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A. Schrodinger Equation
Wave-Particle Duality

In classical physics, particles and waves are distinct identities. Particles are characterized by
the position and momentum (velocity) and develop trajectories in the spacetime. On the other
hand, the waves are described by phase and amplitude, and display unique phenomena such as

interference, diffraction, and superposition. Let’s first review the basic quantities that define a
wave. We take the example of sinusoidal waves such as sin(kx—wt) or g9

t=0
t>0

. Asin(kx—wt)
Amplitude Phase ¢ = kot
ASin(kx)M x  Wavenumber k =2xn/A (or 1/0)

Wavelength (A=2m/k)

The phase at certain x varies in time as sin(wt). The period T in time is 2n/w. The frequency fis
ol 27 (in Hz) and w is the angular frequency.

The speed at which the position with a certain phase moves is called the phase velocity (v,). It
Is given as follows:

kX — ot = ¢, — kdx —wdt =0
dx o

dt kP



One of the greatest finding in modern physics is the wave-particle duality: particles show
wave properties such as interference while the classical waves sometimes have granularity

(discreteness) of particles with certain momentum.

It was Planck (1900) who first noticed the wave-particle
duality. He discovered from the research on blackbody
radiation that the energy of light waves with angular
frequency o (=2=f) is quantized by 7w (= hf or hv), where 7 is
the Planck constant (h = 4.1357x 10715 eV -s) divided by 2.
Each quantized light is called the photon. Therefore, lightis a
stream of photons. In fact, any waves oscillating with o have
discrete energy levels separated by Zw. Einstein used the
Planck’s postulate to explain the photoelectric effect, for
which he received the Nobel prize.
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The emission of electrons
from a metal plate caused by
light quanta — photons.


https://en.wikipedia.org/wiki/File:Photoelectric_effect_in_a_solid_-_diagram.svg
https://en.wikipedia.org/wiki/File:Photoelectric_effect_in_a_solid_-_diagram.svg

The wave nature of particles were first hypothesized by de Broglie (1924) who claimed that every

matter has a wave-like nature with the wavelength is given by the de Broglie relation.

=

p mu

This means that electrons can exhibit diffraction or interference phenomena like waves. It was
proved experimentally a few years later independently by Thomson and Davisson-Germer. They
observed the predicted interference patterns by passing electrons through crystalline materials.

iffraction Pattem

Ca[h(ﬁc [{ayq
Electrons

(d) Composite photograph showing
diffraction patterns produced with an
aluminum foil by X-rays and
electrons of similar wavelength. Left:
X-rays of 2= 0.071 nm. Right:
Electrons of energy 600 eV.



In a simplified version, electrons also show interreference pattern in double-slit experiment.
Fluorescent screen

II 50kV
Two slits

Elec&*

Filament =t I< i

Vacuum Electron diffraction fringes on the
screen

Constructive interference

Destructive interference

—

Photographic film
showing Young's fringes

The wave-particle duality for particle leads to the probabilistic nature of particles.



Eightelectrons, (b) 270 electrons, (c) 2000 electrons, (d)
160,000 electrons. Reprinted courtesy of the Central Research
Laboratory, Hitachi, Ltd., Japan.

Transmission Electron Microscopy (TEM)



de Broglie wavelenqth in various situations:

« 50 g golf ball at the speed of 20 ms™!: A =6.63x10"3* m. This is too short to produce
any meaningful observation.

* Proton at 2200 ms ~!: A =0.18 nm. This may produce diffraction from crystal but too
small penetration depth. Neutron can produce diffraction patterns as it interacts with
nucleus rather than electron clouds.

« Electrons at 100 eV: A=0.123 nm

Therefore, the wave nature of matter is observable only when the matter is very light like

electron or proton (hydrogen atom).
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Schrodinger Equation

If particles behave like waves, what kind of equation they satisfy? - the Schrédinger equation. The
matter can be any known objects such as proton, neutron, electron or molecules, or even human.
According to Schrodinger (1926), the particle is described by the (matter) wave function that is a

complex function of space and time w(X,y,z,t).

The first meaning of the wave function is that

lw(x,y,z,t)|? is the probability density of finding the particle at (x,y,z) and at time t. This means that

the following normalization condition should be satisfied at any time.

~ Jjo J-_O:o J‘_i“//(x’ Y, Z,'[)\2 dxdydz =1

Normalization condition

w(X,y,z,t) always satisfy the following time-dependent Schrodinger equation which is a kind of

differential equation.

oy K, (e & &)
h— = _—V + V v Vi - - + + + V ' Vi
l Ot 2m YV % 2y 2mk8x2 8y2 822Jy boy2ly

Kinetic energy

Potential energy at (x,y,z)

where m is the mass of the particle.

Forip, W0 - Ty ()

it

o V()

This is similar to the diffusion
equation except that time is
Imagninary.



There are mathematical conditions that should be satisfied by the wave functions: single-valued,

function and first derivatives are continuous

X .
Y(x)  y(x) not single valued V/}(\ ) w(x) not continuous

27 =

.

> X - ) x
Not In nature

yAx)
A

ﬂnot continuous

dx

N

>\
No kinks in nature

(At the point where V diverges, the first derivative can be discontinuous.)

Superposition principle: Since the Schrodinger equation is linear, if y; and v, are solutions to

the Schrodinger equation, w,;+ vy, is also a valid solution.

2
_;_VZ +V(x,y,z)=H (Hamiltonian)
m
2
lha_w = __Vzw-i_ V(xayaz)w — Hl/j



A special solution is the steady state or constant-energy state for which

E
wv(X,y,2,t)=w (X, y,2)e" =w (X, Yy,2)e 3 E: total energy = /i

(similar to photon)

In this special case, the time-dependent Schrédinger equation becomes time-independent as follows:

2

—Zh—szf+V1//:Ew or Hy=Ey
m

This is called time-independent Schrodinger equation or simply Schrédinger equation. Note that this
Is mathematically an eigenvalue problem. With proper boundary conditions, the solution to this
equation produces a set of energy eigenvalues and corresponding energy eigenstates.

h* d?
For 1D, -—— y(x)+Vy(x)= Ey(x)
2m dx

10



B. Example: Free Particle (1D)

When there is no potential over the entire space (V = 0), the particle can move freely. Classically, the
particle will move with a constant velocity. What is the matter wave corresponding to this state? The
Schrodinger equation becomes:

d? 2m d? hk?
— Y (xX)+— Ey(x)=0>—y(x)+k’y(x)=0 (E=
dx dx 2m

2 ) E=p*/2m

The solution of this equation is ¥(x) = Ae*** where k is the wave number and can be any real
number. sin(kx) or cos(kx) are also valid solutions. However, we will see later that e* corresponds to
a state with a definite left or right motion while sin(kx) or cos(kx) are the combination of the two.

Therefore, we prefer e** in the free space. Note that there is no boundary condition for the free
particle.

The probability of finding this free particle at x is |y(x)|> = |4|%, i.e., constant. Therefore,
normalization condition will require that 4 = 0! This because the particle moves all over the space
and finding the particle inside a specific region is simply zero. Rather, the correct interpretation with
finite (nonzero) A is that the wave function here represents a stream of particles moving with the
same velocity. (For example, electrons in the double-slit experiment may correspond to this.)

11



The full wave function w(x,t) is given by

E
V(x,t)= y(x)e_lgt = 4o/ Free Particle (1D)

Wavelength A = 2n/k. According to the de Broglie relation, A = h/p. Therefore, p = #k. This is
consistent with

2712 2
e h'k _ P
2m  2m
K2 k> hk?*
i — — _ T eX. Free electron model
In addition, FE - hao — o - opt 1-10

Such relation between frequency and wavenumber (w=w(k)) is called the dispersion relation .
For the light or photons, w = ck.

Dispersion Relation: electron, phonon, photon, etc.
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The electron described by Ae'(~Y is dispersed over the whole space. If there is one electron

moving in free space, such a form of wave function may not be appropriate. Rather, a “wave packet”
with the spread of ~10 nm would best represent such an electron. The figure in the below shows the
wave packet with the Gaussian envelope. This state is fairly localized and has a relatively well
defined wavelength although it is not the exact energy eigenstate.

AT Suppose that the initial wave function is the Gaussian
I g wave packet:

Wikipedia “" 11—

B )
H H”‘\ h‘ -; .
W(x,0) = 7e”"xe—x2/2a
il u, ; I

| \ M ik The time evolution of the wave function can be
| \ H || ‘\ || “ | obtained by solving the time-dependent Schrédinger
“ | ‘ equation (numerically or analytically). It is

il \ ) ) i
\J | | visualized by MATLAB file : wavepacket.m

19"'\:'\
\,‘.lg\\HHl ‘
'”HHH

You can observe that the envelope moves with a velocity that is faster than the phase velocity.
The speed of such a localized wave packet is the group velocity and it is given by the
following formula.

dw _ ik _ p
£ Bube (2.
V=== ube (2.3)

This is exactly the same as the classical velocity! (In the case of photon, w = ck and so v, = v, = c)

The group velocity is the speed at which energy and charge actually travels through the medium.
13
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Since sin(kx) = (e + ekx)/2, the state is the combination of right- and left-moving particles.

‘k> defines a unique energy state of the particle in the free space. Such variables that uniquely
specify or label the quantum state are called the quantum numbers.

It was mentioned that Ael®—t represents a stream of particles. The flux (number of
particles passing through a given position per unit time) can be calculated as follows:

: : . 2 hk
Flux j = (density) X (velocity) = ‘A‘ —
m

In three-dimensional space, the wave function of the free particle is exp(iKk - r — wt). This is called

the plane wave because the points with the same phase (wave front) form equally-spaced planes. k is
called the wave vector.

14



C. Example: Infinite Potential Well (1D)

Suppose that a particle is confined within a certain space and cannot escape. The simplest model
describing such a case is the infinite potential well.

001\ o Q: What is the classical state?

0 > X

For x> L or x <0, w(x) = 0 because particle cannot exist in this region (V is infinite). ForO<x <L,
the Schrodinger equation becomes

LY 3) = By () >y () + S By (x) =0



V(x) = Asinkx + Bcoskx (or Ae™ + Be ™)
Boundary condition y/(0) =y/(L)=0
y(0)=0—>B=0
V(a)=0—>sinkL=0—>kL=np n=1,2,..)

V. (x)= Asin%x

(from continuity of y(x))

Normalization condition

L |2 2
J‘OM dleaA:\/;

2 . nmx n’’h?
X)=4/—SIN—— FE =
v, () L L " 2ml?

Since n (=1,2,3...) specifies the quantum state, it corresponds to the quantum number in the infinite
well.






Energy levels in the w ell w(x) oc sin(nmx/ L)Pmbablhty density o |y(x)]?

NP A NANE /AVAVAVAY

v 2nd excited state (n=3)
S NAN \/\/\AA
E3
W, - _
15t excited state (n=2
E |12 N YAVAN =

Energy of electron

Ground state (n=1)

1= 1
%1| } V—\ /\
N >\

0 L O L

Bound state (localized state)

(Note that y'(x) is discontinuous at x = 0 and
L because V is infinite at those points)
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Remarks on the solution of infinite potential well.

1) Energy is quantized. (Note that it is only Kkinetic energy.) Classically, energy can be any
non-negative real number. Let’s calculate the energy interval (Ag) between 1st and 2nd states.
First, a 1-kg object in a macroscopic system with L =1 m, Ae ~ 10767 J ~ 1048 eV. This is too
small energy to be observed. Therefore, the energy is effectively continuous.

Next, if the electron is confined within an atom, L is about 2 A . In this case, Ae ~ 10 eV
which is substantial. Therefore, quantum effects (energy quantization) are expected for
electrons bound within the scale of atoms or molecules. This is also known as the quantum
confinement effect in nanoscience. (The energy was not quantized in the free particle because
the electron was not confined there.) For this reason, the nanoscale potential well is often

called the “quantum well”.

i1) “Going faster” in classical mechanics = increase n in quantum mechanics. Wavefunction is
more oscillatory with shorter wave lengths as the quantum number goes up. Therefore, shorter
wave length means higher Kinetic energy. Mathematically, this is because the kinetic energy
corresponds to the second derivative of the wave functions.

1ii) Probability is not uniform but effectively uniform at large n. (Q: what is the probability in
the classical mechanics?)

Iv) There is a minimum energy (zero-point energy): see uncertainty relation.

v) Parity or symmetry: even parity for n = 1,3,5,.. & odd parity for n = 2,4,6,..

-Tue/9/1/20



At AE > h

Magnitude of Energy = Reference Point?

Why the ground state energy is not zero? This can be explained in terms of

Heisenberg’s uncertainty principle for position-momentum. It states that AxAp, > #/2
where Ax and Ap, indicate the uncertainty in the position and momentum, respectively.

If the minimum energy state has the vanishing kinetic energy, the momentum is
definitely 0 and so Ap = 0. On the other hand, Ax = L, and therefore AxAp =0,
disobeying the uncertainty relation. (In the free-particle example, Ap = 0 but Ax = .)

We can also use the uncertainty relation to estimate the ground-state energy. The (skip)
uncertainty in the position Ax ~ L. From the uncertainty relation, the minimum

uncertainty is Ap~ % The uncertainty in the momentum mainly comes from the fact
that the particle is either moving left or right. Therefore, the particle momentum is

about the half of the momentum uncertainty. p~ ﬁ. The corresponding kinetic energy
2 2

. _p° _ h . T .
isE = o = Tz which qualitatively agrees with the ground state energy.

20



D. Example: Harmonic Oscillator (1D)

The classical harmonic oscillator is simply a mass attached to a spring that follows the
Hooke’s law. That is to say, F = —kx, where x = 0 is the equilibrium position. Let’s first
review on the classical mechanics on the harmonic oscillator.

d’x d*’x  k
m — =

F=—kx=
dt®> = dt? m

— X = Asin(a,t) + Becos(apt) @, = \/E . angular frequency
m

Period: T = o = 271\/E, Frequency: f = i\/E (w,=27f)
@, m 2z \'m

With an initial condition x(0) = x, and v(0) = 0, x(t) = xy cos wyt and v(t) = —wyXy Sinwg t

Kinetic, potential and total energies as a

1 1 function of time.
Potential energy: > kx(t)? = > kxZ cos® awyt 0008 —— .

T T T
Kinetic energy
Potential energy
Total energy

o

0.005

0.004 -

Kinetic energy:% mv(t)® = %mngg sin’ ot

1 )
== kx_ sin® ayt 0003
2

0.002

Total energy = % kx?

0001 |

0L I I S L NS i AW




Spring constant k

?? thal energy
S (kinetic plus
[ = %Kx2 m potential) is
Turning .constant. Its
points ¢ plot is therefore
7] a horizontal line.
At turning ._.-"', E=KE+U
points, !UHEUC : The area outside
energy is 0. | the potential
Outside them ! :
. o | energy curve
it would have | is the classically
to be negative. : forbidden region.
—A 0 x FA
Position

Lattice Vibration = Phonon

Figure 17 For small oscillations about a point of sta-
ble equilibrium, all potential energies resemble a
parabola—a simple harmonic oscillator.

Ulx)

The true interatomic potential
.- 1s strongly repulsive (steep) at
" smallx. ..

... and attractive at large x . . .

... SO a minimum exists between
. the two higher ends.

= Near the minimum at Xy the true

potential agrees with the model
(parabolic) potential of a harmonic
oscillator.

Ex) H, molecule
X, corresponds to x = 0 in the left figure.
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The Schrédinger equation for the harmonic oscillator is as follows:

ndy(x) 1.,
- +—kx =K
om a2 Y=

The boundary condition is that w(£0)=0. The solution to this problem requires the series
expansion method. Please refer to the standard QM textbook for the solving procedure.
Here we just study solutions.

n Y,x)
/ 1,22

[un—y

b 1/2 i
'2—\/§ (2bx)e"7b X
This is reminiscent of the photon energy. Recall that

p \12 ji w, here is the characteristic angular frequency of the
2 m) (462 — 2)e72b> spring while o = E/# in the time part of an energy
eigenstate varies with energy.

LB e —1b%2
3 48\/7‘7> (8% — 12k)e The ground state energy is not zero but 7w,/2. This
is called the zero point energy. The reason is the
1/2 . infini
) < b ) H (br)e 1t same as the infinite quantum well.
2"V

S 2)1/4 . :
Note: b = (mx/#?) H.: Hermite polynomial 23



Figure 18 Wave functions, probability densities, and energies of a harmonic

oscillator.

Energy

Shorter wavelength
— higher speed

21
> hoyg

%ﬁ“’o
2 heog
% ha,
> g
%ﬁwo

1
3 hwg
0

At each energy

given by

E=@n+pho...
r(x)

CIAWAWAWA _
r‘o

‘e
.
e
e
0
.
"y
"an

Energy

21
> hoy

... aunique
wave function
exists.

% hay,
2 hoog
% ha,
>,
%ﬁwo

1
>y
0

Particle exists beyond turning points
due to the tunneling effect.

As n increases toward
the classical limit, the
probability becomes
higher near the turning
points (extremes).

| (x)]?

— e —

M~

The probability is highest at
the center in the ground state,
contrary to the classical case.

24



It is important that any vibration is quantized with the same energy spacing of hw, even if the
oscillating substance is not as light as electrons. For example, the effective spring constant of the
effective spring constant of a N, molecule is 2287 N/m. The angular frequency is given by

W, = \/5 - 262287 I_\Il m = 4.43x10" rad/s
m 2.33x10™ kg (nitrogen mass)/2

Or in terms of frequency, f = 7.05x1013 Hz. Note that the reduced mass (half of proton mass) is
used. Therefore, the energy spacing of this harmonic oscillation is given by

kg = 8.617 x 105 eV/K
h=4.1357x10"15eV s

This is a significant energy. In terms of thermal energy, it corresponds to ~3000 K. This
means that at room temperatures, there is practically no vibration at all. (See Thermodynamics
for the partition function of harmonic oscillators.) That is to say, vibrational modes are
hardly activated and almost frozen! This also means that the vibrational motion does not
contribute to the heat capacity. The vibration can be excited by photon (infrared).

AE =hw, =4.67x10%° 1 =0.29 eV v = 10%/s in phonon

It is only when the frequency is very low that the vibration is thermally activated. The
acoustic phonon is such oscillations.

optical phonon

The energy quantization of vibration is perhaps the only quantum effect we see for atoms. In
other discussions, atoms can be well described by the classical mechanics. (The exception is
hydrogen atom. In some situations, the quantum effect of hydrogen atom is important. EX.
tunneling) 25



Acoustic and Optical Phonons in a Crystal

Acoustical Mode

w(k) optical
acoustic
Optical Mode
=
—n_fa 0 k —> ﬂfﬁ

Phonon Wavevector k

En:(n+%Jha)o (n=0,1,2,3,..) pptl-23 26



E. Example: Hydrogen Atom

Schrédinger equation in spherical coordinate

The hydrogen atom is the most important problem in quantum mechanics. It is the only system
that we can solve exactly among any real materials. From the perfect agreement between theory
and spectroscopic data on the hydrogen atom, we are sure that the Schrédinger equation and the
way we interpret its solution is correct.

In the hydrogen atom, there is one proton and one electron. We slightly generalized this
problem and assume that there is a nucleus with the charge of +Ze and only one electron is orbiting
around it. This is called the hydrogen-like atom model.

It is convenient to adopt the spherical coordinate with the nucleus at the origin. There are three
variables identifying a position: radial distance r (r > 0), polar angle 8 (0 < 6 <), azimuthal angle

é (0< ¢ < 2m).

)
A

>
=2
S
S

Nucleus

27



{_ 2h2 V2 +V(r)}//(r, 0,9) =Ew(r,0,¢)
m

e

(m,: electron mass)

— Laplacian in spherical coordinate

15(25\ 1 1

(%)

o 20 1.
= — 4+ —— —— L
or: ror r? (=

smq aqksm 5C]J

Vi Zar( EJ rsmqaqksm J r2sin qkafﬁ

1 (az\)
sin qkafiJ

oot 20 1| 1 o(. .0 1 0 Ze?
—— =5 t——+—| ——=—|sind +— > || rw(r,0,0)—
2m, (or® ror r°|sing oo 00 ) sin“0\ o¢ Are,r

We will not solve this Schrddinger equation (please refer to any standard QM textbook). Instead,
we will learn about the main features of the solution:

1) Quantum numbers.
i1) Energy eigenvalues.
1) Eigenstates.

y(r,0,4)=Ey(r,0,4)

(skip)



Quantum Numbers

Table 3.3 The four quantum numbers for the hydrogenic atom

(n’ 51 mf’ ms)

n Principal quantum number n=1,2,3,...
Orbital angular momentum) t=0,1,2,...(n=1)
quantum number
My Magnetic quantum number me=0,%1,£2,...,%¢
mg Spin magnetic quantum my = ﬂ:% (OI’ T, l)
number

Quantizes the electron energy

Quantizes the magnitude of
orbital angular momentum L

Quantizes the orbital angular
momentum component along a
magnetic field B;

Quantizes the spin angular
momentum component
along a magnetic field B,

n=1 n=2
(K shell) (L shell)

=0 0 =1 | —1 0 1

n=3
(M shell)

£=0 0

=1 -11 0

2 |2|-110

%_

subshells
%_
2 | <—

29



Energy Eigenvalues

Energy is quantized, and depends only on the principal
quantum number n.

4=2
c__MmeZz” 136, Vacuum Level
" 8glh’n? n?

This means that there are many quantum states with the
same energy. This is called the degeneracy.

Energy spectrum of H atom

Electron energy, £ .

A

E

Continuum of energy. Electron is free.

KE
0

A
4

-10 4

-0.54 e— 5
-0.85 —

23 () —

t

n

Excited states

-13.6 ¢V oo | (Ground state

30

lonizaton energy, £,
(lonization potential)

TH=3

—n=



P . Emission spectrum
Pholon
Electrons can absorb or emit a photon 0 —> @ .-

and make a transition into a new
quantum state. Photon POy /\b%orpuon spectrum
~MVW—>+ —) b)
/‘1. "

« Balmer series (nm)

8

f
i * T Theory: 656, 486, 434, and 410 1’240 / ’y (nm)
YyYYYy —
: l Faschen h v (eV)
; YYYy  series Experiment:
Balmer
series 410 434 486 656 nm
oy
Lyman
seties -_-
rl] LARAA

From the perfect agreement between theory and experiment on this

hydrogen atom, with the size of only ~1 A , we feel confident that the
Schrddinger’s theory is correct.




Eigenstates

Eigenstates for the hydrogen atom is a product between radial and angular parts:

l//nﬁmf (r’ 9’ ¢) = Rnf (r)ng(z (6’ ¢)
f !

Radial part

Let's first examine the radial part.

Table 4.6: The first few radial wave functions for hydrogen, R, (r).

Rig = 2a732 exp(—r/a)

1 1 r
R :_—3/2(1___) -
20 \/ia 33 exp (—r/2a)
Ry = L el exp (—r/2a)
V24 a
2 2r 2 /r\?
30 ma 32 + 7\ 3 exp (—r/3a)
8

1 r r
Ry = ——q 32 (1 - - —) (—)ex —r/3a
31 N 6 2/)\3 p (—r/3a)
2

4 | o
Ry = a 37 (—) exp (—r/3a)
* 7 81/30 a) e

Are,h’
a J—

a‘0
Zm e’

Z

Increasing Z — more localized

a,: Bohr radius = 0.529 A

Hn.l(r)

0.7

|
0.6 {
!
05 —\

0.3\'
3

0.2

0.1

Angular part: spherical harmonics

Principal quantum number
Orbital (angular momentum)
'; guantum number
b Magnetic quantum number

0.8

1
1
. \
\ NN
APRAN
21\, 32 N ~ 32

30
| |~"'\| .¢->'E | "I'-‘—a%
\ N
a4 8 G =10 12 14 16
\] 30

/u’-

\-.-"20

> 1/a
18

Number of nodes = n— ¢ — 1. Higher number of nodes

— more oscillations along r — more kinetic energy in

the radial direction
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The actual radial distribution is given by P(r) = 4nr?[R,,(r)]?

i s-type states

P = 4nr2IR,,(r)2
ST

, Is 25 3s
0 1 2 3 0 3 6 9 0 6 12 18
— ;—>

ELECTRON-NUCLEAR DISTANCE (BOHR RADIUS)

p-type states
I P =4nr2IR, Ar)l2
1
AL
VA TR e EESET TR LA R - 12

r—>»
ELECTRON-NUCLEAR DISTANCE (BOHR RADIUS)

d-type states

P =4rr2R, Ar)2

I ELECTRON-NUCLEAR DISTANCE (BOHR RADIUS)
O P R S,

* Increasing n pushes the
distribution outward.

« Electron is more localized for
higher ¢ values for the same n.

Transition Metal
ex. Co?" = [Ar]3d’4s?
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(skip)

Second, let’s look at the angular part that is simply spherical harmonics. Spherical harmonics
is “Fourier series” in the angular space

Y(? - (%)1/2 Yzﬂ = (%)UZ sin” et
YIO = (%)1/2 cosé Yg = (%)1/2 (5¢cos’ 6 — 3cosd)

Y =% (%)1/2 sin fe™'? == (624_;:)1/2 sin#(5cos® B — 1)e™®
ng = (16%)1/2 (3cos’d — 1) Y:;tz = (%)1/2 sin® @ cos fe=H?

153 172 _ 35\ .
vH=x (g) sin@ cos e ? Y3i3 = (64?"7;) sin® e

Animated image of real part of spherical harmonics. Bright/dark indicates the sign.

(4,m,)
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The orbital quantum number ¢ reflects how rapidly the electron rotates around the nucleus. The
rotation is characterized by the angular momentum vector L. (Classically, L = r x p.) The magnitude

of Lis given by |L| = L = h,/£(£ + 1). (The angular momentum has the same unit as #) About the
direction of L, we can only know the component of L along a specific direction (usually the direction
of the magnetic field, if present, is chosen). If it is the z-direction, the z-component of L is given by
L, = myh (m, = —4,.., %) If one can specify the whole component of L, it is at odds with the
uncertainty principle.

external £

Orbiting electron

(a) (b) (©)

(a) The electron has an orbital angular momentum, which has a quantized component L
along an external Magnetic field B nar-

(b) The orbital angular momentum vector L rotates about the z axis. Its component L, is
quantized; Therefore, the L orientation, which is the angle 6, is also quantized. L
traces out a cone.

(c) According to quantum mechanics, only certain orientations for L are allowed, as

determined by ¢ and m, 35



When an electron in the hydrogen-like atom absorbs or emits a photon by changing its quantum
state, the transition should satisfy the Selection Rules of A¢ = +1 and Am, =0, *1. Thisis

because photon itself has an angular momentum with the magnitude of /. The figure
below shows the possible transition for emission of one photon.

—

Energy A

O ’ C . - > ﬁ

H atom

Photon

N>

-13.6¢el” —
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Another representation of p and d orbtials

Y, oc cos@ oc z —> p, orbital
Y!+Y, " ocsin@(e” +e7) oacsin@cos g oc x — p, orbital
Y=Y, ocsing(e’ —e ™) ocsingsingoc y — p, orbital

X d2 —_
&= &= R , ; d, 242
x X
dX.V
YP fora 2p, orbital  |Y]* fora 2p_ orbital
— (f’ﬂ 7 O) — dy.

p orbital d orbital

(skip)
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Electron Spin

It was found in Stern-Gerlach experiment that the
electron possesses an intrinsic rotation that is distinct
from the spatial rotation. It is analogous to a self-rotation
but in fact it is not. (According to the modern particle
theory, the electron is a point particle with no spatial
extent.) Nevertheless, it has every property of rotation.
For instance, it follows the angular momentum
conservation. The spin quantum number s is similar to
the orbital quantum number ¢ except that s is fixed to %.
Therefore, the magnitude of the spin angular momentum

isS=nh/s(s+1) = \/; h. Like the orbital quantum

number, spin the quantized along a certain direction (z-
direction). That is to say, S, = mgh, where m is the spin

. 1
magnetic quantum number and m; = + -. These two

states are often called spin-up / spin-down or 1, |. Note
that spin-up/down do not mean that the angular
momentum is point along +z direction.

(skip)

S. (along B.) Spin Up

A

& Spin Down

Wave functions including the spin part is written like Y = Yy, (1, 6, @)®|T) of Ypppm, (1,6, )| T)

ppt 1-30
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- - k'
Magnetic Dipole Moment of Electron (skip)

The orbiting electron is equivalent to a current loop
that behaves like a bar magnet. The resulting

Worbital
magnetic moment is called the orbital magnetic y N
moment (i, pit) is given by % - % -
€ ® i
Roritar = — L ¢ B S

2m

e

Likewise, the spinning electron can be imagined to be
equivalent to a current loop. This current loop behaves
like a bar magnet, just as in the orbital case. This

produces the Spin magnetic moment (pgy;,).

e
—__"35
uspln m

e

W, Magnetic moment

The total magnetic moment is

e
Wit = Rorpitar T+ uspin = _ﬂ (L + 28)

e

We will come back to this formula when discussing on the magnetic properties.
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F. Multielectron Atoms and the Periodic Table

Based on the results of hydrogen-like atom, we can understand other atoms as well.

Starting points are as follows:

- Only one electron can occupy each quantum state: Pauli exclusion principle

» Since the inner electrons screen the nuclear charge, the effective nucleus charge is larger
as electrons approach the nucleus.

« For agiven n, energy is lower for lower £ orbits because they are more elliptical.

|

Small € implies less
rotational motion,
more radial, and a

more elliptical orbit.

3s
€ =0

Large ¢ implies less
radial motion, and a
more circular orbit.

3d
€ =2

TABLE 8.2 Subshell ordering and capacity

Subshelln¢ 1s 2s 2p 3s 3p 4s 3d 4p 55 4d 5p 6s 4f 5d 6p Ts 5f 6d

n+4¢ 1 2"%.3 4 4 5 5 3.6 6 6, ¥ .7 :7.T 8 &

Number of D 1D GirnDds rBen2evl@:6 211 100 6 2012 1% 4100 6702114 110
electrons
22¢€ + 1)

Rule of thumb: subshell ordering follows n + £. If this number is
the same, the order follows n.
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Figure 8.13 The energy ordering of electron states varies with Z.

Sd\ 6]) \n.:()

4f
6s —>
4d\ 5p —— \ ¥—n=5

SS \ \\

I 3d 4p| ——u n=4
4s —

3 Pace (bl n=>3
- 3s i
2 i

ZSP\ : n=2

s n=1

10 20 i 30 40 50 60 70 80

i As the subshells are filled up, the inner subshells tend to be ordered
mainly with respect to n. This accounts for the apparent anomaly from
V (Z = 23: [Ar]3d34s?) to Cr (Z = 24: [Ar]3d°4s?).

(skip)
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Level
filling

Energy

2s

3s

=+ Very active: High- energy---T -------------------------

electrons easily lost

_jt__&_ Sy

e
#

K Valence
4

%
electrons

Core
electrons

oy

- Nobel/inert gases: Filled shell at 10W

%

' Very active: Unfllled %
% % shell at low energy

energy, large jump to next-higher

A
LA
LA

H He B C N o F Ne | Na Mg Al Si

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Valence electrons are high in energy and actively involved in the chemical bonding.
In contrast, core electrons are close to the nucleus and stabilized in energy such that it is
chemically inert.
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He: the 1s electrons are too tightly bound with large energy so it does not engage in
chemical reactions. - Noble gas. 1s shell in He is closed.

Li: high energy electron is easily lost.

Be: 2s subshell is filled. However, since its energy is relatively high, it is still chemically
active.

B, C, N: electrons in 2p subshell favors high-spin configuration : Hund’s rule (principle of
maximum spin multiplicity)— main origin is the reduction in screening of nuclear charges
by occupying different orbitals + exchange effects

O, F, Ne: electron in the downward directions are occupied.

B-F: 2p subshell is partially occupied and therefore chemically active

B-N: 2s subshell, albeit filled up, is chemically active - s-p hybridization

O, F: strongly attracts electrons (0%, F) = high electron affinity or electronegativity
lonic bonding is formed between Li and F

Ne is inert or noble gas because closed shell is chemically inert — due to energy and wave
function range.

Chemical behavior of Na and Li (Mg and Be) are similar. (Sizes are bigger.)



h’ v? h’ v? 208 2¢¢ €

T A Y1 T A Y - =
2m 2m v, 7, |?‘1—?‘2

| y(7,7,) = Ey(7,7)

+antisymmetry condition



G. Example: Tunneling

Classically, a particle cannot move beyond the turning point. Quantum mechanically, the
particle can slightly diffuse through the turning point due to the wave nature, which is called the
tunneling phenomena. This can be studied using a square barrier with height of V, and particles
incident from the left with E (kinetic energy of particles incident from left) is smaller than V.

Vi(x)
Start here from rest 2 A E < VO
Wl(x)
ﬁ- S - :‘3 Incident Y (X)
A A
‘  Tunneling | ‘ P -
2< Reflgtted Transmitted

)C=O X=a 9%

Classically, all the particles are reflected at x = 0 because E <V, Inregion | & Ill, potential
is zero while it is V, in the region Il. The Schrddinger equation in each region is as follows:

. , 2mE
2 _ ikx —ikx 2
= + A k=
Region I & IIT: —2h—z//” = Ey Vi(x)=den + de n’
" e 2m(V. - E)
2 _ ox —ox 2 _ 0
Region II:_;l_mw”:(E_I/O)W l//II(-X:)_ Ble +Bze o = h2

— C ikx ] o
Vin(x)=Cpe o = absorption coefficient
In region |1, the wave function is a linear combination of exponentially growing and decaying

functions. Usually, B, is much larger than B,, and so the wave function decays as exp(—ax).
Here 1/a represents the penetration depth of the tunneling particle.



The boundary conditions are y and ' are continuous at x = 0 and x = a. These are only four equations
so application of the boundary condition gives A,, B, B,, and C, relative to A,. (A, is undetermined
because it represents the incident flux.) The transmission coefficient (probability) is the ratio between
the incident and transmitted fluxes.

2 hk
T = jtransmitted — ‘Cl‘ ; — ‘Cl‘z — 1 — —I/Oz )
Jincident ‘A ‘th ’Al‘z 1+ Dsinh’ aa 4E(V, - E)
! m

Usually, the penetration depth is very short, so a >> 1/a or aa >> 1.

16E(V,- E \8m(V, — E
sinhaa = %exp((xa) ->T= %exp( —20a) ~exp(—2aa) = exp[ (ho ) a]
0

Since the exponential part is very small, T is essentially equal to exp(—2aa). This expression
Implies that the transmission probability is highly sensitive many parameters. It increases
when mass, a, or (V,—E) becomes smaller.

Reflection coefficient: R = et = : f’:;( === A: absorptance
Jincigent W | ‘ R: diffused reflectance

T: transmittance
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Examples of Quantum Tunneling

1) Electron spill-over in finite guantum well

In solid-state, electrons feel the band-gap region as the classically forbidden area with certain energy
barrier of V,,.

5 nm AlAs/GaAs quantum well

] AlAs GaAs AlAs . ] ]
AlAs/GaAs superlattice 2 /\/\/\ 7 Exponentially decaying tails
% 4.0+ e =~ B
X evi
384 ev2
g 1 ev3
> 36 ——psi” (ev1)
g V J psi? (ev2)
& 344 0 psi? (ev3)
: 22] /\
304
y ' . 28 T » 1 % T ¥ 1 v T v 1 v 1 v. 1 v T » L]
3’1 1 1 rConductionBand ° ®* * ® = = % % @ 6
%I' | distance (nm)
;‘ "1 > z
| Valence Band Note that as the energy goes up, the penetration depth increases because (V,—E) is

smaller.
For E > V,, unbound state will appear and energy levels are continuous (think
about free particles).
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1) Scanning tunneling microscope (STM)

STM tip (tungsten) IRNTONIe] P

tunnel

Probe

Tunneling % A
distance

Material
surface

tunnel

P\V/\/\/*\/\
Low High

current current

Classically, electrons are confined in the material with certain WOrk functions. Therefore,
the vacuum space between the tip and the sample is the classically forbidden region. Under the
external bias, the barrier height is effectively reduced and a small amount of electrons can
tunnel to the tip from the material surface, producing weak electric currents. Since the tunneling
probability is exponentially sensitive to the tunneling distance, and so the current is high or low
depending on whether the tip is on top of an atom or between atoms.

Perturbation (electric field): as small as possible
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Ball-and-Stick Model Experiment

Graphene STM detects “electron cloud”
rather than atom itself.

Hard-Sphere Model Experiment

Pt(111) surface
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111) Leakage current in nanoscale transistor

The transistor is a critical component in semiconductor devices. The size of the transistor
constantly scales down. At the same time, the thickness of gate oxide - an insulator separating
the gate electrode and channel layer - also becomes thinner. When the thickness of the oxide is
only a few nanometers, the tunneling current through the gate oxide becomes sizeable, which
increases power consumption. In order to meet this problem, the industry (pioneered by Intel)
changed the material for the gate oxide from SiO, to HfO, that has high dielectric constant and so
can increase the thickness while maintaining the capacitance.

High-k + Metal Gate Transistors

Standard HK+MG
Transistor Transistor

Low resistance layer Low resistance layer
Yer—. P y

Polysilicon gate Metal gate
N+ for NMOS \ / Different for
P+ for PMOS NMOS and PMOS
SiO, gate oxide ——=1_ ] . 1 «<—— High-k gate oxide
S ;' :“ D S ":' :‘\ D Hafnium based
Silicon substrate Silicon substrate

High-k + metal gate transistors provide significant performance
increase and leakage reduction, ensuring continuation of Moore’s Law

( |ntel)L i 6 Jan. 2007
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(skip - - -)
H. Mathematical foundation of quantum mechanics

State  ------------ Observable ~ ------------ Measurement
Wave function Operator Statistical interpretation

Observables (Q) are physical quantities that can be measured. (Ex. momentum, position, energy, etc.)
It is usually a function of position and momentum, i.e., Q(x,p). Because of the probabilistic nature,
each measurement of an observable for ensemble of identically prepared particles with the same
wave function can yield different results. (Ex. In the double-slit experiment, all the electrons are
described by single wave function, but each electron marks a spot at different points on the screen,
which is equivalent to measuring the position.) We want to formulate the whole procedure within the
quantum mechanics. The first step is to define an operator Q that corresponds to the observable Q.

« Examples of operator:

A . d
Momentum: p=—ih—
dx

Position: x=x

2 R 1 . 1 V)
Kinetic energy: KE = ZP; —>T=—9p"= (—ihi)(—ihi) = I d
m

Potential energy: V= V(x)
AoA nod’
Energy (Hamiltonian): H =T +V =————+V(x)
2m dx
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(skip - - -)

Mathematical property of operators

1) Each operator has its own set of eigenvalues {q,} and eigenstates {¢,} such that

~

OF,=4qJ,
The eigenvalues are the only values that are observed when Q is measured. The eigenstate ¢,
represents a state with the definite value of g, for the observable Q.

Ex) Momentum eigenstates
. L d
py(x) = py(x)— —zhal//(x) = Py (x)
Lo .
y(x)=Ade" =A4e"" (p,=hk,)

Ex) The time-independent Schrodinger equation is the eigenvalue problem of the Hamiltonian.
Therefore, {y} in the infinite potential well corresponds to eigenstates of Hamiltonian.

Mathematically, any operator corresponding to a physical observable is Hermitian and its
eigenvalues are always real numbers. The collection of eigenvalues {q,.} is called the spectrum.
There are discrete spectrum and continuous spectrum. For example, momentum of the free particle is
a continuous spectrum while the infinite well and harmonic oscillator problems yield discrete energy
spectra. In the case of the finite quantum well, there are both discrete (E < V,) and continuous (E >
V,) spectra. When eigenstates are bound (free) or localized (extended), they constitute a discrete
(continuous) spectra.



I1) Eigenstates are orthonormal to each other

Oi.i: (x)f, (x)dx = a’n,m (0, m: Kronecker delta)

Ex) Eigenstates in infinite quantum well

g(‘)Lsin npxsin mpx de=d,
L™ L L ’
¥ * -
Cf. For continuous spectra, Dirac orthonormality holds: ) ¥jp (x)f,(x)dx=d(p-q)

1) Any wave function can be represented as a linear combination of eigenstates (completeness).
Mathematically, eigenstates can expand any function in the Hilbert space.

y()=8ad, a,=0_J6yx)d

0y =aagad,

n

- O O &« \ —x- o 2
al, —aaaea, (s, :a|an‘ =1



Ex) In the infinite potential, a wave function is as follows:

o~ - 425 o L
T\ SZCE \ES'”L IR

0 0 otherwise

Expansion with energy eigenstates:

N Sln(j
y(x) = é-an-in a, = (\)_TJ_:(X),V(X)dx = L2 OQL/ZSin npx Si pr = 8 2

0.6
0.4

01 03k

0.2

o o
o
0.1 I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20
0.1
n /

-0.1
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Statistical interpretation

For the wave function y/(x), the expectation value of the measurement is given by:
¥ o, A A
(0)=0. V' @y (x)dx={y|dy)
Suppose that V/(x) = é_anjn

2

(0)=w'ov=aayased,=adaeq,\ii,=ayq,

a
n

The statistical interpretation: repeated measurements of Q yield one of the eigenvalues, and the
probability of observing q, is |a,|>.

Therefore, the eigenstate of an operator is the state for which every measurement of the
corresponding observable always returns the same eigenvalue. For other states, there is a finite
standard deviation or uncertainty (o or AQ) from the probability distribution.

If the measurement returns g,,, the wave function instantly “collapses™ to ¢,y,.

y(x)=aaed, - J,



Ex) For the half-wave in the previous example, what is the probability to find the particle in the
ground state and 1%t excited state?

V8 V2 __8 —%20.125

a, = — a2:——>p1—9—pz:O.O9, D, =

Ex) If a wave function in the infinite well is as follows, what is the probability to find the
particle in the ground state, 1t excited state, and 2" excited states? What is the mean

energy?

-l Lty iy
Vi(x)= ﬁyl( )+ \/r—syz( )+ ngs( )

Ex) For the Gaussian wave packet, the position uncertainty is a.

\H‘ e
| |I‘ |

\
H|
i
\"‘
!
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Commutation and uncertainty principle

The commutator of two operators A and B are defined as follows:
[4,B]= AB- BA
The two operators are said to commute if their commutator is zero.

Ex) [x,Xx?]=0

Ex) [x,p]=ih [x. p] f0) = [‘r (=ih) (%(f) — (=ih) (%(.rf)] = —ih (x—!— 2y
=ihf(x).
Theorem) When two operators A and B commute, they have common eigenstates {¢,,} such that
Aj,=aJ, B =bJ,
Ex) eix in free space is the eigenstate of both momentum and energy operators.

Theorem) When two operators A and B do not commute, the uncertainties in observables of A and B
always satisfy the following relation:

DADB > %‘<[§1,1§]>|

Ly, ~ « h
Ex) AxAp = 5|<[x,p]>| =—

2 Cf. commutation relation between L?, L, L, L,
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Operators in three dimensional space

e d e
Momentum: p =—ifi— — p=-ihV
dx
Position: x=x —Fr=xXx+yy+zZ
A h’ (o 9 0
Kinetic energy: T =——V* =— + +
Y 2m 2m ( dx* a9y’ 97’

Potential energy: V= V(r)
Angular momentum operators:

L=—ii(rxV)
. 12 ) 1 &
=1 — 2 sing

Line ae(sm aa}r sin’ 0 a¢2}

. 3 9 J
A L
= (xay yaxj Y

Ex) Spherical harmonics

Y™ (6,¢)= CP" (cos0)e™”

£ m a m im m
LY = —iha—(i)CQ ‘(cosB)e™ = mnY™

|

(skip)



Problems from Chap. 1
5-22
5-25
5-26
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