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Chapter 5 Flow of an Incompressible Ideal Fluid

Objectives

• Apply Newton’s 2nd law to derive equation of motion, Euler’s equation

• Introduce the Bernoulli and work-energy equations, which permit us to 

predict pressures and velocities in a flow-field

• Derive Bernoulli equation and more general work-energy equation 

based on a control volume analysis
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▪ What is ideal fluid?

- An ideal fluid is a fluid assumed to be inviscid.

- In such a fluid there are no frictional effects

between moving fluid layers or between these

layers and boundary walls.

- There is no cause for eddy formation or energy

dissipation due to friction.

- Thus, this motion is analogous to the motion of a

solid body on a frictionless plane.

[Cf] real fluid – viscous fluid

Chapter 5 Flow of an Incompressible Ideal Fluid



5/95

▪ Why we first deal with the flow of ideal fluid instead of real fluid?

- Under the assumption of frictionless motion, equations are

considerably simplified and more easily assimilated by the

beginner in the field.

- These simplified equations allow solution of engineering problems

to accuracy entirely adequate for practical use in many cases.

- The frictionless assumption gives good results in real situations

where the actual effects of friction are small.

[Ex] the lift on a wing

Chapter 5 Flow of an Incompressible Ideal Fluid



6/95

Chapter 5 Flow of an Incompressible Ideal Fluid

▪ Incompressible fluid; 

~ constant density

~ negligibly small changes of pressure and temperature

~ thermodynamic effects are disregarded

0
( , , , )t x y z

ρ∂
=

∂
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5.1 Euler's Equation

Euler (1750) first applied Newton's 2nd law to the motion of fluid particles.

Consider a streamline and select a small cylindrical fluid system in the 

streamline coordinates
F ma∑ =




(i) ( ) sindF pdA p dp dA dW
dzdp dA gdAds
ds

θ

ρ

= − + −

= − −

dp dA g dAdzρ= − −

dm dAdsρ=(ii) (density × volume)

Pressure force

g

sindW θ
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5.1 Euler's Equation

(iii) 
dV dV ds dVa V
dt ds dt ds

= = =

( ) dVdpdA gdAdz dsdA V
ds

ρ ρ∴− − =

dAρDividing by gives the one-dimensional Euler's equation

0dp VdV gdz
ρ

+ + =

Divide by g
1 0dp VdV dz
g

+ + =
γ

2

0
2

dp Vd dz
g

 
+ + = γ  

2( ) 2d V V dV=
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5.1 Euler's Equation

For incompressible fluid flow,

2

0
2

p Vd z
g

 
+ + = γ 

→ 1-D Euler's equation (Eq. of motion)
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5.2 Bernoulli's Equation

For incompressible fluid flow, integrating 1-D Euler's equation yields

Bernoulli equation
2

const.
2

p V z H
gγ

+ + = =

where H = total head

(5.1)

Between two points on the streamline, (5.1) gives
2 2

1 1 2 2
1 22 2

p V p Vz z
g gγ γ

+ + = + +

p
γ

= pressure head 
2 2

2 3
kg m/s kg m/s = m

m m
⋅ ⋅

z = potential head (elevation head), m
2

2
V

g = velocity head
2(m s) =m

m s



11/95

5.2 Bernoulli's Equation

manometer

Pitot tube

Henri de Pitot 
(1695~1771)
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5.2 Bernoulli's Equation

Bernoulli Family:
Jacob
Johann - Nikolaus

Daniel
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5.3 Bernoulli Equation for the One-Dimensional flow

,p V z
Bernoulli Eq. is valid for a single streamline or infinitesimal streamtube across

which variation of and is negligible.

This equation can also be applied to large stream tubes such as pipes, canals.

Consider a cross section of large flow through which all streamlines are

precisely straight and parallel.
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5.3 Bernoulli Equation for the One-Dimensional flow

i) Forces, normal to the streamlines, on the element of fluid are in equilibrium

→ acceleration toward the boundary is zero.

2 1cos ( ) /z z hα = −

0F∑ =


1 2( ) cos 0p p ds hdsγ α− − =

1 2 2 1( ) ( )p p ds z z dsγ∴ − = −

1 2
1 2

p pz z
γ γ

+ = +

pz
γ

 
+ 

 

pz
γ

+

→ the same result as that in Ch. 2

→ quantity is constant over the flow cross section normal to the

streamlines when they are straight and parallel.

→ This is often called a hydrostatic pressure distribution

( = const. for fluid at rest).

(2.6)
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5.3 Bernoulli Equation for the One-Dimensional flow

V

1 2V V=

ii) In ideal fluid flows, distribution of velocity over a cross section of a flow

containing straight and parallel streamlines is uniform because of the

absence of friction.

→ All fluid particles pass a given cross section at the same velocity,

(average velocity)

2 2
1 1 2 2

1 22 2
p V p Vz z

g gγ γ
+ + = + +

Combine (i) and (ii)
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5.3 Bernoulli Equation for the One-Dimensional flow

→ Bernoulli equation can be extended from infinitesimal to the finite

streamtube.

→ Total head is the same for every streamline in the streamtube.

→ Bernoulli equation of single streamline may be extended to apply to 2- and

3-dimensional flows.

H

2

const.
2

p V z H
gγ

+ + = =

• Bernoulli's equation

→ where velocity is high, pressure is low.
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5.3 Bernoulli Equation for the One-Dimensional flow

35Cp =
3 39.8 10 N/mγ = ×

[IP 5.1] p. 129

Water is flowing through a section of cylindrical pipe.

kPa,



18/95

5.3 Bernoulli Equation for the One-Dimensional flow

[Sol]

A B C
A B C

p p pz z z
γ γ γ

+ = + = +

3 3 1.2( ) 35 10 (9.8 10 ) cos30 29.9 kPa
2A C C Ap p z zγ  = + − = × − × = 

 


3 3 1.2( ) 35 10 (9.8 10 ) cos30 40.1 kPa
2B C C Bp p z zγ  = + − = × + × = 

 


3

3
35 10 3.57 m
9.8 10

Cp
γ

×
= =

×
C→ The hydraulic grade line is above point .



19/95

5.4 Applications of Bernoulli's Equation

• Use of Bernoulli equation

1) Free jet problems

2) Confined flows

3) Flowrate measurement
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5.4 Applications of Bernoulli's Equation
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5.4 Applications of Bernoulli's Equation

• Bernoulli equation cannot be applied to the flows of

1) Real fluid

2) Eddies and flow separation

3) Pump and turbine
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5.4 Applications of Bernoulli's Equation

• Torricelli's theorem (1643)

~ special case of the Bernoulli equation.
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5.4 Applications of Bernoulli's Equation

2 2
1 1 2 2

1 22 2
p V p Vz z

g gγ γ
+ + = + +

1 0V ≅ 1 0atmp p= =

2
2 2

1 2 2
V pz z

g γ
= + +

2
2 2

1 2 2
p Vz z h

gγ
− = = +

(for very large reservoir); 

Apply Bernoulli equation to points 1 and 2

(a)
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5.4 Applications of Bernoulli's Equation

Apply Newton's 2nd law in the vertical direction at section 2
F ma∑ =

( )dF p dp dA pdA dAdz dpdA dAdzγ γ= − + + − = − −

dm dAdzρ=

a g= −

( )dAdp dAdz dAdz gγ ρ∴ − − = −

dp dz dzγ γ− − = −
0dp∴ =

→ no pressure gradient across the jet at section 2.

2A B Cp p p p= = =→

0 (gage)A atmp p∴ = = (b)
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5.4 Applications of Bernoulli's Equation

Thus, combining (a) and (b) gives
2

2

2
Vh

g
=

2 2V gh→ =

h~ equal to solid body falling from rest through a height .
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5.4 Applications of Bernoulli's Equation

[IP 5.2] p.131 Flow in the pipeline for water intake
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5.4 Applications of Bernoulli's Equation

1 2 3 4, , ,p p p pFind: and elevation at point 6

ⓞ ⑤

[Sol] use Continuity and Bernoulli equations

(i) Bernoulli's Eq. between &
2 2

0 0 5 5
0 52 2

p V p Vz z
g gγ γ

+ + = + +

0 5 00, 0atmp p p V= = = =
2

590 60
2
V

g
→ = +

5 24.3 m/sV =

Calculate Q using Eq. (4.4)
2 324.3 (0.125) 0.3 m /s

4
Q AV π

= = × =
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5.4 Applications of Bernoulli's Equation

(ii) Apply Continuity equation, Eq. (4.5)

Continuity 
equation

(4.5)
2

1 1 5 5 1 5
125
300

AV Q AV V V = = ∴ =  
 

( )
4 422

51 125 125 30 0.9 m
2 300 2 300

VV
g g

   ∴ = = =   
   

1 3 40.9(2 9.8) 4.2 m/sV V V= × = = =

( )
4 422

52 125 125 30 4.58m,
2 200 2 200

VV
g g

   = = =   
   

2 4.58(2 9.8) 9.5 m/sV = × =
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5.4 Applications of Bernoulli's Equation

(iii) B. E. ⓞ & ①
2

1 190 72
2

p V
gγ

= + +

1 18 0.9 17.1 m
w

p
γ

∴ = − =

3
1 17.1(9.8 10 ) 167.5 kPap = × =

of H2O ← head

of H2O ← head

(iv) B. E. ⓞ & ②

2 290 87 4.58 1.58 mp p
γ γ

= + + ∴ = −
3

3
2

15.48 101.58(9.8 10 ) 15.48 kPa 116 mmHg
133.3

p − ×
= − × = − = =

below15.48 kPa atmp→

vacuum
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5.4 Applications of Bernoulli's Equation

[Re] 2 5 21 bar=1000 mb(millibar)=100 kPa=100 kN m =10 N m

5760 mmHg 101.325 kPa(10 pascal) 1013 mbatmp = = =

21 mmHg 133.3 Pa 133.3 N/m= =

(v) B. E. ⓞ & ③

390 0.9 78p
γ

= + +

3 12 0.9 11.1mp
γ

∴ = − =

3 108.8 kPap =
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5.4 Applications of Bernoulli's Equation

4 31 0.9 30.1mp
γ

= − =

4 295.0p kPa=

6 24.3 cos30 21.0 m/sV =→ = 

221.0. 90 67.5m
2

El
g

∴ = − =

(vi) B. E. ⓞ & ④

(vii) Velocity at the top of the trajectory 

Apply B. E. ⓞ & ⑥

(5.2)

(5.3)



32/95

5.4 Applications of Bernoulli's Equation

Point 0 Point 1 Point 2 Point 3 Point 4

Gage pressure, 

kPa

0 167.5 -15.48 108.7 294.9

Velocity, m/s 0 4.22 4.61 4.22 4.22

Elevation, m 90 72 87 78 59
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5.4 Applications of Bernoulli's Equation

▪ Cavitation

As velocity or potential head increase, the pressure within a flowing fluid drops.

~ Pressure does not drop below the absolute zero of pressure. 

3( 10 millibar 100 kPa 0 100 kPa)atm abs gagep p p≈ = ∴ = ⇒ = −

~ Actually, in liquids the absolute pressure can drop only to the vapor pressure

of the liquid. 
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5.4 Applications of Bernoulli's Equation

Temperature

10 ℃ 1.23 kPa

15 ℃ 1.70 kPa

20 ℃ 2.34 kPa

vp

Vapor pressure of water 
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5.4 Applications of Bernoulli's Equation

Bp
[IP 5.3] p.134 Cavitation at the throat of pipe constriction

= 96.5 kPa = barometric pressure.

What diameter of constriction can be expected to produce incipient

cavitation at the throat of the constriction?

Water at 40℃
39.73 k ;N/mγ = 7.38 kPavp =

3 2

3 3

7.38 10 N/m 0.76 m
9.73 10 N/m

vp
γ

×
= =

×
3 2

3 3

96.5 10 N/m 9.92 m
9.73 10 N/m

atmB pp
γ γ

×
= = =

×
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5.4 Applications of Bernoulli's Equation

(i) Bernoulli Eq. between ① and ©

Incipient cavitation

22
1 1

1 2 2
c c

c
p Vp Vz z

g gγ γ
+ + = + +

1 10, ,B c vV p p p p≈ = =

2

11 9.92 0 3 0.76
2

cV
g

∴ + + = + +

2

17.16 m 18.35 m s
2

c
c

V V
g

= → =
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5.4 Applications of Bernoulli's Equation

(ii) Bernoulli Eq. between ① and ②

2 2
1 1 2 2

1 22 2
p V p Vz z

g gγ γ
+ + = + +

1 1 20, BV p p p≈ = =

2
211 9.92 0 0 9.92

2
V

g
+ + = + +

2 14.69 m sV =
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5.4 Applications of Bernoulli's Equation

(iii) Continuity between ② and ©

2 2 c cQ A V AV= =

2 2(0.15) (14.69) (18.35)
4 4 cdπ π

=

0.134 m=134 mm < 150mmcd∴ =

[Cp] For incipient cavitation,

critical gage pressure at point C is

) (9.92 0.76) 9.16 mc atm v
gage

p p p
γ γ γ

 
= − − = − − = − 
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5.4 Applications of Bernoulli's Equation

2 2
1 1 1 2 2 2

1 1
2 2

p V z p V zρ γ ρ γ+ + = + +

1p

2
1

1
2

Vρ

zγ

▪Bernoulli Equation in terms of pressure

= static pressure (정압력)

= dynamic pressure (동압력)

= potential pressure (위치압력)

[Re] 정체압력=정압력+동압력
21

2Sp p Vρ= +
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5.4 Applications of Bernoulli's Equation

Apply Bernoulli equation between 0 and S
2 2

0 0 0
1 1
2 2S S Sp V z p V zρ γ ρ γ+ + = + +

▪ Stagnation pressure (정체압력),  Sp
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5.4 Applications of Bernoulli's Equation

0 ; 0S Sz z V= ≈

2
0 0

1 0
2 Sp V pρ+ = +

0
0

2( )Sp pV
ρ
−

=

▪ Pitot-static tube
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5.4 Applications of Bernoulli's Equation

[IP 5.4] p.136 Pitot-static tube

What is the velocity of the airstream, V0?
3 31.23kg m 9,810 N mair Wρ γ= =

1
2

0 0
2 ( )S

a

V p p
ρ

 
= − 
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5.4 Applications of Bernoulli's Equation

1 2p p=

1 2 00.15 ; 0.15S air wp p g p pρ γ= + = +

0 0.15( ) 0.15(9,810 1.23 9.81) 1,469.7 paS w airp p gγ ρ∴ − = − = − × =

0
2 (1,469.7) 48.9 m/s

1.23
V = =

By the way, 

air wγ γ γ= =

0Sp p hγ− =

0 2V gh∴ =

[Cf] If 

Then,

12.1
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5.4 Applications of Bernoulli's Equation

▪ Bernoulli principle for open flow
• Flow over the spillway or weir: a moving fluid surface in contact with the

atmosphere and dominated by gravitational action

- At the upstream of the weir, the streamlines are straight and parallel and

velocity distribution is uniform.

- At the chute way, Section 2, the streamlines are assumed straight and

parallel, the pressures and velocities can be computed from the one-

dimensional assumption.

• Flow under the sluice gate
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5.4 Applications of Bernoulli's Equation
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5.4 Applications of Bernoulli's Equation

[IP 5.6] p.139 Flow over a spillway

At section 2, the water surface is at elevation 30.5 m and the 60˚ spillway

face is at elevation 30.0 m. The velocity at the water surface at section 2 is

6.11 m/s.

[Sol]

Thickness of sheet flow = (30.5 30) / cos60 1 m− =

Apply 1-D assumption across the streamline at section ②
. .

. .
w s b

w s b
p pz z+ = +
γ γ

3
. .( ) 9.8 10 (0.5) 4.9 kPab w s bp z zγ∴ = − = × =

Elevation of energy line 
2(6.11)30.5 32.4 m

2
H

g
= + =
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5.4 Applications of Bernoulli's Equation
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5.4 Applications of Bernoulli's Equation

Velocity is the same at both

the surface and the bottom
2 2

2 2
22 2

b b
b

p V p Vz z
g gγ γ

+ + = + +

24.932.4 30.0 6.11m s
9.8 2

b
b

V V
g

= + + ∴ =

2
2 2 1 6.11 6.11 m sq h V= = × =

Apply B.E. between ② and ⓑ

per meter of spillway length
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5.4 Applications of Bernoulli's Equation

h1 = y1

2

1
1

1 6.1129.0 32.4
2

y
g y

 
+ + = 

 

1 3.22 my =

1
1

6.11 1.9 m s
3.22

qV
h

= = =

Apply Bernoulli equation between ① and ②
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5.5 The Work-Energy Equation

For pipelines containing pumps and turbines, the mechanical work-energy

equation can be derived via a control volume analysis.

•  pump = add energy to the fluid system 

turbine = extract energy from the fluid system

• Bernoulli equation = mechanical work-energy equation for ideal fluid flow
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5.5 The Work-Energy Equation
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5.5 The Work-Energy Equation

KE PE

dW dE=

Apply mechanical work-energy principle to steady flow

→ work done on a fluid system is exactly balanced by the change in the sum 

of the kinetic energy ( ) and potential energy ( ) of the system. 

(1)

where dW = the increment of work done; dE = resulting incremental change

in energy

~ Heat transfer and internal energy are neglected.

[Cf] The first law of Thermodynamics

~ Heat transfer and internal energy are included.
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5.5 The Work-Energy Equation

Dividing (1) by dt yields

dW dE
dt dt

=

(i) Apply the Reynolds Transport Theorem to evaluate the rate of change 

of an extensive property, in this case energy, dE/dt
→ steady state form of the Reynolds Transport Theorem

(2)

. . . .c s out c s in

dE i v dA i v dA
dt

ρ ρ= ⋅ + ⋅∫∫ ∫∫
   

(3)

where i = energy per unit mass
2

2
Vi gz= +

Potential energy Kinetic energy
(4)

( ). .c v
i dvol dropped

t
ρ∂

→
∂ ∫∫∫
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5.5 The Work-Energy Equation

Substituting (4) into (3) gives
2 2

. . . .2 2c s out c s in

dE V Vgz v dA gz v dA
dt

ρ ρ
   

= + ⋅ + + ⋅   
   

∫∫ ∫∫
   

(5)

dE
dtwhere  = the rate of energy increase for the fluid system

→ Even in steady flow, the fluid system energy can change with time 

because the system moves through the control volume where both 

velocity and elevation can change.

Since the velocity vector is normal to the cross sectional area and the 

velocity is uniform over the two cross sections, integration of RHS of (5) 

yields
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5.5 The Work-Energy Equation

2 2
2 1

2 2 2 1 1 1

2 2
2 1

2 2 2 1 1 1

2 2

2 2

dE V Vgz V A gz V A
dt

V Vg z V A g z V A
g g

ρ ρ

ρ ρ

   
= + − +   

   
   

= + − +   
   

(6)

Continuity equation is

2 2 1 1Q V A V A= =

Substituting the Continuity equation into (6) gives

2 2
2 1

2 12 2
dE V VQ z z
dt g g

γ
    

= + − +    
    

(7)

(5.4)
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5.5 The Work-Energy Equation

(ii) Now, evaluate the work done on the fluid system (   )

1) Flow work done via fluid entering or leaving the control volume

→ Pressure work distance

2) Shaft work done by pump and turbine

3) Shear work done by shearing forces action across the boundary of the

system

→ for inviscid fluid0shearW =

reaap= × ×

dW

• Pressure work

~ consider only pressure forces at the control surface, p1A1 and p2A2

→ Net pressure work rate = pressure force ⅹ distance / time = pressure

force ⅹ velocity
( )1 1 1 2 2 2 1 2p AV p A V Q p p= − = − (8)
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5.5 The Work-Energy Equation

• Shaft work
0TW ≤

0pW ≥

(energy is extracted from the system)
(energy is put in)

→ Net shaft work rate on the fluid = P TQ E Q Eγ γ− (9)

( )P TE E =where work done per unit weight of fluid flowing

Combining the two net-work-rate equations, Eqs. (8) and (9), yields

1 2
P T

p pQ E Eγ
γ γ

 
− + − 

 
Net work rate =

Equating Eqs. (5.4) and (5.5), we get
2 2

2 1 1 2
2 12 2 P T

V V p pQ z z Q E E
g g

γ γ
γ γ

      
+ − + = − + −      

     

(5.5)

(5.6)
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5.5 The Work-Energy Equation

Collecting terms with like subscripts gives
2 2

1 1 2 2
1 22 2P T

p V p Vz E z E
g gγ γ

+ + + = + + +

Head, m

→ Work-energy equation

(5.7)

pE TE
~ used in real fluid flow situations

~ Work-energy W/O and is identical to the Bernoulli equation for ideal

fluid.

• Addition of mechanical energy ( ) or extraction ( ) cause abrupt rises

of falls of energy line.
pE TE
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5.5 The Work-Energy Equation

• Power of machines

work Force distance
Power

time time
. .W m g E vol g E vol E QE

t t t t
ρ× × ×  = = = = = = γ × = γ 

 

Kilowatts (kW) of machine = 1,000
P TE or EQγ (5.8)
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5.5 The Work-Energy Equation

[IP 5.7] p.145 Work done by pump

The pump delivers a flowrate of 0.15 m3/s of water. How much power must

the pump supply to the water to maintain gage readings of 250 mm of

mercury vacuum on the suction side of the pump and 275 kPa of pressure

on the discharge side? → 가압펌프

[Sol] 1 250 mm of Hg 760 mmHgp = − <
2250 133.3 N/m= − × 233,325 N/m= −

1 33,325 3.39 m
9,800

p −
= = −

γ

2 275 kPa 100 kPap = >
3

2 275 10 28.1 m
9,800

p
γ

×
= =
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5.5 The Work-Energy Equation

( )
1

2

0.15 4.8 m s
0.2

4

V π= =

2 2
1 4.8 1.16 m

2 2 9.8
V

g
∴ = =

×

( )
2

2

0.15 8.5 m s
0.15

4

V π= =

2 2
2 8.5 3.68 m

2 2 9.8
V

g
∴ = =

×

1 1 2 2Q AV A V= =

Apply Continuity Equation
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5.5 The Work-Energy Equation

Apply Work-Energy equation between ① & ②
2 2

1 1 2 2
1 22 2p T

p V p Vz E z E
g gγ γ

+ + + = + + +

3.39 1.16 0 28.1 3.68 3pE− + + + = + +

37.0 mpE∴ =

(5.7)

( ) 0.15(9,800)(37.0) 54.4 W
1,000 1,000

pQ E
k

γ
= = =Pump power (5.8b)

• The local velocity in the pump passage may be considerably larger

than the average velocity in the pipes.

→ There is no assurance that the pump will run cavitation-free.



63/95

5.6 Euler's Equations for Two-Dimensional Flow

• Two-Dimensional Flow

~ The solution of flowfield problems is much more complex than the

solution of 1D flow.

~ Partial differential equations for the motion for real fluid are usually

solved by computer-based numerical methods.

~ present an introduction to certain essentials and practical problems

dxdz

• Euler’s equations for a vertical two-dimensional flow of ideal fluid may

be derived by applying Newton's 2nd law of motion to differential

system .

F ma∑ =
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5.6 Euler's Equations for Two-Dimensional Flow

Force:  neglect shear force
x

pdF dxdz
x

∂
= −

∂

z
pdF dxdz gdxdz
z

ρ∂
= − −

∂

Acceleration for steady flow: 

u for unsteady flow
t

∂ + ∂ x
u ua u w
x z

∂ ∂
= +

∂ ∂

z
w wa u w
x z

∂ ∂
= +

∂ ∂
p u udxdz dxdz u w
x x z

ρ∂ ∂ ∂ − = + ∂ ∂ ∂ 
p w wdxdz gdxdz dxdz u w
z x z

ρ ρ∂ ∂ ∂ − − = + ∂ ∂ ∂ 

x - direction: 

z - direction: 
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5.6 Euler's Equations for Two-Dimensional Flow

Euler's equation for 2-D flow
1 p u uu w

x x zρ
∂ ∂ ∂

− = +
∂ ∂ ∂

1 p w wg u w
z x zρ

∂ ∂ ∂
− − = +

∂ ∂ ∂

(5.9a)

(5.9b)

• Equation of Continuity for 2-D flow of ideal incompressible fluid

0u w
x z

∂ ∂
+ =

∂ ∂
(4.11)

, ,p u wUnknowns:

Equations: 3

→ simultaneous solution for non-linear PDE
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5.7 Bernoulli's Equation for Two-Dimensional Flow 

Bernoulli’s equation can be derived by integrating the Euler's equations

for a uniform density flow.

(a)+(b): 

(a)

(b)

1 p u udx u w dx
x x zρ

 ∂ ∂ ∂ × − = + ×  ∂ ∂ ∂  

1 p w wdz u w g dz
z x zρ

 ∂ ∂ ∂ × − = + + ×  ∂ ∂ ∂  

1 p p u u w wdx dz u dx w dx u dz w dz gdz
x z x z x zρ

∂ ∂ ∂ ∂ ∂ ∂ − + = + + + + ∂ ∂ ∂ ∂ ∂ ∂ 

dp
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5.7 Bernoulli's Equation for Two-Dimensional Flow 

u u w wu dx u dz w dx w dz
x z x z

∂ ∂ ∂ ∂   = + + +   ∂ ∂ ∂ ∂   

w w u uu dz w dx u dz w dx gdz
x x z z

∂ ∂ ∂ ∂ + − − − + ∂ ∂ ∂ ∂ 

u du wdw

( ) ( )w uudz wdx udz wdx
x z

ξ∂ ∂ − − = − ∂ ∂ 

vorticity
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5.7 Bernoulli's Equation for Two-Dimensional Flow 

By the way,
p pdp dx dz
x z

∂ ∂
= +

∂ ∂

u udu dx dz
x z

∂ ∂
= +

∂ ∂

w wdw dx dz
x z

∂ ∂
= +

∂ ∂

w u
x z

ξ ∂ ∂
= −

∂ ∂

2( ) 2
2 2

d u u du u uu dx u dz
x z

∂ ∂
= = +

∂ ∂
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5.7 Bernoulli's Equation for Two-Dimensional Flow 

Incorporating these terms and dividing by      givesg

(c)2 21 1( ) ( )
2

dp d u w udz wdx dz
g g

ξ
γ

− = + + − +

Integrating (c) yields

2 21 1( ) ( )
2

p u w z H udz wdx
g g

ξ
γ

+ + + = − −∫ (d)

H =where constant of integration

Substituting resultant velocity, V

2 2 2V u w= +



70/95

5.7 Bernoulli's Equation for Two-Dimensional Flow 

2 1 ( )
2

p V z H udz wdx
g g

ξ
γ

+ + = − −∫

0ξ =

(5.10)

(i) For irrotational (potential) flow
2

2
p V z H

gγ
+ + =

→ Constant H is the same to all streamlines of the 2-D flowfield.

(5.11)

0ξ ≠ ( ) 0udz wdxξ − ≠∫(ii) For rotational flow (  ) : 

0w dz udz wdx
u dx

= → − =

However, along a streamline for steady flow,

(5.12)

(e)
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5.7 Bernoulli's Equation for Two-Dimensional Flow 

[Re]

For ideal incompressible fluid, for larger flow through which all streamlines 

are straight and parallel (irrotational flow)

→ Bernoulli equation can be applied to any streamline. 

Substituting (e) into (5.10) gives
2

2
p V z H

g
+ + =

γ

H→ is different for each streamline.

(5.13)

irrotational flow rotational flow
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5.8 Stream Function and Velocity Potential

• 비압축성, 비회전류의 경우 흐름함수와 속도포텐셜을 도입하여 유속

장 (u, v, w) 을 구할 수 있다.

장점: 미지수의 개수를 줄일 수 있음

단점: 방정식의 차수가 증가함

• 흐름함수:  유선의 식으로 부터 유도함

• 속도포텐셜:  순환 식으로 부터 유도함

• The concepts of the stream function (흐름함수) and the velocity

potential (속도포텐셜) can be used for developing of differential

equations for two-dimensional flow.

→ decrease the number of unknowns
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5.8 Stream Function and Velocity Potential

5.8.1 Stream function

Definition of the stream function (흐름함수) is based on the continuity

principle and the concept of the streamline.

→ provides a mathematical means of solving for two-dimensional

steady flowfields.
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5.8 Stream Function and Velocity Potential

ψ

dψ ψ+

Consider streamline A: no flow crosses it

→ the flowrate across all lines OA is the same.

→ is a constant of the streamline.

→ If can be found as a function of x and y, the streamline can be plotted.

The flowrate of the adjacent streamline B will be

The flowrates into and out of the elemental triangle are equal from

continuity concept.

ψ

ψ

d vdx udyψ = − +

( , )x yψ

(a)

Total derivative of is given as

d dx dy
x y
ψ ψψ ∂ ∂

= +
∂ ∂

(5.14)



75/95

5.8 Stream Function and Velocity Potential

Compare (a) & (5.14)

u
y
ψ∂

=
∂

v
x
ψ∂

= −
∂

(5.15a)

(5.15b)

ψ =where stream function

→ If is known u, v can be calculated.ψ

Integrate (5.14)

dx dy C
x y
ψ ψψ ∂ ∂

= + +
∂ ∂∫ ∫

vdx udy C= − + +∫ ∫
→ If u, v are known can be calculated.ψ

(b)
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5.8 Stream Function and Velocity Potential

▪ Property of stream function

1) The equation of continuity

0u v
x y

∂ ∂
+ =

∂ ∂
(4.11)

Substitute (5.15) into (4.11)

0
x y y x

ψ ψ ∂ ∂ ∂ ∂ − =  ∂ ∂ ∂ ∂  
2 2

x y y x
ψ ψ∂ ∂

=
∂ ∂ ∂ ∂



→ Flow described by a stream function always satisfies the continuity

equation for incompressible fluid.
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5.8 Stream Function and Velocity Potential

2) The equation of vorticity

v u
x y

ξ ∂ ∂
= −

∂ ∂
(3.10)

Substitute (5.15) into (3.10)

2 2

2 2x x y y x y
ψ ψ ψ ψξ

 ∂ ∂ ∂ ∂ ∂ ∂ = − − + = − −   ∂ ∂ ∂ ∂ ∂ ∂   

For irrotational flow, 0ζ =
2 2

2
2 2 0

x y
ψ ψ ψ∂ ∂

∴ + = ∇ =
∂ ∂

→ Laplace Eq.

→ The stream function of all irrotational flows must satisfy the Laplace equation. 
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( , )x yφSuppose that another function is defined as

x yV grad e e
x y
φ φφ φ

 ∂ ∂
≡ −∇ ≡ − = − + ∂ ∂ 

  

(a)

By the way,

x yV ue ve= +
  

Comparing (a) and (b) gives

(b)

u
x
φ∂

= −
∂

v
y
φ∂

= −
∂

(5.16)

velocity potential (φ = 속도포텐셜)where

(5.17)

5.8.2 Velocity Potential

5.8 Stream Function and Velocity Potential
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5.8 Stream Function and Velocity Potential

▪ Property of potential function

1) The equation of continuity

Substitute Eq. (5.16) into continuity Eq.

→ Laplace Eq.

0
x x y y

φ φ ∂ ∂ ∂ ∂ − + − =   ∂ ∂ ∂ ∂   
2 2

2 2 0
x y
φ φ∂ ∂

→ + =
∂ ∂

(5.18)

φ
→ All practical flows which conform to the continuity Eq. must satisfy the

Laplace equation in terms of .
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5.8 Stream Function and Velocity Potential

2) Vorticity Eq.

Substitute Eq. (5.16) into vorticity eq.

2 2

0
x y y x x y y x

φ φ φ φξ
 ∂ ∂ ∂ ∂ ∂ ∂ = − − − = − + =  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

→ The vorticity must be zero for the existence of a velocity potential.

→ irrotational flow = potential flow

→ Only irrotational flowfields can be characterized by a velocity potential .φ
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5.8 Stream Function and Velocity Potential

• Laplace equation

- 해가 존재하는 선형 편미분방정식임

- 미지수의 개수를 4개 (u, v, w, p) 에서 2개( , p) 로 줄일 수 있음

- 유속장은 Laplace 방정식을 이용하여 구하고, 압력, p, 는 베르누이방정식을

이용하여 구함.

φ

2 2
2

2 2 0 for incompressible fluid flow
x y
φ φφ ∂ ∂

∇ = + =
∂ ∂

2 2
2

2 2 0 for irrotationalflow
x y
ψ ψψ ∂ ∂

∇ = + =
∂ ∂



82/95

Find velocity potential φ

Find ψ → Find flow pattern

5.8 Stream Function and Velocity Potential

• Solution for potential flow problem 

Find velocity

Find kinetic energy            
Find pressure, force

Bernoulli eq.
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5.8 Stream Function and Velocity Potential

• Potential flow

- 해가 존재하는 선형 편미분방정식임

- 선형방정식의 해들이 존재하는 경우 이 들에 상수를 곱한 것도 해가 되며,

- 이들 해를 더하거나 뺀 것도 해가 됨

1 2

1 1 1 2 2

solutions : ,
,c c c

φ φ
φ φ φ→ +

2 2
2

2 2 0 for incompressible fluid flow
x y
φ φφ ∂ ∂

∇ = + =
∂ ∂
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5.8 Stream Function and Velocity Potential

1. Uniform flow

→ streamlines are all straight and parallel, and the magnitude of the 

velocity is constant

, 0U
x y

Ux C

φ φ

φ

∂ ∂
= =

∂ ∂
= +

'

, 0U
y x

Uy C

ψ ψ

ψ

∂ ∂
= =

∂ ∂

= +

Potential flows
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5.8 Stream Function and Velocity Potential

2. Source and Sink

• Fluid flowing radially outward from a line through the origin 

perpendicular to the x-y plane

• Let m be the volume rate of flow emanating from the line (per unit 

length)

(2 )

2

r

r

r v m
mv

r

π

π

=

=
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5.8 Stream Function and Velocity Potential

1, 0
2

ln
2

m
r r r

m r

φ φ
π θ

φ
π

∂ ∂
= =

∂ ∂

=

If m is positive, the flow is radially outward → source

If m is negative, the flow is radially inward → sink

1
2

2

r
mv

r r
m

ψ
θ π

ψ θ
π

∂
= =

∂

=

The streamlines are radial lines, 

and equipotential lines are concentric circles.
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5.8 Stream Function and Velocity Potential

3. Vortex 

Flow field in which the streamlines are concentric circles

In cylindrical coordinate

The tangential velocity varies 

inversely with distance from the 

origin. 

1 Kv
r r rθ

φ ψ
θ

∂ ∂
= = − =

∂ ∂

ln
K

K r
φ θ
ψ

=
= −
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6.6 Irrotational Motion

Free vortex Forced vortex
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5.8 Stream Function and Velocity Potential

2y xψ = −

0, 1, 2ψ =

V

[IP 5.14] p164

A flowfield is described by the equation .

1) Sketch streamlines .

2) Derive an expression for the velocity at any point.

3) Calculate the vorticity.

[Sol]

1) 20 0 y xψ = → = −
2 parabolay x∴ = →

21 1y xψ = → = +
22 2y xψ = → = +
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5.8 Stream Function and Velocity Potential

3) 

2) 2( ) 1∂ ∂
= = − =

∂ ∂
u y x

y y
ψ

2( ) 2v y x x
x x
ψ∂ ∂

= − = − − =
∂ ∂

2 2 2 2 2(2 ) 1 4 1V u v x x∴ = + = + = +

1(2 ) (1) 2( )v u x s
x y x y

ξ −∂ ∂ ∂ ∂
= − = − =

∂ ∂ ∂ ∂

0ξ∴ ≠ → The flowfield is rotational.
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Homework Assignment # 5

Homework Assignment # 5

Due:  1 week from today
1. (Prob. 5.6)

In a pipe  0.3 m in diameter, 0.3m3/s of water are pumped up a hill. On 

the hilltop (elevation 48), the line reduces to 0.2 m diameter. If the pump 

maintains a pressure of 690 kPa at elevation 21, calculate the pressure in 

the pipe on the hilltop.

El. 48

El. 21Pump
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Homework Assignment # 5

2. (Prob. 5.11)

If the pressure in the 0.3 m pipe of problem 4.17 is 70 kPa, what

pressures exist in the branches, assuming all pipes are in the same

horizontal plane? Water is flowing.

φ 0.3 m
φ 0.2 m

φ 0.15 m
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Homework Assignment # 5

3. (Prob. 5.24)

Water is flowing.

The flow picture is axisymmetric.

Calculate the flowrate and manometer reading.

Stagnation point

(1)

(2)
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Homework Assignment # 5

4. (Prob. 5.30)

Calculatethe pressure in the flow at A: (a) for the system shown, and (b)

for the pipe without the nozzle. For both cases, skech the EL and HGL.
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Homework Assignment # 5

5. (Prob. 5.46)

The liquid has a specific gravity of 1.60 and negligible vapor pressure. 

Calculate the flowrate for incipient cavitation in the 75 mm section, 

assuming that the tube flows full. Barometric pressure is 100 kPa.

0
100

v

atm

p
p

=

=
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Homework Assignment # 5

6. (Prob. 5.48)

Barometric pressure is 101.3 kPa. For h > 0.6 m, cavitation is observed at 

the 50 mm section. If the pipe is horizontal and flows full throughout, what 

is the vapor pressure of the water?
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Homework Assignment # 5

7. (Prob. 5.59)

Cavitation occurs in this convergent-divergent tube as shown. The right-

hand side of the manometer is connected to the cavitation zone. The 

water in the right-hand tube has all 40oC, calculate the gage reading if the 

local atmospheric pressure is 750 mm of mercury
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Homework Assignment # 5

8. (Prob. 5.89)

Calculate the two-dimensional flowrate through this frictionless sluice

gate when the depth h is 1.5 m. Also calculate the depth h for a flowrate of

3.25 m3/s∙m

(1)

(2)
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Homework Assignment # 5

9. (Prob. 5.98)

Water is flowing. Calculate the pump power for a flowrate of 28 l / s. Draw 

the EL and HGL.
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Homework Assignment # 5

10. (Prob. 5.104)

Calculate the pump power.
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Homework Assignment # 5

11. (Prob. 5.119)

The turbine extracts from the flowing water half as much energy as

remains in the jet at the nozzle exit. Calculate the power of the turbine.
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Homework Assignment # 5

12. (Prob. 5.123)

What is the maximum power the turbine can extract from the flow before

cavitation will occur at some point in the system? Barometric pressure is

102 kPa, and vapor pressure of the water is 3.5 kPa.
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Homework Assignment # 5

13. (Prob. 5.149)

Determine the stream fuctions for the flowfields of problem 3.6 and plot

the streamline ψ = 2.

14. (Prob. 5.157)

Determine the velocity potential φ for (a) the flow in problem 5.151 and

(b) the flow in problem 5.152.
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