + \frac{1}{2}\rho V_0^2 = p_s + 0$

$$V_0 = \sqrt{\frac{2(p_s - p_0)}{\rho}}$$

-5cm

(b)

Pitot-static tube

[IP 5.4] p.136 Pitot-static tube

What is the velocity of the airstream, V_0 ?

$$\rho_{air} = 1.23 \text{ kg/m}^3 \quad \gamma_W = 9,810 \text{ N/m}^3$$

 $V_0 = \left[\frac{2}{\rho_a}(p_s - p_0)\right]^{\frac{1}{2}}$

By the way,

$$p_{1} = p_{2}$$

$$p_{1} = p_{5} + 0.15\rho_{air}g; \quad p_{2} = p_{0} + 0.15\gamma_{w}$$

$$\therefore p_{5} - p_{0} = 0.15(\gamma_{w} - \rho_{air}g) = 0.15(9,810 - 1.23 \times 9.81) = 1,469.7 \text{ pa}$$

$$V_{0} = \sqrt{\frac{2}{1.23}(1,469.7)} = 48.9 \text{ m/s}$$

[Cf] If $\gamma_{air} = \gamma_w = \gamma$ Then, $p_s - p_0 = \gamma h$ $\therefore V_0 = \sqrt{2gh}$

- Bernoulli principle for <u>open flow</u>
- Flow over the <u>spillway or weir</u>: a moving fluid surface in contact with the atmosphere and dominated by <u>gravitational action</u>
- At the upstream of the weir, the <u>streamlines are straight and parallel and</u> <u>velocity distribution is uniform</u>.
- At the chute way, Section 2, the streamlines are assumed straight and parallel, the pressures and velocities can be computed from the onedimensional assumption.
- Flow under the sluice gate

[IP 5.6] p.139 Flow over a spillway

At section 2, the water surface is at elevation 30.5 m and the 60° spillway

face is at elevation 30.0 m. The velocity at the water surface at section 2 is

6.11 m/s.

[Sol]

Thickness of sheet flow = $(30.5 - 30) / \cos 60^{\circ} = 1 \text{ m}$

Apply 1-D assumption across the streamline at section ②

 $\frac{p_{w.s.}}{\gamma} + z_{w.s.} = \frac{p_b}{\gamma} + z_b$ $\therefore p_b = \gamma (z_{w.s.} - z_b) = 9.8 \times 10^3 (0.5) = 4.9 \text{ kPa}$

Elevation of energy line $H = 30.5 + \frac{(6.11)^2}{2g} = 32.4 \text{ m}$

Apply B.E. between 2 and b

 $\frac{p_2}{\gamma} + \frac{V_2^2}{2g} + z_2 = \frac{p_b}{\gamma} + \frac{V_b^2}{2g} + z_b$

Velocity is the same at both the surface and the bottom

$$32.4 = \frac{4.9}{9.8} + \frac{V_b^2}{2g} + 30.0 \quad \therefore \quad V_b = 6.11 \,\text{m/s}$$

 $q = h_2 V_2 = 1 \times 6.11 = 6.11 \text{ m}^2/\text{s}$ per meter of spillway length

Apply Bernoulli equation between ① and ②

$$y_{1} + 29.0 + \frac{1}{2g} \left(\frac{6.11}{y_{1}}\right)^{2} = 32.4$$
$$y_{1} = 3.22 \text{ m}$$
$$V_{1} = \frac{q}{h_{1}} = \frac{6.11}{3.22} = 1.9 \text{ m/s}$$
$$h_{I} = y_{I}$$

For pipelines containing <u>pumps and turbines</u>, the mechanical work-energy equation can be derived via a control volume analysis.

- pump = add energy to the fluid system turbine = extract energy from the fluid system
- Bernoulli equation = mechanical work-energy equation for <u>ideal fluid flow</u>

Apply mechanical work-energy principle to steady flow

→ <u>work done on a fluid system</u> is exactly balanced by the change in the sum of the kinetic energy (KE) and potential energy (PE) of the system.

$$dW = dE \tag{1}$$

where dW = the increment of work done; dE = resulting incremental change in energy

~ Heat transfer and internal energy are neglected.

[Cf] The first law of Thermodynamics

~ Heat transfer and internal energy are included.

Dividing (1) by *dt* yields

 $\frac{dW}{dt} = \frac{dE}{dt}$

(2)

(i) Apply the <u>Reynolds Transport Theorem</u> to evaluate the rate of change of an extensive property, in this case energy, *dE/dt*

 \rightarrow <u>steady state</u> form of the <u>Reynolds Transport Theorem</u>

$$\frac{dE}{dt} = \iint_{c.s.out} i\rho \vec{v} \cdot \vec{dA} + \iint_{c.s.in} i\rho \vec{v} \cdot \vec{dA} \quad (3) \qquad \frac{\partial}{\partial t} (\iiint_{c.v.} i\rho \, dvol) \to dropped$$

where *i* = energy per unit mass

$$i = gz + \frac{V^2}{2}$$
(4)
Potential energy

Substituting (4) into (3) gives

$$\frac{dE}{dt} = \iint_{c.s.out} \left(gz + \frac{V^2}{2} \right) \rho \vec{v} \cdot \vec{dA} + \iint_{c.s.in} \left(gz + \frac{V^2}{2} \right) \rho \vec{v} \cdot \vec{dA}$$
(5)

where $\frac{dE}{dt}$ = the rate of energy increase for <u>the fluid system</u> \rightarrow Even <u>in steady flow</u>, the fluid system energy can change with time because the system moves through the control volume where both velocity and elevation can change.

Since the <u>velocity vector is normal to the cross sectional area and the</u> <u>velocity is uniform over the two cross sections</u>, integration of RHS of (5) yields

$$\frac{dE}{dt} = \rho \left(gz_2 + \frac{V_2^2}{2} \right) V_2 A_2 - \rho \left(gz_1 + \frac{V_1^2}{2} \right) V_1 A_1$$
$$= \rho g \left(z_2 + \frac{V_2^2}{2g} \right) V_2 A_2 - \rho g \left(z_1 + \frac{V_1^2}{2g} \right) V_1 A_1$$

Continuity equation is

$$Q = V_2 A_2 = V_1 A_1 \tag{7}$$

Substituting the Continuity equation into (6) gives

$$\frac{dE}{dt} = Q\gamma \left[\left(z_2 + \frac{V_2^2}{2g} \right) - \left(z_1 + \frac{V_1^2}{2g} \right) \right]$$

(5.4)

(6)

(ii) Now, evaluate the work done on the fluid system (dW)

- 1) Flow work done via fluid entering or leaving the control volume
- \rightarrow Pressure work = $p \times area \times distance$
- 2) Shaft work done by pump and turbine
- 3) Shear work done by shearing forces action across the boundary of the system

 $\rightarrow W_{shear} = 0$ for inviscid fluid

- Pressure work
- ~ consider only pressure forces at the control surface, p_1A_1 and p_2A_2
- → Net pressure work rate = pressure force x distance / time = pressure

force x velocity

$$= p_1 A_1 V_1 - p_2 A_2 V_2 = Q(p_1 - p_2)$$

(8)

Shaft work

 $W_T \le 0$ (energy is extracted from the system) $W_p \ge 0$ (energy is put in)

 \rightarrow Net <u>shaft work rate</u> on the fluid = $Q\gamma E_P - Q\gamma E_T$ (9)

where $E_P(E_T)$ = work done per unit weight of fluid flowing

Combining the two net-work-rate equations, Eqs. (8) and (9), yields

Net work rate =
$$Q\gamma \left(\frac{p_1}{\gamma} - \frac{p_2}{\gamma} + E_P - E_T \right)$$
 (5.5)

Equating Eqs. (5.4) and (5.5), we get

$$Q\gamma \left[\left(z_2 + \frac{V_2^2}{2g} \right) - \left(z_1 + \frac{V_1^2}{2g} \right) \right] = Q\gamma \left(\frac{p_1}{\gamma} - \frac{p_2}{\gamma} + E_p - E_T \right)$$
(5.6)

Collecting terms with like subscripts gives

$$z_1 + \frac{p_1}{\gamma} + \frac{V_1^2}{2g} + E_p = z_2 + \frac{p_2}{\gamma} + \frac{V_2^2}{2g} + E_T$$

(5.7)

Head, m

- \rightarrow Work-energy equation
- ~ used in real fluid flow situations
- ~ Work-energy W/O E_p and E_T is identical to the Bernoulli equation for ideal fluid.
- Addition of mechanical energy (E_p) or extraction (E_T) cause <u>abrupt rises</u> of falls of energy line.

Power of machines

Power =
$$\frac{W}{t} = \frac{\text{work}}{\text{time}} = \frac{\text{Force} \times \text{distance}}{\text{time}} = \frac{m \, g \times E}{t} = \frac{\rho \text{vol.} \, g \times E}{t} = \gamma \left(\frac{\text{vol.}}{t}\right) \times E = \gamma \, QE$$

Kilowatts (kW) of machine = $\gamma \, Q \frac{E_p \text{ or } E_T}{1,000}$ (5.8)

[IP 5.7] p.145 Work done by pump

The pump delivers a flowrate of 0.15 m³/s of water. How much <u>power</u> must the pump supply to the water to maintain gage readings of 250 mm of mercury <u>vacuum on the suction side</u> of the pump and 275 kPa of pressure on the <u>discharge side</u>? \rightarrow 가압펌프

[Sol]
$$p_1 = -250 \text{ mm of Hg} < 760 \text{ mmHg}$$

 $= -250 \times 133.3 \text{ N/m}^2 = -33,325 \text{ N/m}^2$
 $\frac{p_1}{\gamma} = \frac{-33,325}{9,800} = -3.39 \text{ m}$
 $p_2 = 275 \text{ kPa} > 100 \text{ kPa}$
 $\frac{p_2}{\gamma} = \frac{275 \times 10^3}{9,800} = 28.1 \text{ m}$

Apply Continuity Equation

$$Q = A_1 V_1 = A_2 V_2$$

$$V_1 = \frac{0.15}{\frac{\pi}{4} (0.2)^2} = 4.8 \text{ m/s}$$

$$\therefore \frac{V_1^2}{2g} = \frac{4.8^2}{2 \times 9.8} = 1.16 \text{ m}$$

$$V_2 = \frac{0.15}{\frac{\pi}{4} (0.15)^2} = 8.5 \text{ m/s}$$

$$\therefore \frac{V_2^2}{2g} = \frac{8.5^2}{2 \times 9.8} = 3.68 \text{ m}$$

Apply Work-Energy equation between ① & ②

$$\frac{p_1}{\gamma} + \frac{V_1^2}{2g} + z_1 + E_p = \frac{p_2}{\gamma} + \frac{V_2^2}{2g} + z_2 + E_T$$
(5.7)
-3.39 + 1.16 + 0 + $E_p = 28.1 + 3.68 + 3$
 $\therefore E_p = 37.0 \text{ m}$
Pump power = $\frac{Q\gamma(E_p)}{1,000} = \frac{0.15(9,800)(37.0)}{1,000} = 54.4 \text{ kW}$ (5.8b)

- The local velocity in the pump passage may be considerably larger than the average velocity in the pipes.
 - \rightarrow There is no assurance that the pump will run <u>cavitation-free</u>.

5.6 Euler's Equations for Two-Dimensional Flow

- Two-Dimensional Flow
- ~ The solution of <u>flowfield problems</u> is much more complex than the solution of 1D flow.
- ~ <u>Partial differential equations</u> for the motion <u>for real fluid</u> are usually solved by computer-based numerical methods.
- ~ present an introduction to certain essentials and practical problems
- Euler's equations for a vertical two-dimensional flow <u>of ideal fluid</u> may be derived by applying Newton's 2nd law of motion to differential system dxdz.

$$\sum \vec{F} = m\vec{a}$$

5.6 Euler's Equations for Two-Dimensional Flow

Force: neglect shear force

$$dF_{x} = -\frac{\partial p}{\partial x}dxdz$$
$$dF_{z} = -\frac{\partial p}{\partial z}dxdz - \rho gdxdz$$

Acceleration for steady flow:

5.6 Euler's Equations for Two-Dimensional Flow

Euler's equation for 2-D flow

$$-\frac{1}{\rho}\frac{\partial p}{\partial x} = u\frac{\partial u}{\partial x} + w\frac{\partial u}{\partial z}$$
(5.9a)
$$-\frac{1}{\rho}\frac{\partial p}{\partial z} - g = u\frac{\partial w}{\partial x} + w\frac{\partial w}{\partial z}$$
(5.9b)

• Equation of Continuity for 2-D flow of ideal incompressible fluid

$$\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} = 0 \tag{4.11}$$

Unknowns: p, u, w

Equations: 3

 \rightarrow simultaneous solution for non-linear PDE

Bernoulli's equation can be derived by integrating the Euler's equations for a <u>uniform density flow</u>.

$$dx \times \left(-\frac{1}{\rho}\frac{\partial p}{\partial x}\right) = \left(u\frac{\partial u}{\partial x} + w\frac{\partial u}{\partial z}\right) \times dx$$
 (a)

$$dz \times \left(-\frac{1}{\rho}\frac{\partial p}{\partial z}\right) = \left(u\frac{\partial w}{\partial x} + w\frac{\partial w}{\partial z} + g\right) \times dz$$
 (b)

By the way,

$$dp = \frac{\partial p}{\partial x} dx + \frac{\partial p}{\partial z} dz$$

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial z} dz$$

$$dw = \frac{\partial w}{\partial x} dx + \frac{\partial w}{\partial z} dz$$

$$\xi = \frac{\partial w}{\partial x} - \frac{\partial u}{\partial z}$$

$$\frac{d(u^2)}{2} = \frac{2u \, du}{2} = u \frac{\partial u}{\partial x} dx + u \frac{\partial u}{\partial z} dz$$

Incorporating these terms and dividing by g gives

$$-\frac{dp}{\gamma} = \frac{1}{2g}d(u^2 + w^2) + \frac{1}{g}(udz - wdx)\xi + dz$$
 (c)

Integrating (c) yields

$$\frac{p}{\gamma} + \frac{1}{2g}(u^2 + w^2) + z = H - \frac{1}{g}\int \xi(udz - wdx)$$
 (d)

where H = constant of integrationSubstituting resultant velocity, V

$$V^2 = u^2 + w^2$$

$$\frac{p}{\gamma} + \frac{V^2}{2g} + z = H - \frac{1}{g} \int \xi(udz - wdx)$$

(i) For irrotational (potential) flow $\xi = 0$

$$\frac{p}{\gamma} + \frac{V^2}{2g} + z = H \tag{5.11}$$

 \rightarrow Constant *H* is the same to <u>all streamlines of the 2-D flowfield</u>.

(ii) For rotational flow (
$$\xi \neq 0$$
): $\int \xi (udz - wdx) \neq 0$ (5.12)

However, along a streamline for steady flow,

$$\frac{w}{u} = \frac{dz}{dx} \rightarrow u dz - w dx = 0$$
 (e)

[Re]

For ideal incompressible fluid, for larger flow through which all streamlines

are straight and parallel (irrotational flow)

 \rightarrow Bernoulli equation can be applied to any streamline.

5.8 Stream Function and Velocity Potential

- The concepts of the stream function (흐름함수) and the velocity potential (속도포텐셜) can be used for developing of differential equations for two-dimensional flow.
- \rightarrow decrease the number of unknowns
 - 비압축성, 비회전류의 경우 흐름함수와 속도포텐셜을 도입하여 유속 장 (*u*, *v*, *w*) 을 구할 수 있다.
 장점: 미지수의 개수를 줄일 수 있음
 단점: 방정식의 차수가 증가함
 - 흐름함수: 유선의 식으로 부터 유도함
 - 속도포텐셜: 순환 식으로 부터 유도함

5.8.1 Stream function

Definition of the stream function (흐름함수) is based on the <u>continuity</u> <u>principle</u> and the <u>concept of the streamline</u>.

→ provides a mathematical means of solving for two-dimensional steady flowfields.

Consider streamline A: no flow crosses it

- \rightarrow the <u>flowrate ψ </u> across all lines OA is the same.
- $\rightarrow \psi$ is a constant of the streamline.

- \rightarrow If ψ can be found as a function of x and y, the streamline can be plotted.
- The flowrate of the adjacent streamline B will be $\psi + d\psi$
- The flowrates into and out of the elemental triangle are equal from <u>continuity concept</u>.

$$d\psi = -vdx + udy$$

Total derivative of $\psi(x, y)$ is given as

where ψ = stream function

 \rightarrow If ψ is known u, v can be calculated.

Integrate (5.14)

$$\psi = \int \frac{\partial \psi}{\partial x} dx + \int \frac{\partial \psi}{\partial y} dy + C$$
$$= \int -v dx + \int u dy + C$$

 \rightarrow If *u*, *v* are known ψ can be calculated.

(5.15a) (5.15b)

(b)

(4.11)

5.8 Stream Function and Velocity Potential

- Property of stream function
 - 1) The equation of continuity

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

Substitute (5.15) into (4.11)

$$\frac{\partial}{\partial x} \left(\frac{\partial \psi}{\partial y} \right) - \frac{\partial}{\partial y} \left(\frac{\partial \psi}{\partial x} \right) = 0$$
$$\therefore \frac{\partial^2 \psi}{\partial x \partial y} = \frac{\partial^2 \psi}{\partial y \partial x}$$

→ Flow described by a <u>stream function always satisfies the continuity</u> equation for incompressible fluid.

2) The equation of vorticity

$$\xi = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$$

Substitute (5.15) into (3.10)

$$\xi = \frac{\partial}{\partial x} \left(-\frac{\partial \psi}{\partial x} \right) - \frac{\partial}{\partial y} \left(+\frac{\partial \psi}{\partial y} \right) = -\frac{\partial^2 \psi}{\partial x^2} - \frac{\partial^2 \psi}{\partial y^2}$$

For irrotational flow, $\zeta = 0$

.
$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = \nabla^2 \psi = 0 \rightarrow \text{Laplace Eq.}$$

 \rightarrow The stream function of all <u>irrotational flows must satisfy the Laplace equation</u>.

(3.10)

5.8.2 Velocity Potential

Suppose that another function $\phi(x, y)$ is defined as

$$\vec{V} \equiv -\nabla \phi \equiv -grad \ \phi = -\left[\frac{\partial \phi}{\partial x}\vec{e_x} + \frac{\partial \phi}{\partial y}\vec{e_y}\right]$$
(a)

By the way,

$$\vec{V} = u\vec{e_x} + v\vec{e_y}$$
 (b)

Comparing (a) and (b) gives

$$u = -\frac{\partial \phi}{\partial x}$$
(5.16)
$$v = -\frac{\partial \phi}{\partial y}$$
(5.17)

where ϕ = velocity potential (속도포텐셜)

- Property of potential function
- 1) The equation of continuity
- Substitute Eq. (5.16) into continuity Eq.

$$\frac{\partial}{\partial x} \left(-\frac{\partial \phi}{\partial x} \right) + \frac{\partial}{\partial y} \left(-\frac{\partial \phi}{\partial y} \right) = 0$$

$$\rightarrow \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0 \quad \Rightarrow \text{Laplace Eq.}$$
(5.18)

 \rightarrow All practical flows which conform to the continuity Eq. must <u>satisfy the</u> <u>Laplace equation</u> in terms of ϕ .

- 2) Vorticity Eq.
- Substitute Eq. (5.16) into vorticity eq.

$$\xi = \frac{\partial}{\partial x} \left(-\frac{\partial \phi}{\partial y} \right) - \frac{\partial}{\partial y} \left(-\frac{\partial \phi}{\partial x} \right) = -\frac{\partial^2 \phi}{\partial x \partial y} + \frac{\partial^2 \phi}{\partial y \partial x} = 0$$

- \rightarrow The <u>vorticity must be zero</u> for the existence of a velocity potential.
- \rightarrow irrotational flow = potential flow
- \rightarrow Only irrotational flowfields can be characterized by a velocity potential ϕ .

Laplace equation

 $\nabla^2 \psi = \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = 0 \quad \text{for irrotational flow}$ $\nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0 \quad \text{for incompressible fluid flow}$

- 해가 존재하는 선형 편미분방정식임
- 미지수의 개수를 4개 (*u, v, w, p*) 에서 2개(, , *p*) 로 줄일 수 있음 *φ* - 유속장은 Laplace 방정식을 이용하여 구하고, 압력, *p*, 는 베르누이방정식을

이용하여 구함.

• Solution for potential flow problem

Potential flow

$$\nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$$
 for incompressible fluid flow

- 해가 존재하는 선형 편미분방정식임
- 선형방정식의 해들이 존재하는 경우 이 들에 상수를 곱한 것도 해가 되며,
- 이들 해를 더하거나 뺀 것도 해가 됨

solutions: ϕ_1, ϕ_2 $\rightarrow c\phi_1, c_1\phi_1 + c_2\phi_2$

Potential flows

1. Uniform flow

 \rightarrow streamlines are all straight and parallel, and the magnitude of the velocity is constant

 ψ_1 ψ_2

 ψ_3 ψ_4

$$\frac{\partial \phi}{\partial x} = U, \quad \frac{\partial \phi}{\partial y} = 0$$

$$\phi = Ux + C$$

$$\frac{\partial \psi}{\partial y} = U, \quad \frac{\partial \psi}{\partial x} = 0$$

$$\psi = Uy + C'$$

 $= \psi_{\Lambda}$

 $\phi = \phi_2$

 $\phi = \phi$

x

2. Source and Sink

- Fluid flowing radially outward from a line through the origin perpendicular to the *x-y* plane
- Let *m* be the volume rate of flow emanating from the line (per unit length)

$$(2\pi r)v_r = m$$
$$v_r = \frac{m}{2\pi r}$$

If *m* is positive, the flow is radially outward \rightarrow source If *m* is negative, the flow is radially inward \rightarrow sink

$$\frac{\partial \phi}{\partial r} = \frac{m}{2\pi r}, \frac{1}{r} \frac{\partial \phi}{\partial \theta} = 0$$
$$\phi = \frac{m}{2\pi} \ln r$$
$$v_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta} = \frac{m}{2\pi r}$$
$$\psi = \frac{m}{2\pi} \theta$$

The streamlines are radial lines,

and equipotential lines are concentric circles.

r

3. Vortex

Flow field in which the streamlines are concentric circles

In cylindrical coordinate

$$\phi = K\theta$$

$$\psi = -K \ln r$$

$$v_{\theta} = \frac{1}{r} \frac{\partial \phi}{\partial \theta} = -\frac{\partial \psi}{\partial r} = \frac{K}{r}$$

The tangential velocity varies inversely with distance from the origin.

6.6 Irrotational Motion

Free vortex

Forced vortex

88/95

[IP 5.14] p164

A flowfield is described by the equation $\psi = y - x^2$.

- 1) Sketch streamlines $\psi = 0, 1, 2$.
- 2) Derive an expression for the velocity V at any point.
- 3) Calculate the vorticity.

[Sol]

1)
$$\psi = 0 \rightarrow 0 = y - x^2$$

 $\therefore y = x^2 \rightarrow \text{parabola}$
 $\psi = 1 \rightarrow y = x^2 + 1$
 $\psi = 2 \rightarrow y = x^2 + 2$

2)
$$u = \frac{\partial \psi}{\partial y} = \frac{\partial}{\partial y}(y - x^2) = 1$$
$$v = -\frac{\partial \psi}{\partial x} = -\frac{\partial}{\partial x}(y - x^2) = 2x$$
$$\therefore \quad V = \sqrt{u^2 + v^2} = \sqrt{(2x)^2 + 1^2} = \sqrt{4x^2 + 1}$$

3)
$$\xi = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = \frac{\partial}{\partial x}(2x) - \frac{\partial}{\partial y}(1) = 2(s^{-1})$$

 $\therefore \xi \neq 0 \rightarrow$ The flowfield is rotational.

90/95

Homework Assignment # 5

Due: 1 week from today

1. (Prob. 5.6)

In a pipe 0.3 m in diameter, 0.3m³/s of water <u>are pumped up a hill</u>. On the hilltop (elevation 48), the line reduces to 0.2 m diameter. If the pump maintains a pressure of 690 kPa at elevation 21, calculate the pressure in the pipe on the hilltop.

91/95

2. (Prob. 5.11)

If the pressure in the 0.3 m pipe of problem 4.17 is 70 kPa, what pressures exist in the branches, assuming all pipes are in the same horizontal plane? Water is flowing.

Homework Assignment # 5

- 3. (Prob. 5.24)
- Water is flowing.
- The flow picture is axisymmetric.
- Calculate the flowrate and manometer reading.

Stagnation point

4. (Prob. 5.30)

Calculate the pressure in the flow at A: (a) for the system shown, and (b) for the pipe without the nozzle. For both cases, skech the EL and HGL.

5. (Prob. 5.46)

The liquid has a specific gravity of 1.60 and negligible vapor pressure.

Calculate the flowrate for incipient cavitation in the 75 mm section,

assuming that the tube flows full. Barometric pressure is 100 kPa.

 $p_{v} = 0$

 $p_{atm} = 100$

6. (Prob. 5.48)

Barometric pressure is 101.3 kPa. For h > 0.6 m, <u>cavitation is observed at</u> the 50 mm section. If the pipe is horizontal and flows full throughout, what is the <u>vapor pressure of the water</u>?

7. (Prob. 5.59)

<u>Cavitation occurs</u> in this convergent-divergent tube as shown. The righthand side of the manometer is connected to the cavitation zone. The water in the right-hand tube has all 40°C, calculate the gage reading if the local atmospheric pressure is 750 mm of mercury

8. (Prob. 5.89)

Calculate the two-dimensional flowrate through this frictionless sluice gate when the depth *h* is 1.5 m. Also calculate the depth *h* for a flowrate of $3.25 \text{ m}^{3}/\text{s}\cdot\text{m}$

Homework Assignment # 5

9. (Prob. 5.98)

Water is flowing. Calculate the pump power for a flowrate of 28 1 / s. Draw

the EL and HGL.

Homework Assignment # 5

10. (Prob. 5.104)

Calculate the pump power.

11. (Prob. 5.119)

The <u>turbine extracts</u> from the flowing water <u>half as much energy</u> as remains in the jet at the nozzle exit. Calculate the power of the turbine.

12. (Prob. 5.123)

What is the <u>maximum power the turbine</u> can extract from the flow <u>before</u> <u>cavitation</u> will occur at some point in the system? Barometric pressure is 102 kPa, and vapor pressure of the water is 3.5 kPa.

Homework Assignment # 5

13. (Prob. 5.149)

Determine the stream fuctions for the flowfields of problem 3.6 and plot the streamline $\psi = 2$.

14. (Prob. 5.157)

Determine the <u>velocity potential</u> ϕ for (a) the flow in problem 5.151 and (b) the flow in problem 5.152.

