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Objectives
- Learn how to begin to interpret fluid flows

- Introduce concept of model study for the analysis of the flow

phenomena that could not be solved by analytical (theoretical) methods

- Study laws of similitude which provide a basis for interpretation of
model results

- Study dimensional analysis to derive equations expressing a physical

relationship between quantities




o/78

O Introduction

8

-

._A_._._
=N
Kl
joll

oo

T<

Oz
&

Toll
=T

=L

A
=

xeiAof Aol RAI3AS TS =

il

Ly
o]

Kl
il

=

T
10

T
Tol

&

—r
6]

0i0

ol

Ly
o]

Kl
il

oll

(o)
=T
M

@)




6/78
8.0 Introduction

é

Why we need to model the real system?

Most real fluid flows are complex and can be solved only approximately.

Real System :
| Setofassumptions

.

Conceptual Model ------ Simplified version of real system«
Field Study Physical Modeling Mathematical Model« F ! 0 9 @ @
Informal
@ % %ﬂ => conceptual model
(Scaled and simplified [Governing equations« « (09\3 L
o =
A )
version of prototype) + Boundary (initial) conditions] 2 ? Systernatic B iy j'
" P modeﬁng

) ai., Computerized model @)/7 \

l l t P
\ C omputerizable

Analytical solution Numerical solution (model)
conceptual model

(FDM/FEM/FVM)
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g
= Three dilemmas in planning a set of physical or numerical experiments

1) Number of possible and relevant variables or physical parameters in

real system is huge and so the potential number of experiments is

beyond our resources.

2) Many real flow situations are either too large or far too small for

convenient experiment at their true size. - When testing the real thing

(prototype) is not feasible, a physical model (scaled version of the

prototype) can be constructed and the performance of the prototype

simulated in the physical model.

3) The numerical models must be calibrated and verified by use of

physical models or measurements in the prototype.
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é
* Model study
Physical models have been used for over a hundred years.

Models began to be used to study flow phenomena that could not be solved

by analytical (theoretical) methods.

« Laws of similitude (&'AFE1E])

- provide a basis for interpretation of physical and numerical model results

and crafting both physical and numerical experiments

 Dimensional analysis (X} 251 43)

- derive equations expressing a physical relationship between quantities
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g

[Example]

Civil and environmental engineering: models of hydraulic structures,
river sections, estuaries and coastal bays and seas

Mechanical engineering: models of pumps and turbine, automobiles
Naval architect: ship models

Aeronautical engineering: model test in wind tunnels

= Justification for models
1) Economics: A model, being small compared to the prototype, costs

little.

2) Practicability: In a model, environmental and flow conditions can be

rigorously controlled.
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8.1 Similitude and Physical Models
—

Similitude of flow phenomena not only occurs between a prototype and

its model but also may exist between various natural phenomena.

There are three basic types of similitude; all three must be obtained if
complete similarity is to exist between fluid phenomena.
( Geometrical similarity (7|5t&F 5 A ALA)

Kinematic similarity (2 S & % A AlA)

L Dynamic similarity (52382 &AL
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8.1 Similitude and Physical Models
—

Prototype car

v, I Lift
i force
J[""’_lr.rl F'J'I,-,n E .
Drag
force

V

v

Ju"m‘- ,I”,.;.;.
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8.1 Similitude and Physical Models
—

1) Geometrical similarity

~ Flow field and boundary geometry of model and of the prototype have

the same shape.

— The ratios between corresponding lengths in model and prototype are
the same.

[Cf] Distorted model (=2 &)

~ not geometrically similar (I, >d )

~ The flows are not similar and the models have to be calibrated and
adjusted to make them perform properly.

~ used models of rivers, harbor, estuary

~ Numerical models are usually used in their place.
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8.1 Similitude and Physical Models
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8.1 Similitude and Physical Models
—

For the characteristic lengths we have

od, LT d, =50;1 =50
e Area A :502;V0|r :503
2 2
A (S [k
A’]’l dm Im

* \VVolume

3 3
vol, (d,\ (1,
Vol d, |
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8.1 Similitude and Physical Models

é
2) Kinematic similarity

In addition to the flowfields having the same shape, the ratios of

corresponding velocities and accelerations must be the same through the flow.

— Flows with geometrically similar streamlines are kinematically similar.

V.

=3 (8.1)
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8.1 Similitude and Physical Models
—

3) Dynamic similarity
In order to maintain the geometric and kinematic similarity between

flowfields, the forces acting on corresponding fluid masses must be related

by ratios similar to those for kinematic similarity.

Consider gravity, viscous and pressure forces, and apply Newton’s 2nd law

|
|

F =P _ 2p:ﬁ3p:Mp§4p (82)
r m |:2m I:3m M é |

m—"4m

lId

'_\

Define inertia force as the product of the mass and the acceleration

—

F=M3a
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8.1 Similitude and Physical Models
—

4) Complete similarity

~ requires simultaneous satisfaction of geometric, kinematic, and dynamic
similarity.

— Kinematically similar flows must be geometrically similar.

— If the mass distributions in flows are similar, then kinematic similarity

(density ratio for the corresponding fluid mass are the same) guarantees

complete similarity from Eq. (8.2).

From Fig. 8.1, it is apparent that

|

—_

|flp+F2p+F3p=|\/|pa4p (a)

— —

|:1m + |:2m + If3m — I\/Im a>4m (b)
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8.1 Similitude and Physical Models
—

If the ratios between three of the four corresponding terms in Eqg.(a) and
Eq.(b) are the same, the ratio between the corresponding fourth terms be
the same as that the other three. Thus, one of the ratio of Eq.(8.2) is

redundant. If the first force ratio is eliminated,

Mya,; M, 4, :[i) :[i) (8.3)
F, F, F, 0 F |

Mgapzmma’m:[ij :(ij 8
F F F b F m .
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8.1 Similitude and Physical Models
—

= Forces affecting a flow field
V2
Inertia force: F =Ma:,0|‘°’(|—]=,ovzl2

Pressure force (—» Euler No.): F, = (Ap)A=A pl?
Gravity force (- Froude No.): F.=Mg=p I°g

Viscosity force (—» Reynolds No.): F, = ﬂ(d—vj A= lu(\ijﬁ = uV |
dy I
Elasticity force (-~ Cauchy No.):  F. =EA=E |°

Surface tension (-~ Weber No.):  F =gl

Here | and V are characteristic length and velocity for the system.
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8.1 Similitude and Physical Models
—

[Re] Other forces
Coriolis force of rotating system — Rossby number

Buoyant forces in stratified flow - Richardson number

Forces in an oscillating flow — Strouhal number
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8.1 Similitude and Physical Models
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8.1 Similitude and Physical Models
—

= Dynamic similarity
To obtain dynamic similarity between two flowfields when all these forces

act, all corresponding force ratios must be the same in model and

prototype.

(i) Pressure

(8.5)

[E_pl :(E_p] ) @g]p

Il
i)
IR
R




25/78

8.1 Similitude and Physical Models
—

(ii) Viscous force

3) el
R p R m H H )y
Define Reynolds number, Re =V—I

| 4

Re, =Re, - Reynolds law

(iii) Gravity
HEGRERE
Fe )y \Fs ), gl), \al),

Define Froude number, Fr =—

V
Jo1

Fr, =Fr, - Froude law
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8.1 Similitude and Physical Models
—

(iv) Elastic force

(E_) {E_j z(p\ész Z(p\ézjm (8.8)

2

Define Cauchy number, ca =2

Ca, =Ca,
[Cf] Define Mach number, Ma=+/C :Vf
E
Ma, =Ma, P

(v) Surface tension

F) AR A5 e
F ; F . o ), o )
plV?

Define Weber number, We =
We, =We,
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8.1 Similitude and Physical Models
—

Only four of these equations are independent. - One equation is redundant
according to the argument leading to Eq. (8.3) & (8.4). - If four equations are
simultaneously satisfied, then dynamic similarity will be ensured and fifth

equation will also be satisfied.

In most engineering problems (real world), some of the forces above (1) may

not act, (2) may be of negligible magnitude, or (3) may oppose other forces in

such a way that the effect of both is reduced.
— In the problem of similitude a good understanding of fluid phenomena is

necessary to determine how the problem may be simplified by the elimination

of the irrelevant, negligible, or compensating forces.
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8.1 Similitude and Physical Models

g
1. Reynolds similarity

~ used for flows in pipe, viscosity-dominant flow (22, =& =4X)

For low-speed submerged body problem, there are no surface tension

phenomena, negligible compressibility effects, and gravity does not affect
the flowfield.

— Three of four equations are not relevant to the problem.
— Dynamic similarity is obtained between model and prototype when the

Revynolds numbers (ratio of inertia to viscous forces) are the same.
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8.1 Similitude and Physical Models
—

(i) Low-speed submerged object
Reynolds similarity

(VT'j -Re,-Re,~(*l| @10

Ratio of any corresponding forces will also be the same.

HAd

Ol

Consider drag force, D=CpV?I?

Drag force
D B D
pVZ2I° ; pVZ2I° . )

A2
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8.1 Similitude and Physical Models

g
(i) Flow of incompressible fluids in pipes

Geometric similarity:
(dZ/dl)p — (dZ/dl)m
I I

d, d

p 1/m

Assume roughness pattern is similar, surface tension and elastic effect

are nonexistent.

Gravity does not affect the flow fields

Accordingly dynamic similarity results when Reynolds similarity, Eq.
(8.10) is satisfied.

Re, =Re,
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8.1 Similitude and Physical Models
—

Eq. (8.11) is satisfied automatically.

), (R ), pV® ), U pVT ),
¢ Reynolds law

@ Velocity:
Re,
Re, =Re, =1, Re, =1
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8.1 Similitude and Physical Models
—

@ Discharge: Q =VA

2
Q [d Ve [d)ve 1 v, d,
Qp dp Vp dp Vo dm Vi dp
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8.1 Similitude and Physical Models
—

@ Force:

ST

® Pressure:
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8.1 Similitude and Physical Models
—

[IP 8.1] p. 298 Water flow in a horizontal pipeline

Water flows in a 75 mm horizontal pipeline at a mean velocity of 3 m/s.
Prototype: Water 0°C p, =1.781x107 Pa-s
P, =99.8 kg/m’

1.781x10°°
V. =
P 998.8
d =75mm, V =3m/s, Ap=14kPa, | =10m

=1.78x107° m?/s

Model: Gasoline 20°C Hy, =2.9x10"Pa-s (Table A 2.1)
= 0.68x998.8 = 679.2 kg/m’®
v =4.27x107"m?/s
d. =25mm
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8.1 Similitude and Physical Models
é
[Sol] Use Reynolds similarity; Rep =Re_

1
v d 7
o _VoOy | _427x10° /(25j20_753 d =9n_0333
Cov ld, ) 178x10° \ 75 d,

p

-V, =0.753(3) =2.26 m/s

Eu =Eu

p m

2 o 2
PV APV,

14 Ap,,

[998.8x (3)?] [679.2x(2.26)%]
S Ap,, =95.4 kPa
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8.1 Similitude and Physical Models
—

2. Froude similarity

~ open channel flow, free surface flow, gravity-dominant flow.

For flow field about an object moving on the surface of a liquid such as ship
model (William Froude, 1870)
~ Compressibility and surface tension may be ignored.

~ Frictional effects are assumed to be ignored.

() ]
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8.1 Similitude and Physical Models

¢ Froude law

@ Velocity

ImVp=|m\/gp|p =\/glolm
t, LV, L\g,l, dn |,
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8.1 Similitude and Physical Models
—

@ Force
Fo (Po)(ln)
o [Pp j[ 'pj
® Pressure
)
P Lo )L
[IP 8.2] p. 301 ship model (free surface flow)
|,=120m 1 =3m V_ =56 km/h=15.56m/s D, =9 N

Find model velocity and prototype drag.




39/78

8.1 Similitude and Physical Models

[Sol] Use Froude similarity

o

L, 3 1
71,7120 40
| 3 12
Vm :Vp (g )m :56X10 ( 3 j — 246 m/S
(gl), 3600 \120

 Drag force ratio

D ( D
p VI p_ p VI ,

(pV21%), :9X(56x103/3600) (120

3

) =575.8 kN

2.46
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8.1 Similitude and Physical Models

[Re] Combined action of gravity and viscosity

For ship hulls, the contribution of wave pattern and frictional action to the

drag are the same order.

— Frictional effects cannot be ignored.

— This problem requires both Froude similarity and Reynolds similarity.

Fr,=Fr —(L] —(L] — Vo _ |Gl
SRS CTD A TP A N

Vi Vi V. oy |
Re :Rem:(_j :(_j S YV (b)
P ) - V. v |

| 4 | 4
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8.1 Similitude and Physical Models
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8.1 Similitude and Physical Models

Combine (a) and (b)

This requires

(a) A liquid of appropriate viscosity must be found for the model test.

(b) If same liquid is used, then model is as large as prototype.
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8.1 Similitude and Physical Models

For 9,=0,
| \LS | \LS
mefie] e
Vo p p
|1 1%
If —=— = V==
|10 31.6

Water: 11=1.0x10"° Pa-s— 0.32x10™ Pa-s
Hydrogen is close: 1 =0.21x10"* Pa-s

~ choose only one equation - Reynolds or Froude law

~ correction (correcting for scale effect) is necessary.
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8.1 Similitude and Physical Models
—

[I.P.8.3] p. 301 Model of hydraulic overflow structure — spillway model

Q, =600 m°/s
L 1
"1, 15

p

[Sol] Since gravity is dominant, use Froude similarity.

0.5 2.5
& — (g—mJ (Iﬂj Vi 72s, , EL
Q, \g,) U, e :

| 2.5 1 ae

Qm = Qp [lﬂ] — 600 (—) 122‘g‘tkN/m —>
p 15 - L,
=0.69 m®/s =690 I/s

"2
19.6 kN/m
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8.1 Similitude and Physical Models
—

3. Mach similarity

Similitude in compressible fluid flow

~ gas, air
~ Gravity and surface tension are ignored.

~ Combined action of resistance and elasticity (compressibility)

V vI
Re, =Re, — p= m (a)

P

2]
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8.1 Similitude and Physical Models
—

- : /E
where a = sonic velocity = [—
o,

VAP (b)




47/78

8.1 Similitude and Physical Models

* Velocity
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8.1 Similitude and Physical Models

g

4. Euler Similarity

~ Modeling of prototype cavitation

~ For cavitation problem,

vapor pressure must be included.

[Ex.1] cavitating hydrofoil model in a water tunnel

Here gravity, compressibility, and surface tension are neglected.

Dynamic similitude needs Reynolds similarity and Euler similarity.
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8.1 Similitude and Physical Models

é

o)A

| %4 p V Jm
oo PP} (PP
p m ,OV2 p pVZ i

o = pl"o\_/fv = cavitation number

Po = absolute pressure

P, = vapor pressure

~ Virtually impossible to satisfy both equation.

~ Cavitation number must be the same in model and prototype.
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8.2 Dimensional Analysis
EEEE——————————

Dimensional analysis
~ mathematics of the dimensions of quantities
~ is closely related to laws of similitude

~ based on Fourier’s principle of dimensional homogeneity (1882)

o AH SAtEL HHE|
An equation expressing a physical relationship between quantities must

be dimensionally homogeneous.

— The dimensions of each side of equation must be the same.
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8.2 Dimensional Analysis

g

~ cannot produce analytical solutions to physical problems.

~ powerful tool in formulating problems which defy analytical solution and

must be solved experimentally.

~ It points the way toward a maximum of information from a minimum of

experiment by the formation of dimensionless groups, some of which are

identical with the force ratios developed with the laws of similitude.

. SEIHAS MHSE WAE 28 F0IM PAH HER BeE A
. HBEXHOR PAY SETO FLEAES Hof LI B
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8.2 Dimensional Analysis

é
« Basic dimension (Z/E£xt&)

~ directly relevant to fluid mechanics

~ independent fundamental dimensions
length, L
mass, M orforce, F
time, t

thermodynamic temperature T

Newton’s 2nd law
M L

F=Ma=

t2
~ There are only three independent fundamental dimensions , M, L, &
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8.2 Dimensional Analysis

(1) Rayleigh method
~ early development of a dimensional analysis

Suppose that power, P, derived from hydraulic turbine is dependent on
Q - ET

Suppose that the relation between these four variables is unknown but it

is known that these are the only variables involved in the problem.

P=f(Q.,r,E) (a)

Q = flow rate

¥ = specific weight of the fluid

E. = unit mechanical energy by unit weight of fluid (Fluid system — turbine)
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8.2 Dimensional Analysis

é

Principle of dimensional homogeneity

— Quantities involved cannot be added or subtracted since their dimensions

are different.

Eq. (a) should be a combination of products of power of the quantities.

P=C Q®/"ES (b)

where C = dimensionless constant ~ cannot be obtained by

dimensional methods

a, b, C = unknown exponents
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8.2 Dimensional Analysis
EEEE——————————

Eq. (b) can be written dimensionally as

(Dimensions of P) = (Dimensions of Q)" ( Dimensions of y )’ (Dimensions of E; )’

ML (Y MLERY c
t (tMBJ(L) ()

Using the principle of dimensional homogeneity, the exponent of each of

the fundamental dimensions is the same on each side of the equation.

M: 1=Db
L: 2=3a-2b+cC
t: —3=—a-2b
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8.2 Dimensional Analysis
EEEE——————————

Solving for a, b, and cyields

a=1 b=1 c=1

Resubstituting these values Eq. (b) gives
P=CQyE, (d)

C =dimensionless constant that can be obtained from

@ a physical analysis of the problem

@ an experimental measurement of P, Q, y, E;
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8.2 Dimensional Analysis

g

(2) Buckingham theorem
~ generalized method to find useful dimensionless groups of variables to

describe process (Buckingham, 1915)

= Buckingham'’s IT - Theorem

* Forfluid problems, n variables are functions of each other.

e If the number of independent basic dimensions is m.(CH7H= m=3)

 Then, application of dimensional analysis allows expression of the

functional relationship in terms of (n-m) distinct dimensionless groups.
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8.2 Dimensional Analysis

[Ex] Drag on a ship
f(D, p, 1,9,1,V)=0

P QIR RAel IRMEE,
A FEPPMT
ME: pu

9|. 4
ol J.(I.)L
- JOI'

1% 19 1o
22 e o

M0 N o |
Ofn o 2 |
°ro4o
AA
<\I\
n X
o =

J J

n==06
m = 3 = repeating variables; M(p), L(1), {(V)

Other variables D, u, g appear only in the unique group describing the

ratio of inertia force to force related to the variable.
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8.2 Dimensional Analysis

g
* Procedure:

1) Find the largest number of variables which do not form a dimensionless
group.
For drag problem, number of independent dimensionsis m= 3, V, /, p

cannot be formed into a IT group.

2) Determine the number of IT groups to be formed: n-m=3

3) Combine sequentially the variables that cannot be formed into a

dimensionless group, with each of the remaining variables to form the

requisite IT - groups.
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8.2 Dimensional Analysis

é
I1, = f,(D, p,V,1)
HZ = fz(:u’ ,O,V, I)
I1,=f,(g, p,V, 1)

4) Determine the detailed form of the dimensionless groups using principle

of dimensional homogeneity.

) I,
leDaprcld (a)

Since I1,is dimensionless, writing Eq. (a) dimensionally

w4 (8] 4o
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8.2 Dimensional Analysis
EEEE——————————

The following equations in the exponents of the dimensions are obtained
M:O0=a+b
L:0=a-3b+c+d

t: 0=-2a-c

Solving these equations in terms of a gives

b=-a,c=-2a, d =-2a

a _—a\/-2ay-2a D ’
[T, =D%p 2V % :(plzvz)
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8.2 Dimensional Analysis
EEEE——————————

The exponent may be taken as any convenient number other than zero.
If a=1, then

HF% (©)
Yo,
i) 11,

H2 :Iuapbvcld

a b c
e (4[240
Lt L t
M:0=a+b

L:0=-a-3b+c+d
t:0=-a-c
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8.2 Dimensional Analysis

#

Solving these equations in terms of a gives

b=-a,c=-a, d=-a

H a —aV al Il’l
7 (prj

If a=-1, then

II,=——=Re (d)
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8.2 Dimensional Analysis
EEEE——————————

i) 11,
I1,=9g°%°p°V"
e~ () (5]
t* L° )\t
M:0=c
L:0=a+b-3c+d
t:0=-2a-d

Solving these equations in terms of a gives

b=a, c=0, d=-2a

[, = g®loy 2 = (3_') (e)
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8.2 Dimensional Analysis

If a =-1/2, then
I, = v Fr
\/a Reynolds
Similarity
Froude
Combining these three equations gives Similarity

f’( IE)VZ’ Re, Fr):o
o,

5 BRI BHE B0l B
7= 1"(Re, Fr) - o] £ Alglg S3iM C,8 ZHtod
pI°V 2ZoAAlS S8
- Ay A MY 2UE FAHER
= ghabatol S8
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8.2 Dimensional Analysis

g

Dimensional analysis

~ no clue to the functional relationship among D/pl?V?, Re and Fr

~ arrange the numerous original variables into a relation between a

smaller number of dimensionless groups of variables.

~ indicate how test results should be processed for concise presentation

[Problem 8.48] p. 320 Head loss in a pipe flow

Select all variable which affect the flow in pipe
 Fluid property: P H

« Geometric dimensions of system: d,l,b,h

e Forces and kinematics: Ap,g,7,V
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8.2 Dimensional Analysis

g
f(h., o p,d,1,V,g)=0

Repeating variables: 1, p,V e
.y
-

_f( L’I’p1

IT, = f,(d,1, p,V

I,

I,

)
)
3(/1’ » O )
)

4(9, l, yor V

(i) I, =h1°p°V°

C d
(M L
MOL°t° = L Lb(ﬁj (Tj

M :0=c
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8.2 Dimensional Analysis

#
M:0=c

L:0=a+b-3c+d
t:0=-d
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8.2 Dimensional Analysis

#
(“) H2 _ d albpcvd

C d
ol M L
MOLt% = L Lb(Fj (Tj

M :0=c @D
L:0=a+b-3c+d ®
t:0=-d ©

@ :0=a+b b=-a
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8.2 Dimensional Analysis
EEEE——————————

(i) TI,=u1°p°V°

wve=(3) w(i)(3)

LT L° t

M:0=a+c D —>c=d —> c=-a
L:0=-a+b-3c+d ®
t:0=-a-d—>d=-a (3

@ d+b-3d+d=0 b=d — b=-a

H3 :Iual—ap—av—a

If a=-1 ;. II,=—"—=Re
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8.2 Dimensional Analysis
EEEE——————————

(iv) II1,=9g°%°p°V°

a c d
wece{g) e (3)
t L t

M:0=c @
L:0=a+b-3c+d @)
t:0=-2a-d ©
@ d=-2a

@ 0=a+b-0-2a — b=a
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8.2 Dimensional Analysis

If a=—E H4=—V =Fr
2 gl
» Darcy-Weibach equation
f(l,l—,Re, Frij g
| h 1Y | V2
h_ f”(Re)(—j (Frp=f1Y
h | I d d gl
L f’(—,Re, Fr) V?
I d h =f——
- d2g
f = fn(Re)=friction factor




73/78

Homework Assignment # 8
EEEE——————————

Homework Assignment # 8

Due: 1 week from today

1. (Prob. 8.6)

A large Venturi meter (section 14.12) for air flow measurement has

d,=1.5mandd, =09 m. Itis to be calibrated using a 1:12 model with

water the flowing fluid. When 0.07 m3/s pass through the model, the

drop in pressure from section 1 to section 2 is 172 kPa. Calculate the

corresponding flowrate and pressure drop in the prototype. Use
densities and viscosities for air and water given in Appendix 2

(altitude zero) Assume that these properties do not change. Assume

the water temperature 15°C.
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Homework Assignment # 8
é
2. (Prob. 8.14)

A ship model 1 m long (with negligible skin friction) is tested in a towing

basin at a speed of 0.6 m/s. To what ship velocity does this correspond if

the ship is 60 m long? A force of 4.45 N is required to tow the model; what

propulsive force does this represent in the prototype?
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Homework Assignment # 8
EEEE——————————

3. (Prob. 8.20)

An overflow structure 480 m long is designed to pass a flood flow of

3,400 m3/s. A 1:20 model of the cross section of the structure is built in a

laboratory channel 0.3 m wide. Calculate the required laboratory flowrate if
the actions of viscosity and surface tension may be neglected. When the
model is tested at this flowrate, the pressure at a point on the model is

observed to be 50mm of mercury vacuum; how should this be interpreted

for the prototype?
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4. (Prob. 8.24)

A hydraulic jump from 0.6 m to 1.5 m is to be modeled in a laboratory

channel at a scale of 1 :10. What (two-dimensional) flowrate should be

used in the laboratory channel? What are the Froude numbers upstream

and downstream from the jump on model and prototype?

. l
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5. (Prob. 8.30)

A cavitation zone is expected on an overflow structure when the flowrate

is 140 m3/s, atmospheric pressure 101.3 kPa, and water temperature 5°C.
The cavitation is to be reproduced on a 1:20 model of the structure
operating in a vacuum tank with water at 50°C. Disregarding frictional and
surface-tension effects, determine the flowrate and absolute pressure (kPa)

to be used in the tank for dynamic similarity.

6. (Prob. 8.56)

For a hydraulic jump (Fig. 10.23), derive by dimensional analysis an

expression for vy, if y, depends only on q, y;, 0,, 4 and p. Compare the

resulting expression with Eq. 10.24.
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7. (Prob. 8.59)

The force, F, exerted by the flowing liquid on this two-dimensional sluice

gate is to be studied by dimensional analysis. Assuming the flow

frictionless (ideal fluid), derive an expression for this force in terms of the

other variables relevant to the problem.
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