2. Quantum Theory of Solids

2A. Free Electron Model (Bube Ch. 6)
2B. Periodic Potential and Band Structure
2C. Lattice Vibration

In the hydrogen atom, the Schrodinger equation was exactly solved and full energy spectrum was
obtained without any approximation. This is impossible for real solids where Avogadro’s numbers of
atoms and electrons coexist within the same system. Therefore, one has to introduce some level of
approximation or assumption to come up with a solvable model. That is to say, every model has
limitations in explaining the experimental data. When one theory fails, we can devise a more
accurate one starting from the fundamental Schrédinger equation.

In this chapter, we begin with one of the simplest quantum model of solids that best applies to metals
with conduction electrons originating from s orbitals, for instance alkali metals (Li: 1s? 2s!, Na, ...)
and noble metals (Cu, Ag: [Ar] 3d1°4s?, Au, ).

While the free electron model is highly successful in explaining many observations for metals, it fails
dramatically for certain properties, most notably the existence of positively charged hole carriers.
To explain this, we explicitly consider the periodic potential experienced by the electrons, and the
resulting energy structures as termed as the band structure. The band theory is the most widely used
model for explaining the electronic properties of solid materials

From the engineering point of view, why we need a theory at all? Without theory, even though it
may be approximate one, it will take too much trial-and-error to engineer materials for the
desired properties.
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2A.1. Particle in a Box N |
Positively charged ions are

Solution to Schrodinger Equation shielded by other electrons.

In some metals, outermost valence electrons in a solid can be treated as if they are
essentially free electrons, particularly in metals where outer-most valence electrons
are not much involved in chemical bonding. (Metallic sodium has 1s22s%2p%3st, and
the outermost 3s electron can be considered to be essentially free.) The positive
charges of nucleus are effectively screened by other freely moving electrons. (This
does not apply to transition metals.) Therefore, the potentials experienced by these
valence electrons are very weak, and so can be approximated to be zero. In addition,
the repulsion between electrons is also well screened by other electrons, so can be
neglected.

Since the electrons are confined within the metal, we approximate the material
surface as infinite potential wells. (In fact, it is rather a finite potential barrier with the
height of the work function.) For convenience, the material is modeled as a cubic box
with the length L.

lI'lI'lI'A/

V ~ 0 inside solid

The mathematical expression of potential and boundary
L conditions are as follows:
0:0<x,y,z<L
L Vix,y,z)= Y
o ; elsewhere

L Boundary conditions: y = 0 on each face of the box.
Mathematically,

Yy(©0,y,z2)=y(L,y,z)=0
‘ L: any length — No difference in nature v (x,0,z)=y(x,L,z)=0
Y (x,y,0)=y(x,y,L) =0




| o ¢ = Neu =ne’t/m"
The Schrédinger equation is —%Vzl//(x,y,z) = Ew(x,y,z) H
m
(From now on, the electron mass is m instead of m,.) We will see later that the electron mass within
the solid is different from that in vacuum because of interactions with ions. This is called the
effective mass (m*). The boundary condition in the rectangular form allows for separation of
variables: y(x,y,z) = F(X)G(y)H(2).

1 82F(x)+ 1 82G(y)+ 1 BZH(Z)__2mE
F(x) ox’ G(y) 9y’ H(z) 09z° K

HdF(x) C P, dG(y) dH(z)

= C H(z)

=C G(y),

Boundary conditions: y = 0 on each face of the box.
S FO)=F(L)=G(0)=G(L) =H()=H(L) =0

If C,, ) is a positive number, it cannot satisfy these boundary conditions. Therefore, C’s are
negative numbers and F, G, H are linear combinations of sine and cosine

T
H(z)=A4 sanZ

T nm
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Normalization condition: JOL jOL j:‘t//‘z dxdydz=1—A4= \/%

v, |

v (x,y,2) = 3 sin el sin Y sin el /\ /\

(n, NN ) L3 L L L \/
hr’

E(nx,ny,nz) =57 (n + ni +nl)=¢gn’ W /\

(n,, Ny, N,): quantum numbers.
S Degeneracy .W/\
) (nx,ny,nz) =(1,2,3) or (1,3,2) \/
> symmetry degeneracy V\
ii) (nx,ny,nz) =(1,15) or (3,3,3) -

0 a
> accidental degeneracy

Comments: When L is macroscopic, the energy spacing is so small that the particle may behave
classically. This is the case when there is only a few electrons in the system such that wave
functions do not overlap and we do not worry about the Pauli exclusion principle. (In fact, early
scientists, notably Drude, treated electrons in metals as classical gas system and arrived at wrong
results as well as correct ones.) However, when electrons are as dense as in metals (more than one
electron per atom), the wave function overlaps significantly and one has to apply full quantum
mechanics, at least the Pauli exclusion principle. This gives very different results from the classical
approach, and is more true to the experiment.



Compare states with (1,2,1), (2,1,1), (1,1,2)

The denser, the higher amplitude.

Isosurfaces



Density of States (DOS)

For macroscopic samples (L > pum), one needs a large number of states to occupy
particles (on the order of Avogadro’s number). In particular, it is of interest to know how
many states exist with a narrow energy range [E,E+dE] because occupation number
depends only on the energy. It is difficult to calculate this precisely but there is a good
approximation which enable us to obtain the number of states.

In (ny, n,, n,) space, each quantum state is represented as a point on the regular grid in
the first octant. We first define N(E) as the number of states with energy less than E. Since
E = gn? = g (n+n,+n,?), N(E) is the number of mesh points within the sphere with the
radius n = (E/e,)". ThIS IS equivalent to 1/8 x[volume of sphere with radius n] if we neglect
errors from the boundary mismatch, which is negligible for large n.
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Number of states between E and E + dE

N(E + dE) - N(E)

= dEN(E)
dE

= N(E+dE) - N(E) = dE

N'(E) corresponds to the density of states (DOS) D(E) or number of states per unit energy.

3

D(E)=N'(E)= 4; : (;—sz JE

Since it is obvious that D(E) scales with the system size of volume (L3), sometimes D(E) is defined as
per unit volume.

D(E)= 4;2 Lsz JE - — 3D

h? Free Electron Model

D.O. S

DOS per volume

m ¥

If we consider spin degree of freedom, D(E) would be multiplied by two (some literature do this).
But for the convenience of discussions in the section of Magnetic Properties, we implicitly assume
this is DOS for spin-up or spin-down. This is to say, D(E) = D,(E) = D (E).



Density of States (DOS) in Metal and Semiconductor




Low Dimensional Systems snS, , Mos,, ZrS,, ...

Some materials have highly anisotropic geometries. These systems can also be approximated as
quantum well structure. In order to accommodate anisotropy, we generalize the previous example
to 3D quantum well with different cell lengths of L,, L,, and L, along each direction. It should be
straightforward to solve this problem using the same technique of separation of variables.

8 . (nmx ). (n7AY |, (¢n7&z
X,V,Z)=4|—SsIn| —= sin sin| —= V=LLL
l//(nx,ny,nz)( Y ) V L Lx ] Ly [ LZ ] x "y Tz

L, 71'2722 nz n2 n2
Ly E(n o1, 51 ) = 2 ljzC + L; + L; nx’”y”/lz = 192939"'
L g m » y

z
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First, let’s first consider 2-dimensional system in which one
length (L,) is nanometer scale while the other two lengths are
macroscopic. Examples are ultrathin metal layers or AlIAs/GaAs
heterostructures (quantum well). In this case, changing n, will
increase the energy in much bigger steps than changing n; orn,.
Therefore, we can effectively fix n, and obtain DOS by L, (nm) << L,, L, (> pm)
considering (n,,n,) in the two dimensional plane as we have done Quantum well

for three-dimensional case in the previous subsection. In this

case, DOS per unit energy and unit area is given by (homework).

D(E)= > mhz : constant  (2D) ppt-2A-7
A FJ'I

[ ]

) n, = 1 C}

2 ‘ I_ """" > A Free-Electron Model

> E
Energy -
Quantum Well

States belong to a certain n, are called subband.

(Note that DOS for graphene is quite different because its unigue linear dispersion relation.)
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Similarly, one can derive DOS for one-dimensional systems

such as nanowire or carbon nanotubes.

Som

2rwh

D(E)= E™* (D)

The sharp peak at the beginning of each

subband is called the van Hove singularity.

E~12 behavior can be also understood
from the 1D quantum well where the
energy spacing increases with n.

The van Hove singularity renders the
quantum wire to display sharp absorption
spectra. On the right is the example of
semiconducting carbon nanotube. The
electronic transition between singularities
produce notable peaks in the absorption
spectra.

van Hove singularity

—

Energy
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1D:

L,L,<<L,

Nanowire or quantum wire

T
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Densﬂy of States
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Very sharp and well defined energy levels in 0D quantum dots allow for their usages in display applications.

(Samsung QLED TV —in fact it is not true QLED even though it makes use of quantum dots.)
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2A.2. Fermi-Dirac Distribution

So far, we counted number of states that electrons can occupy. The actual occupation number of
each state is given by thermodynamics. Classically, the Boltzmann distribution can be derived in
which the occupation number (probability) is proportional to the Boltzmann factor exp(—E/kgT).
This is based on the assumption that every particle is distinguishable. This may look obvious, but
in gquantum mechanics or fundamentally you cannot distinguish two identical particles such as
proton-proton / electron-electron / Fe-Fe. (Remember that we considered this in calculating
entropy in thermodynamics.)

For example, consider four identical particles (a,b,c,d) in a hypothetical quantum well with only
three energy level 0, JE, and 20E. Let’s count the number of microstates with the total energy
fixed to 20E.

When particles are distinguishable (classical):

TABLE 1 Ways of distributing energy 26F among distinguishable particles a, b, ¢, d

Probable

Number of Probability number of

times n P particles

n Ways appears (#) (#/40) (P x4
2 a b ] 4 0.1 0.4
1 ab e gd be bd ed 12 0.3 1.2
0 |bcd acd abd abc ¢d bd bc ad ac ab 24 0.6 2.4

Totals 40 1.0 4.0 14




Next, the particles are indistinguishable. In nature, there are two types of particles. Fermions with
spin half-integer cannot occupy the same state if the spin is the same because of the Pauli exclusion
principle. Bosons have integer spins and no limitations in the occupation number.

TABLE 2 Ways of distributing energy 26 E among four indistinguishable bosons and spin—% fermions

Bosons Fermions (S = %)
Probable Probable
Number of number of Number of number of
times n Probability particles times n Probability particles
n Ways appears (#) P (#/8) (P %X 4) Ways appears (#) P (#/4) (P x4
2 X 1 0.125 0.5 0 0.0 0
1 XX 2 0.250 1.0 XX 2 0.5 2
0 XXX XX 5 0.625 2.5 XX 2 0.5 2
Totals 8 1.000 4.0 Totals 4 1.0 4
2.54

Pt
W
1

[
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|

o
W
1

Probable numbers of particles
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The above discussion can be extended for the macroscopic systems with the Avogadro number of

particles.

By using the partition function for the grand canonical ensemble, the occupation

number or occupation probability f(E), which is the expected number of particles at a state with
the energy of E, is obtained as follows:

-

J(E) =+

\

1 - - -
BT e Boltzmann (distinguishable)
e I
1 _ 1 stein (b
BENT 1 Ui _ Bose-Einstein (bosons)
1 _ 1
BT 11 oE-MIT L1 Fermi-Dirac (fermions)

Here u is the chemical potential of the system (change in the Gibbs free energy when one particle

is added to the system). For electrons, this is also called the Fermi level or Fermi energy (Ef).

In all cases, B is determined by the total number of particles in the system. (For photons or vibrations,
the particle number is not conserved so B =1.)

All distributions monotonically decrease with the energy.
For Fermi-Dirac, f(E) cannot exceed 1 and is equal to % for E = E..
For Bose-Einstein, f(E) can be any positive number.

,ui(T,p,nj): v

j



2A.2. Fermi-Dirac Distribution

corresponds to the chemical potential?)

As T increases, f(E) becomes gradually broadened. The broadening width is approximately kgT,
which is much smaller than E; (see later). Eg(T) is determined by the total number of particles.

Since the distribution at usual T is almost the same as that at T = 0 K, EF(T) ~ EF(O).

1

J(E)= BBk

At T=0K: f(E) =1 for E < E; and O for E > E; : step function. (Can you understand why E.

po——

Occupation Probability, f

—
e’

T'=0K

Electron Energy, £

Important.

Vacuum

Level N

Increasing 7

For E>>E_, f(E) approachto e

(Maxwell-Boltzmann distribution)

That is to say, when particles are sparse, the
indistinguishability and Pauli-exclusion principle are not




2A.3. Free-Electron Theory of Metals o =Neu =ne*r/m’

In the preceding sections, we obtained the number of states (DOS: D(E)) and how much to fill each
state under the temperature T (Fermi-Dirac distribution: f(E)). Thus, the number of electrons

occupied per volume per energy is D(E)Xf(E). Integrating this over the whole energy range
should be equal to the number of electrons per unit volume, i.e., electron density n, (provided

that D(E) is defined per volume). X
2
E E E D(E)=— (i—’?j JE

‘ 1 41
ppt-2A-8

> by

T =1000 K

0 g% %,
EF-““ ) EF“
0 e —

11 /B n(E)=DEAE)

Area = In (EYdE =n

Electron energy

0K

Since Fermi-Dirac does not change much at finite T (<< E/Kkg), let’s assume the zero temperature
for simplicity. In this case, f(E) is 1 up to E¢(0) and O above.

n = electrons/volume

. ppt-2A-8
= 3/2 3/2
(2}1—?] JEdE = ﬁ(h_”z] jOEF EVdE = ﬁiﬁj =

? o \n) 3 °F

N | W

1
4’

n={"D(E)E=["2x

2

— E_(0)= h—(37r2n)3 _
2m The factor 2 accounts for the spin degeneracy. 13



Free-Electron Model

Vacuum Level
Fermi Energy = Chemical Potential

Work Function

Bube - Figs. 6.8 & 6.11

-Tue/9/8/20
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. 1 . 2 . 10Ec2ER1 Table 1.1
Na [Ne]BS Mg [Ne]BS In' [Kr]4d 58 5p FREE ELECTRON DENSITIES OF SELECTED METALLIC FELE-

MENTS®
To convert the Fermi level formula to be more P—— 7 n (10*%/cm’) riA) "
explicit, we define the effective radius of free L 3K 1 o N T ]
electrons (r,) from the mean volume per electron. Na (5 K) 1 265 208 393
- K (5K) 1 1.40 257 486
n = electrons/volume &o (5k) 1 1.15 275 520
Cs (5K) 1 091 298 5.62
1 Cu 1 8.47 1.41 2.67
%4 Apr? (3 )3 Ag 1 5.86 1.60 302
— == S p = —— Au 1 5.90 1.59 3.01
N n 3 s L4,0n J Be 2 24.7 099 1.87
Mg po 8.61 141 2.66
Ca 2 4.61 1.73 327
Sr 2 3.55 1.89 3.57
. Ba 2 315 1.96 31
Thg table on the r_|ght shows s for NE : e o 307
various metals using the nominal Fe 2 17.0 112 2.12
Mn () 2 16.5 1.13 2.14
number of valence electrons (Z) and 7o g 5 g .
crystal volume. cd 2 9.27 1.37 2.59
Hg (78 K) 2 8.65 1.40 2.65
4re i’ Gs : 154 16 19
Bohr radius: a, = —=0.529 A In 3 11.5 127 241
me T 3 10.5 1.31 2.48
Sn 4 14.8 1.17 2.22
Pb B 13.2 1.22 2.30
Bi 5 14.1 1.19 2:25
Sb 5 16.5 1.13 2.14
C'SI - 50 X 1022 atomS/Cm3 “ At room temperature (about 300 K) and atmospheric pressure, unless

otherwise noted. The radius r, of the free electron sphere is defined in Eq. (1.2).
We have arbitrarily selected one value of Z for those elements that display
more than one chemical valence. The Drude model gives no theoretical
basis for the choice. Values of n are based on data from R. W. G. Wyckoff,
Crystal Structures, 2nd ed., Interscience, New York, 1963. 20




The zero temperature E.(0) can be expressed

. Table 2.1
by s and a, as follows: EERMLENERGIES, EERMI LEMPERATLRES, EEEMLWAVE VECIQES. AND
) EERMI VELOCITIES FOR REPRESENTATIVE METALS®
h* I 7 AER ELEMENT r./a B k v
E (0)_ (37; n)3 - |2 = el - B e T
2m\ 4 | #? Li 325 474eV 551 x 10°K 112 x 10°cm™'  1.29 x 10® cm/sec
2 s Na 393 324 3.77 092 1.07
2 3 K 486 212 246 0.75 0.86
__ T (9”) I _30.1eV Rb 520 185 215 0.70 08I
2 2 2 Cs 5.62 1.59 1.84 0.65 0.75
2ma0 (rs / aO) (i"s / ao) Cu 267 7.00 8.16 1.36 1.57
Ag 3.02 549 6.38 1.20 1.39
i i i icall Au 301 553 6.42 121 1.40
Note in the right table that E; is typically . o i e i
Seve ral eVS Mg 2.66 7.08 8.23 1.36 1.58
1 Ca 327 4.69 544 1.11 1.28
) The Ferml Sr 357 393 4.57 1.02 I.I8
— i i Ba 371 364 423 098 113
temperature (T E-/kg) is much higher than oo 0 o b 2 g
usual temperatures. Fe 212 1L 130 1.71 1.98
- : : H Mn 214 109 12.7 1.70 1.96
The Fermi velocity (vg) is the group velocity of " i Bl o e o
the free electron at the Fermi level: cd 259 147 8.68 1.40 1.62
1 K2k2 Hg 265 7.3 8.29 1.37 1.58
E ==—m?’ = Al 207 117 136 1.75 2.03
Foa F om Ga 219 104 121 1.66 1.92
In 241 8.63 10.0 1.51 1.74
We will see in the next chapter that the T 248 BIS 946 146 1.69
. . . . Sn 222 102 11.8 1.64 1.90
electrical conduction is mediated by mostly g, 230 947 110 1.58 183
1 Bi 225 990 11.5 1.61 1.87
electrons at the Fermi level. Therefore, the ry e as - s s

Fermi velocity can be regarded as the velocity . e o L
. - - ° The tab i alcul al +/do given in Table 1.1 using m =
of the charge carrier (~1% of light velocity). 4, x“"w"fg";':;:“’ calculated from the values of r,/a, given in Table 1.1 using m

kg =8.617 x 10> eV/K
h=41357x1015evs  _P o P
c =10 cm/s da a
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The Fermi level can be measured experimentally using soft x-ray emission. Fig- 6.8

100 Vacuum Level

m:\ 80 —

)

>

i 40 - FE)G(E)

g N\ NP 303 eV

< 20—

27 eV
0 I Ep —=
T ]_ T [ T T | T | T | T | L-leve]
24 25 26 27 28 29 30 31 32
X-ray photon energy (eV) On this page, g (E) — D(E)

Figure 4.31 Emission of soft X-rays from a sodium sample that is bombarded by electrons (in a suitable high vacuum).
An impinging electron knocks out an electron from an inner core shell (L-level). A conduction electron falls down and
fills this space and emits an X-ray photon. The X-ray emission intensity is proportional to the number of conduction

electrons available, f(E)g(E), and to hf>, a quantum mechanical transition probability. The vertical axis has been scaled
to make the peak 100 percent.

| Data extracted from Cady, W.M. and Tomboulian D.H., Physical Review 59, 381, 1941, Table 1.

Experimental Er =30.3 —27=3.3 eV vs. Theoretical Eg = 3.24 eV

» Total energy of free electrons (per volume)

E,=| En(E)dE :jOEF ED(E)dE = Q(hﬁjz 2 | B G = ﬁ(ﬁf 2

3
« Average energy per electron: E,, = gEF (0)
22




Finite Temperature

How about finite temperatures? | emphasize that the previous results on 0 K still valid for most
temperatures. Nevertheless, we here focus on the small change induced by the temperature. The
following relation still holds:

3/2
(" (- _ \/5 m = 12 1
n_meﬁ>LDwywmﬂjgbﬂ LEe%mw+ﬂE
The right-hand side depends on E, and E that satisfies the equality is the Fermi level at the given
temperature.

The closed form of [ n(E)dE does not exist at finite temperatures. Instead, one can exploit the fact that

the F-D distribution is affected only near the Fermi level and expand F-D function in a Taylor series. This
procedure is called the Sommerfeld expansion, and please refer to Aschcroft & Mermin pp 45 for the
detailed derivation. The results to the lowest order of (k7/Ex(0)) are as follows:

kT ) £ 01 wﬁkT\

p?
J Fall)= 12\ Z.0)

(
"2\ E.0)

E(T)=E.(0)|1

The temperature dependence of E,; can be understood by
considering the change in the F-D distribution in the right
figure. The excited electrons range over the Ag ~ kgT, £
and so their number is ~D(Eg) kgT. The energy increase of | fe—f

each excited electron is also ~ kgT. Therefore, the increase
in E,; is ~D(Ep)(kgT)?, which is in fact very similar to the
exact expression in the above. 73

1.0




Since EL(0) >> kgT (KT/ER(0) = T/T¢ ~ 0.01), the temperature dependence is very small.
Nevertheless, the temperature dependence of E,, and so E, leads to the electronic part of the
heat capacity (C,) that originates from free electrons.

E
Ce:%pT

The heat capacity at normal temperatures is o8 w5
mainly contributed by the lattice vibration or
phonons. We will see at the end of this chapter
that the lattice component of the heat capacity (C,)
is proportional to T3 at low temperatures.
Therefore, C, becomes significant at low
temperatures:

C/T=2084+ 257 T2

LN o AN
1

C/T (mJ/mole deg?2)

N
o

3 : L L 120
C= CL + Ce = AT’ + BT 2% O ey % 0.3

lattice metallic Fic. 1. C/T versus T? for potassium. [J: liquid-helium cryostat;
. e : adiabatic demagnetization cryostat.
(electronic)
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2A.4. Application of Free Electron Model

[Henceforth, Boltzmann constant is k instead of kg.]

Thermionic Emission

Thermionic emission means the emission of high energy electron
corresponding to the high energy tail of the Fermi-distribution at high Surface
temperatures. When the surface is normal to x-axis, electrons with the '
kinetic energy along the x-axis bigger than Er+ ® can escape from the

: 1 . .
surface. That is to say, Emvf > (Eg + @) for thermionic emission.

(Note that in the free electron model, there are only kinetic energies.)

In order to count electrons that meet this condition, we first change
variable form E to v using E = Y5 m\?

3/2
\/5 " EV2dE
n(E)dE = D(E)f(E)dE = ]z'z(hzj e(E—EF)/kT +1
3 8m’ vidy 0
h3 e(E—EF)/kT + 1 —_ nE(E)

This is the number of electrons with the speed between v and v+dv. The contribution to the current
density out of the surface, J,, is obtained by multiplying —ev, to each electron and integrate over the

whole range satisfying %mvf > (Ep + ®). Noticing that 4mv2dv in the spherical coordinate

corresponds to the volume element when the integrand is isotropic, it should be replaced by
dv.dv,dv, in the rectangular coordinate.

3
_Zem . ¥ . ¥ . ¥ devxdvydvz

h3 0_¥ 0_¥ O /2(EF+F)/m e(E—EF)/kT + 1 25

J =



(skip)
When E > E.+®, E — E¢ >> kT and f(E) follows the Boltzmann distribution.

_ 2em® ¥ ¥ ¥ (E-E,)
J =- X 0.0, Omexp{——kT v dv. dvy dv_

2em’® E_ | ¥ ¥ ¥

- _ F o m (2, 2, 2
= eXp{kT}O Om { (vx+vy+vz)}vxdvxdvydvz

This gaussian integration can be evaluated analytically. The result is the Richardson equation.

2
J = - Apemk EXpL__ =BT expL—— J B=4remk?/h® = 1.20x10° Am2 K2
. h : Richardson constant

(Here we neglect the minus sign for convenience.)

The Richardson formula indicates a linear relationship between J,/T? and 1/T. The slope is equal
to —d/k.

:m%-fi
kT

In[‘]x\
T2




Thermionic emission from W into vacuum.

T T \

— 7—/2 = 06 x10° A/m?

\\
I0F N\
N

In(j/T2%) —

(10,000/7) —=
(a)

Note that the thermionic emission becomes
significant only at very high temperatures.
The wave nature of electron indicates that
some electrons reflect back from the
surface. Because of this, the measured By is
about half of the Richardson constant.

The work function estimated by the slope
is about 4.4 eV.

Thermionic emission from Pd into a-Si.  pq  4-S;

T(°K) - ‘]x
e 350 300 250 200
— i " 1 Joo7ev

103} =4
e 10°'5 - \ -t
% .
g Y )
<

10V o\
10"} .\ -

10 \ B
3

%o
T?

-

1093

The thermionic emission also occurs internally
between materials. The slope gives an effective
injection barrier of 0.97 eV from Pd to a-Si.
The injection barrier plays an important role in
I-V characteristics and thermionic emission is a
useful tool to measure it.
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] . Field-Emission SEM & Field-Emission TEM
Field Emission

Another way to extract electrons from metals is using the quantum-mechanical tunneling effect.
When an electric field is applied on the surface of metal (electric field pointing into the metal), a
downward potential develops outside the surface. Therefore, emission by electron tunneling becomes
possible, which is called the field emission. As we have learned in the previous chapter, the
tunneling probability or transmission coefficient (T(E)) strongly depends on the energy and tunneling
length (barrier width). Multiplying n(E) and T(E) gives the tunneling current that has a sharp peak
around E.
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FIG. 6.13 Free-electron model of a metal surface suitable for the discussion of field
emission processes. The tunneling transmission coefficient T increases exponentially
with E as the effective barrier height and width decrease with increasing E, but the den-
sity of occupied states available for tunneling n(E) decreases rapidly above the Fermi
energy. The result is that the product of Tand n(E) has a maximum near the Fermi energy.
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(skip)
The transmission coefficient through a general shape of potential can be obtained by generalizing
the result on the square barrier.

V(X)
Vo 1\/0“5 V(x)-E
------ — = e >
E E
a x=0 x=d
J8m(V, — E
T(E)~exp[— m(ho )aJ T(E)~ exp[ J- \/8m(V;lx) E) ]

This is called the WKB (Wentzel-Kramers-Brillouin) approximation and is valid when ¥(x) is a
slowly varying function. The triangular potential in the previous figure is given by V(x) =

—eEx+Ep+O.ForE=Er,V(x)—E=® (1 — %x) and the WKB approximation yields the
following transmission coefficient:

A more complete treatment involving integration over the whole distribution n(E)7(E) yields a
preexponential factor proportional to £2. Therefore, the current density from field emission is

q)3/2 J - )
J~& exp(——\/ ]eln( j_ngb Fowler-Nordheim equation
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From the slope, one can estimate the
work function for each surface.
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Field emission from different surfaces of tungsten.

Note that field emission has a very weak

dependence on the temperature. Since it does not
require high-temperature heating, the field emission

Is also called the cold emission.

(skip)

In order to obtain meaningful field
emission currents, the electric field at the
surface should be at least 1V/nm. To
enable such large fields, sharp tip
structures are fabricated such that fields
are concentrated at the tip owing to the
field enhancement effect. (This is similar
to a lightening rod.)
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The above microtips are used for the
display applications (called the field
emission display).
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Problems from Chap. 2A
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