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In classical physics, particles and waves are distinct identities.  Particles are characterized by 

the position and momentum (velocity) and develop trajectories in the spacetime.  On the other 

hand, the waves are described by phase and amplitude, and display unique phenomena such as 

interference, diffraction, and superposition.  Let’s first review the basic quantities that define a 

wave.  We take the example of sinusoidal waves such as sin(kx−ωt) or ei(kx−ωt) .

Wave-Particle Duality

Phase ϕ = kx−ωt

Wavenumber k = 2π/λ (or 1/λ) 

The phase at certain x varies in time as sin(ωt). The period T in time is 2π/ω.  The frequency f is 

ω/ 2π (in Hz) and ω is the angular frequency.

The speed at which the position with a certain phase moves is called the phase velocity (vp).  It 

is given as follows:
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It was Planck (1900) who first noticed the wave-particle 

duality.  He discovered from the research on blackbody 

radiation that the energy of light waves with angular 

frequency ω (=2πf) is quantized by ħω (= hf or hν), where ħ is 

the Planck constant (h = 4.1357×10−15 eV·s) divided by 2π. 

Each quantized light is called the photon.  Therefore, light is a 

stream of photons.  In fact, any waves oscillating with ω have 

discrete energy levels separated by ħω.  Einstein used the 

Planck’s postulate to explain the photoelectric effect, for 

which he received the Nobel prize. 

One of the greatest finding in modern physics is the wave-particle duality:  particles show 

wave properties such as interference while the classical waves sometimes have granularity 

(discreteness) of particles with certain momentum.

Light as 

electromagnetic 

waves

Light as a 

stream of 

photons
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The emission of electrons

from a metal plate caused by

light quanta – photons.

https://en.wikipedia.org/wiki/File:Photoelectric_effect_in_a_solid_-_diagram.svg
https://en.wikipedia.org/wiki/File:Photoelectric_effect_in_a_solid_-_diagram.svg


The wave nature of particles were first hypothesized by de Broglie (1924) who claimed that every 

matter has a wave-like nature with the wavelength is given by the de Broglie relation.

 

l =
h

p
=

h

mu

This means that electrons can exhibit diffraction or interference phenomena like waves.  It was 

proved experimentally a few years later independently by Thomson and Davisson-Germer.  They 

observed the predicted interference patterns by passing electrons through crystalline materials. 
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In a simplified version, electrons also show interreference pattern in double-slit experiment. 

The wave-particle duality for particle leads to the probabilistic nature of particles.
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Transmission Electron Microscopy (TEM)
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• 50 g golf ball at the speed of 20 ms−1:  λ = 6.63×10 − 34 m.  This is too short to produce 

any meaningful observation.

• Proton at 2200 ms −1:  λ = 0.18 nm.  This may produce diffraction from crystal but too 

small penetration depth.  Neutron can produce diffraction patterns as it interacts with 

nucleus rather than electron clouds.

• Electrons at 100 eV:  λ = 0.123 nm

Therefore, the wave nature of matter is observable only when the matter is very light like 

electron or proton (hydrogen atom).

de Broglie wavelength in various situations: 
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Schrödinger Equation

ψ(x,y,z,t) always satisfy the following time-dependent Schrödinger equation which is a kind of 

differential equation.
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Normalization condition

If particles behave like waves, what kind of equation they satisfy? - the Schrödinger equation. The

matter can be any known objects such as proton, neutron, electron or molecules, or even human.

According to Schrödinger (1926), the particle is described by the (matter) wave function that is a

complex function of space and time ψ(x,y,z,t). The first meaning of the wave function is that

|ψ(x,y,z,t)|2 is the probability density of finding the particle at (x,y,z) and at time t. This means that

the following normalization condition should be satisfied at any time.

where m is the mass of the particle.

This is similar to the diffusion 

equation except that time is 

imagninary.
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There are mathematical conditions that should be satisfied by the wave functions:  single-valued, 

function and first derivatives are continuous 

(At the point where V diverges, the first derivative can be discontinuous.)

Superposition principle:  Since the Schrodinger equation is linear, if ψ1 and ψ2 are solutions to 

the Schrodinger equation, ψ1+ ψ2 is also a valid solution.

9
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This is called time-independent Schrödinger equation or simply Schrödinger equation.  Note that this 

is mathematically an eigenvalue problem. With proper boundary conditions, the solution to this 

equation produces a set of energy eigenvalues and corresponding energy eigenstates. 

E: total energy = ħω

(similar to photon)

A special solution is the steady state or constant-energy state for which  

In this special case, the time-dependent Schrödinger equation becomes time-independent as follows:

For 1D,
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Β. Example: Free Particle (1D)

   

d 2

dx2
y (x) +

2m
2

Ey (x) = 0®
d 2

dx2
y (x) + k 2y (x) = 0   (E =

2k 2

2m
)

When there is no potential over the entire space (V = 0), the particle can move freely.  Classically, the 

particle will move with a constant velocity.  What is the matter wave corresponding to this state?  The 

Schrodinger equation becomes:
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E = p2 / 2m



   y (x,t) =y (x)e
- i

E
t

= Aei(kx-wt )

The full wave function ψ(x,t) is given by

Wavelength λ = 2π/k.  According to the de Broglie relation, λ = h/p.  Therefore, p = ħk.  This is 

consistent with 

In addition, 

Such relation between frequency and wavenumber (ω=ω(k)) is called the dispersion relation . 

For the light or photons, ω = ck.
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Free Particle (1D)______

_____

Dispersion Relation:  electron, phonon, photon, etc.

ex. Free electron model
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The electron described by Aei(kx−ωt) is dispersed over the whole space.  If there is one electron 

moving in free space, such a form of wave function may not be appropriate.  Rather, a “wave packet” 

with the spread of ~10 nm would best represent such an electron.  The figure in the below shows the 

wave packet with the Gaussian envelope.  This state is fairly localized and has a relatively well 

defined wavelength although it is not the exact energy eigenstate. 

You can observe that the envelope moves with a velocity that is faster than the phase velocity. 

The speed of such a localized wave packet is the group velocity and it is given by the 

following formula.

This is exactly the same as the classical velocity!  (In the case of photon, ω = ck and so vp = vg = c)

Suppose that the initial wave function is the Gaussian 

wave packet:

The time evolution of the wave function can be 

obtained by solving the time-dependent Schrödinger 

equation (numerically or analytically). It is 

visualized by MATLAB file : wavepacket.m 

vg

vp

The group velocity is the speed at which energy and charge actually travels through the medium.
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‘k’ defines a unique energy state of the particle in the free space.  Such variables that uniquely 

specify or label the quantum state are called the quantum numbers.

Since sin(kx) = (eikx + e-ikx)/2, the state is the combination of right- and left-moving particles. 

It was mentioned that Aei(kx−ωt) represents a stream of particles.  The flux (number of 

particles passing through a given position per unit time) can be calculated as follows:

k
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C. Example: Infinite Potential Well (1D)

Q: What is the classical state?

Suppose that a particle is confined within a certain space and cannot escape.  The simplest model 

describing such a case is the infinite potential well.

For x > L or x < 0, ψ(x) = 0 because particle cannot exist in this region (V is infinite).  For 0 < x < L, 

the Schrodinger equation becomes

L
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y (x) = Asin kx + Bcoskx  (or Aeikx + Be- ikx )

Boundary condition y (0) =y (L) = 0

y (0) = 0® B = 0

y (a) = 0® sin kL = 0® kL = np  (n = 1,2,..)

y
n
(x) = Asin

np

L
x

(from continuity of ψ(x))

Since n (=1,2,3…) specifies the quantum state, it corresponds to the quantum number in the infinite 

well.
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Bound state (localized state)

Ground state (n=1)

1st excited state (n=2)

2nd excited state (n=3)

L L

L

(Note that ψ′(x) is discontinuous at x = 0 and 

L because V is infinite at those points)
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Remarks on the solution of infinite potential well.

i) Energy is quantized.  (Note that it is only kinetic energy.)  Classically, energy can be any 

non-negative real number.  Let’s calculate the energy interval (Δε) between 1st and 2nd states. 

First, a 1-kg object in a macroscopic system with L = 1 m, Δε ~ 10−67 J ~ 10−48 eV.  This is too 

small energy to be observed. Therefore, the energy is effectively continuous.  

Next, if the electron is confined within an atom, L is about 2 Å .  In this case, Δε ~ 10 eV 

which is substantial.  Therefore, quantum effects (energy quantization) are expected for 

electrons bound within the scale of atoms or molecules.  This is also known as the quantum 

confinement effect in nanoscience.  (The energy was not quantized in the free particle because 

the electron was not confined there.)  For this reason, the nanoscale potential well is often 

called the “quantum well”.

ii) “Going faster” in classical mechanics → increase n in quantum mechanics.  Wavefunction is 

more oscillatory with shorter wave lengths as the quantum number goes up.  Therefore, shorter 

wave length means higher kinetic energy.  Mathematically, this is because the kinetic energy 

corresponds to the second derivative of the wave functions.

iii) Probability is not uniform but effectively uniform at large n. (Q: what is the probability in 

the classical mechanics?)

iv) There is a minimum energy (zero-point energy): see uncertainty relation.

v) Parity or symmetry: even parity for n = 1,3,5,.. & odd parity for n = 2,4,6,..

19
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Magnitude of Energy = Reference Point?
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D. Example: Harmonic Oscillator (1D)

The classical harmonic oscillator is simply a mass attached to a spring that follows the 

Hooke’s law.  That is to say, F = −kx, where x = 0 is the equilibrium position.  Let’s first 

review on the classical mechanics on the harmonic oscillator.
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Ex) H2 molecule

x0 corresponds to x = 0 in the left figure.
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The Schrödinger equation for the harmonic oscillator is as follows:

-
2

2m

d 2y (x)

dx2
+

1

2
kx2y (x) = Ey (x)

The boundary condition is that ψ(±∞)=0. The solution to this problem requires the series 

expansion method. Please refer to the standard QM textbook for the solving procedure. 

Here we just study solutions. 

Hn: Hermite polynomial

0

1
( 0,1,2,3,..)

2
nE n n

 
= + = 
 

    

This is reminiscent of the photon energy.  Recall that 

ω0 here is the characteristic angular frequency of the 

spring while ω = Ε/ħ in the time part of an energy 

eigenstate varies with energy. 

The ground state energy is not zero but ħω0/2. This 

is called the zero point energy.  The reason is the 

same as the infinite quantum well.
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Shorter wavelength 

→ higher speed

Particle exists beyond turning points 

due to the tunneling effect.
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2287 N/m
4.43 10  rad/s
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0 4.67 10  J 0.29 eVE  − = =  =

Or in terms of frequency, f = 7.05×1013 Hz.  Note that the reduced mass (half of proton mass) is 

used. Therefore, the energy spacing of this harmonic oscillation is given by

This is a significant energy.  In terms of thermal energy, it corresponds to ~3000 K.  This 

means that at room temperatures, there is practically no vibration at all.  (See Thermodynamics 

for the partition function of harmonic oscillators.)  That is to say, vibrational modes are 

hardly activated and almost frozen!  This also means that the vibrational motion does not 

contribute to the heat capacity.  The vibration can be excited by photon (infrared). 

It is only when the frequency is very low that the vibration is thermally activated.  The 

acoustic phonon is such oscillations.

The energy quantization of vibration is perhaps the only quantum effect we see for atoms.  In 

other discussions, atoms can be well described by the classical mechanics.  (The exception is 

hydrogen atom.  In some situations, the quantum effect of hydrogen atom is important.  Ex. 

tunneling) 25

_________

kB = 8.617 × 10-5 eV/K

h = 4.1357×10−15 eV·s
n ≈ 1013/s in phonon

optical phonon
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Acoustic and Optical Phonons in a Crystal

Phonon Wavevector k

n ≈ 1013/s

0
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( 0,1,2,3,..)
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The hydrogen atom is the most important problem in quantum mechanics. It is the only system

that we can solve exactly among any real materials. From the perfect agreement between theory

and spectroscopic data on the hydrogen atom, we are sure that the Schrödinger equation and the

way we interpret its solution is correct.

In the hydrogen atom, there is one proton and one electron. We slightly generalized this

problem and assume that there is a nucleus with the charge of +Ze and only one electron is orbiting

around it. This is called the hydrogen-like atom model.

It is convenient to adopt the spherical coordinate with the nucleus at the origin. There are three

variables identifying a position: radial distance r (r ≥ 0), polar angle θ (0 ≤ θ ≤π), azimuthal angle

ϕ (0 ≤ ϕ < 2π).

Schrödinger equation in spherical coordinate

E. Example: Hydrogen Atom

27



Laplacian in spherical coordinate
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We will not solve this Schrödinger equation (please refer to any standard QM textbook).  Instead, 

we will learn about the main features of the solution:

i) Quantum numbers. 

ii) Energy eigenvalues.

iii) Eigenstates. 

(me: electron mass)
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Quantum Numbers

0

0

−1 0 1

0

−1 0 1

−1 0 1 2−2

n=1

(K shell)

n=2

(L shell)

n=3

(M shell)

ℓ=0 ℓ=1

ℓ=0

ℓ=2

ℓ=1

ℓ=0
subshells

(or ↑, ↓)

0: s 1: p 2: d 3: f ...

(                        )

(n, ℓ, mℓ, ms)
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This means that there are many quantum states with the 

same energy.  This is called the degeneracy.

Energy is quantized, and depends only on the principal 

quantum number n.

Energy Eigenvalues
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• Balmer series (nm)

Theory: 656, 486, 434, and 410

Experiment: 

410  434        486                                             656 nm 

From the perfect agreement between theory and experiment on this 

hydrogen atom, with the size of only ~1 Å , we feel confident that the 

Schrödinger’s theory is correct.

Electrons can absorb or emit a photon

and make a transition into a new 

quantum state.

31
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Eigenstates for the hydrogen atom is a product between radial and angular parts:

Number of nodes = n − ℓ − 1.  Higher number of nodes 

→ more oscillations along r → more kinetic energy in 

the radial direction

Increasing Z → more localized

Let’s first examine the radial part. 

Eigenstates

32

Principal quantum number

Orbital (angular momentum)

quantum number

Magnetic quantum number

__________________



• Increasing n pushes the 

distribution outward.

• Electron is more localized for 

higher ℓ values for the same n.
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ex.  Co27 = [Ar]3d74s2



Second, let’s look at the angular part that is simply spherical harmonics. Spherical harmonics 

is “Fourier series” in the angular space

Animated image of real part of spherical harmonics. Bright/dark indicates the sign.
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Associated Legendre polynomial
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(a) The electron has an orbital angular momentum, which has a quantized component L

along an external Magnetic field Bexternal.

(b) The orbital angular momentum vector L rotates about the z axis. Its component Lz is 

quantized; Therefore, the L orientation, which is the angle θ, is also quantized. L

traces out a cone. 

(c) According to quantum mechanics, only certain orientations for L are allowed, as 
determined by  and m

35
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When an electron in the hydrogen-like atom absorbs or emits a photon by changing its quantum 

state, the transition should satisfy the Selection Rules of Δℓ = ±1 and Δm = 0, ±1.  This is 

because photon itself has an angular momentum with the magnitude of ħ. The figure 

below shows the possible transition for emission of one photon.
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Another representation of p and d orbtials
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Electron Spin

38
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___________
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Magnetic Dipole Moment of Electron

Likewise, the spinning electron can be imagined to be 

equivalent to a current loop. This current loop behaves 

like a bar magnet, just as in the orbital case. This 

produces the spin magnetic moment (μspin). 

The orbiting electron is equivalent to a current loop 

that behaves like a bar magnet. The resulting 

magnetic moment is called the orbital magnetic 

moment (μorbital) is given by

orbital
2 e

e

m
= −μ L

spin

e

e

m
= −μ S

The total magnetic moment is

tot orbital spin ( 2 )
2 e

e

m
= + = − +μ μ μ L S

We will come back to this formula when discussing on the magnetic properties. 
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F. Multielectron Atoms and the Periodic Table

Based on the results of hydrogen-like atom, we can understand other atoms as well. 

Starting points are as follows: 

• Only one electron can occupy each quantum state: Pauli exclusion principle 
• Since the inner electrons screen the nuclear charge, the effective nucleus charge is larger 

as electrons approach the nucleus.

• For a given n, energy is lower for lower ℓ orbits because they are more elliptical.

Rule of thumb: subshell ordering follows n + ℓ. If this number is 

the same, the order follows n.
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As the subshells are filled up, the inner subshells tend to be ordered 

mainly with respect to n.  This accounts for the apparent anomaly from 

V (Z = 23: [Ar]3d34s2) to Cr (Z = 24: [Ar]3d54s1).

Z
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Valence 

electrons

Core 

electrons

Valence electrons are high in energy and actively involved in the chemical bonding.  

In contrast, core electrons are close to the nucleus and stabilized in energy such that it is 

chemically inert.
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• He: the 1s electrons are too tightly bound with large energy so it does not engage in 

chemical reactions. → Noble gas. 1s shell in He is closed. 

• Li: high energy electron is easily lost.

• Be: 2s subshell is filled. However, since its energy is relatively high, it is still chemically 

active.

• B, C, N: electrons in 2p subshell favors high-spin configuration : Hund’s rule (principle of 

maximum spin multiplicity)– main origin is the reduction in screening of nuclear charges 

by occupying different orbitals + exchange effects

• O, F, Ne: electron in the downward directions are occupied. 

• B-F: 2p subshell is partially occupied and therefore chemically active

• B-N: 2s subshell, albeit filled up, is chemically active → s-p hybridization 

• O, F: strongly attracts electrons (O2-, F-) → high electron affinity or electronegativity

• Ionic bonding is formed between Li and F

• Ne is inert or noble gas because closed shell is chemically inert – due to energy and wave 

function range.

• Chemical behavior of Na and Li (Mg and Be) are similar. (Sizes are bigger.)
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+antisymmetry condition
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G. Example: Tunneling

Classically, a particle cannot move beyond the turning point.  Quantum mechanically, the 

particle can slightly diffuse through the turning point due to the wave nature, which is called the 

tunneling phenomena.  This can be studied using a square barrier with height of V0 and particles 

incident from the left with E (kinetic energy of particles incident from left) is smaller than V0..

Tunneling

Classically, all the particles are reflected at x = 0 because E < V0. In region I & III, potential 

is zero while it is V0 in the region II.  The Schrödinger equation in each region is as follows: 

In region II, the wave function is a linear combination of exponentially growing and decaying 

functions.  Usually, B2 is much larger than B1, and so the wave function decays as exp(−αx).  

Here 1/α represents the penetration depth of the tunneling particle.
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a = absorption coefficient

___



The boundary conditions are ψ and ψ′ are continuous at x = 0 and x = a.  These are only four equations 

so application of the boundary condition gives A2, B1, B2, and C1 relative to A1.  (A1 is undetermined 

because it represents the incident flux.)  The transmission coefficient (probability) is the ratio between 

the incident and transmitted fluxes.

Usually, the penetration depth is very short, so a >> 1/α or αa >> 1. 

Since the exponential part is very small, T is essentially equal to exp(−2αa).  This expression 

implies that the transmission probability is highly sensitive many parameters.  It increases 

when mass, a, or (V0−E) becomes smaller. 

Reflection coefficient:

   

R =
j
reflected

j
incident

=
A

2

2 k

m

A
1

2 k

m

=
A

2

2

A
1

2
= 1- T
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A + R + T = 100%

A: absorptance

R: diffused reflectance

T: transmittance



Examples of Quantum Tunneling

i) Electron spill-over in finite quantum well

V0

E < V0

Exponentially decaying tails

In solid-state, electrons feel the band-gap region as the classically forbidden area with certain energy 

barrier of V0.

AlAs/GaAs superlattice

Note that as the energy goes up, the penetration depth increases because (V0−E) is 

smaller.

For E > V0, unbound state will appear and energy levels are continuous (think 

about free particles).
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Conduction Band

Valence Band



ii) Scanning tunneling microscope (STM)
STM tip (tungsten)

Low 

current

High 

current

Classically, electrons are confined in the material with certain work functions.  Therefore, 

the vacuum space between the tip and the sample is the classically forbidden region.  Under the 

external bias, the barrier height is effectively reduced and a small amount of electrons can 

tunnel to the tip from the material surface, producing weak electric currents.  Since the tunneling 

probability is exponentially sensitive to the tunneling distance, and so the current is high or low 

depending on whether the tip is on top of an atom or between atoms. 

Tunneling 

distance
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Perturbation (electric field): as small as possible

Tip probe



Graphene

Pt(111) surface

STM detects “electron cloud” 

rather than atom itself.
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Ball-and-Stick Model

Hard-Sphere Model

sp2 bond

Experiment

Experiment



iii) Leakage current in nanoscale transistor

The transistor is a critical component in semiconductor devices.  The size of the transistor 

constantly scales down.  At the same time, the thickness of gate oxide - an insulator separating 

the gate electrode and channel layer - also becomes thinner.  When the thickness of the oxide is

only a few nanometers, the tunneling current through the gate oxide becomes sizeable, which 

increases power consumption.  In order to meet this problem, the industry (pioneered by Intel) 

changed the material for the gate oxide from SiO2 to HfO2 that has high dielectric constant and so 

can increase the thickness while maintaining the capacitance. 
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H. Mathematical foundation of quantum mechanics

State Observable Measurement

Wave function Operator Statistical interpretation

• Examples of operator:
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i) Each operator has its own set of eigenvalues {qn} and eigenstates {φn} such that 

Q̂jn = qnjn

Ex) Momentum eigenstates

Ex) The time-independent Schrödinger equation is the eigenvalue problem of the Hamiltonian. 

Therefore, {ψn} in the infinite potential well corresponds to eigenstates of Hamiltonian.

Mathematical property of operators

Mathematically, any operator corresponding to a physical observable is Hermitian and its 

eigenvalues are always real numbers. The collection of eigenvalues {qn} is called the spectrum. 

There are discrete spectrum and continuous spectrum. For example, momentum of the free particle is 

a continuous spectrum while the infinite well and harmonic oscillator problems yield discrete energy 

spectra. In the case of the finite quantum well, there are both discrete (E < V0) and continuous (E > 

V0) spectra. When eigenstates are bound (free) or localized (extended), they constitute a discrete 

(continuous) spectra.

The eigenvalues are the only values that are observed when Q is measured. The eigenstate φn

represents a state with the definite value of qn for the observable Q.
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iii) Any wave function can be represented as a linear combination of eigenstates (completeness). 

Mathematically, eigenstates can expand any function in the Hilbert space.

y (x) = anjn

n

å      an = jn

*(x)y (x)dx
-¥

¥

ò

ii) Eigenstates are orthonormal to each other

jn

*(x)jm(x)dx
-¥

¥

ò = dn,m

Ex) Eigenstates in infinite quantum well

2

L
sin

np x

L
sin

mp x

L
dx

0

L

ò = dn,m

(δn,m: Kronecker delta)

y *yò = a
n

*j
n

*a
m
j

mò
m

å
n

å = a
n

*a
m

j
n

*j
mò

m

å
n

å = a
n

2

n

å = 1

Cf. For continuous spectra, Dirac orthonormality holds: j p

* (x)jq(x)dx
-¥

¥

ò = d (p - q)
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Ex) In the infinite potential, a wave function is as follows:

0 L

y (x) =

4

L
sin

2p x

L
0 < x <

L

2

0 otherwise

ì

í
ï

î
ï

     

Expansion with energy eigenstates:

y (x) = anjn

n

å      an = jn

*(x)y (x)dx
-¥

¥

ò =
2

L
sin

np x

L
sin

2p x

L
dx

0

L/2

ò =
8

p

sin
np

2

æ

èç
ö

ø÷

4 - n2
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0.1
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Q = y *Q̂yò = a
n

*j
n

*Q̂a
m
j

mò
m

å
n

å = a
n

*a
m
q

m
j

n

*j
mò

m

å
n

å = q
n

a
n

2

n

å

For the wave function ψ(x), the expectation value of the measurement is given by:

Q = y *(x)Q̂y (x)dx
-¥

¥

ò = y Q̂y

Statistical interpretation

Suppose that  y (x) = anjn

n

å

The statistical interpretation: repeated measurements of Q yield one of the eigenvalues, and the 

probability of observing qn is |an|
2.

Therefore, the eigenstate of an operator is the state for which every measurement of the 

corresponding observable always returns the same eigenvalue. For other states, there is a finite 

standard deviation or uncertainty (σQ or ΔQ) from the probability distribution.

y (x) = anjn

n

å  ®    jm

55



Ex) If a wave function in the infinite well is as follows, what is the probability to find the 

particle in the ground  state, 1st excited state, and 2nd excited states? What is the mean 

energy?

  

y (x) =
1

2
y

1
(x) +

1

3
y

2
(x) +

1

6
y

3
(x)

Ex) For the half-wave in the previous example, what is the probability to find the particle in the 

ground state and 1st excited state?

a1 =
8

3p
,    a2 =

2

4
® p1 =

8

9p 2
= 0.09,    p2 =

1

8
= 0.125

Ex) For the Gaussian wave packet, the position uncertainty is α.

α
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Commutation and uncertainty principle

[Â, B̂] = ÂB̂ - B̂Â

The two operators are said to commute if their commutator is zero. 

Ex) [x, x2] = 0

Âjn = anjn,     B̂jn = bnjn

Ex) eikx in free space is the eigenstate of both momentum and energy operators. 

Ex)

DADB ³
1

2
[Â, B̂]

Ex)
Cf. commutation relation between L2, Lx, Ly, Lz
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Operators in three dimensional space

Ex) Spherical harmonics
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Problems from Chap. 1

5-22

5-25

5-26

59
-Thu/9/3/20


