
2. Quantum Theory of Solids

2A. Free Electron Model

2B. Periodic Potential and Band Structure

2C. Lattice Vibration

In the hydrogen atom, the Schrödinger equation was exactly solved and full energy spectrum was

obtained without any approximation. This is impossible for real solids where Avogadro’s numbers of

atoms and electrons coexist within the same system. Therefore, one has to introduce some level of

approximation or assumption to come up with a solvable model. That is to say, every model has

limitations in explaining the experimental data. When one theory fails, we can devise a more

accurate one starting from the fundamental Schrödinger equation.

In this chapter, we begin with one of the simplest quantum model of solids that best applies to metals

with conduction electrons originating from s orbitals, for instance alkali metals (Li: 1s2 2s1, Na, …)

and noble metals (Cu, Ag: [Ar] 3d10 4s1, Au, .).

While the free electron model is highly successful in explaining many observations for metals, it fails

dramatically for certain properties, most notably the existence of positively charged hole carriers.

To explain this, we explicitly consider the periodic potential experienced by the electrons, and the

resulting energy structures as termed as the band structure. The band theory is the most widely used

model for explaining the electronic properties of solid materials

From the engineering point of view, why we need a theory at all? Without theory, even though it

may be approximate one, it will take too much trial-and-error to engineer materials for the

desired properties.
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~ 0 inside solidV

Positively charged ions are 

shielded by other electrons.

2A.1. Particle in a Box

In some metals, outermost valence electrons in a solid can be treated as if they are

essentially free electrons, particularly in metals where outer-most valence electrons

are not much involved in chemical bonding. (Metallic sodium has 1s22s22p63s1, and

the outermost 3s electron can be considered to be essentially free.) The positive

charges of nucleus are effectively screened by other freely moving electrons. (This

does not apply to transition metals.) Therefore, the potentials experienced by these

valence electrons are very weak, and so can be approximated to be zero. In addition,

the repulsion between electrons is also well screened by other electrons, so can be

neglected.

Since the electrons are confined within the metal, we approximate the material

surface as infinite potential wells. (In fact, it is rather a finite potential barrier with the

height of the work function.) For convenience, the material is modeled as a cubic box

with the length L.

V (x, y,z) =
0 ; 0 < x, y,z < L

¥ ; elsewhere

ì
í
î

The mathematical expression of potential and boundary 

conditions are as follows:

y (0, y, z) =y (L, y, z) = 0

y (x,0,z) =y (x,L, z) = 0

y (x, y,0) =y (x, y,L) = 0

Solution to Schrödinger Equation

Boundary conditions: ψ = 0 on each face of the box. 

Mathematically, 

3

L: any length – No difference in nature
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The Schrödinger equation is

(From now on, the electron mass is m instead of me.) We will see later that the electron mass within

the solid is different from that in vacuum because of interactions with ions. This is called the

effective mass (m*). The boundary condition in the rectangular form allows for separation of

variables: ψ(x,y,z) = F(x)G(y)H(z).

Boundary conditions: ψ = 0 on each face of the box.

⇔ F(0) = F(L) = G(0) = G(L) = H(0) = H(L) = 0

If Cx(y,z) is a positive number, it cannot satisfy these boundary conditions.   Therefore, C’s are 

negative numbers and F, G, H are linear combinations of sine and cosine
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i Degeneracy

i) (n
x
,n
y
,n
z
) = (1,2,3) or (1,3,2)   

Þ   symmetry degeneracy

ii) (n
x
,n
y
,n
z
) = (1,1,5) or (3,3,3)  

Þ  accidental degeneracy

(nx, ny, nz): quantum numbers. 

Comments: When L is macroscopic, the energy spacing is so small that the particle may behave

classically. This is the case when there is only a few electrons in the system such that wave

functions do not overlap and we do not worry about the Pauli exclusion principle. (In fact, early

scientists, notably Drude, treated electrons in metals as classical gas system and arrived at wrong

results as well as correct ones.) However, when electrons are as dense as in metals (more than one

electron per atom), the wave function overlaps significantly and one has to apply full quantum

mechanics, at least the Pauli exclusion principle. This gives very different results from the classical

approach, and is more true to the experiment.
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The denser, the higher amplitude.
Compare states with (1,2,1), (2,1,1), (1,1,2)

Isosurfaces
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For macroscopic samples (L > μm), one needs a large number of states to occupy

particles (on the order of Avogadro’s number). In particular, it is of interest to know how

many states exist with a narrow energy range [E,E+dE] because occupation number

depends only on the energy. It is difficult to calculate this precisely but there is a good

approximation which enable us to obtain the number of states.

In (nx, ny, nz) space, each quantum state is represented as a point on the regular grid in

the first octant. We first define N(E) as the number of states with energy less than E. Since

E = ε1n
2 = ε1(nx

2+ny
2+nz

2), N(E) is the number of mesh points within the sphere with the

radius n = (E/ε1)
½ . This is equivalent to 1/8×[volume of sphere with radius n] if we neglect

errors from the boundary mismatch, which is negligible for large n.

Density of States (DOS)

 N (E) =
1

8
×
4

3
pn3 =

p
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3/2n = (E/ε1)
½

nx

nz

ny
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Number of states between E and E + dE

= N(E + dE) - N (E) = dE
N (E + dE) - N (E)

dE
= dE ¢N (E)

N′(E) corresponds to the density of states (DOS) D(E) or number of states per unit energy. 

Since it is obvious that D(E) scales with the system size of volume (L3), sometimes D(E) is defined as 

per unit volume.

If we consider spin degree of freedom, D(E) would be multiplied by two (some literature do this). 

But for the convenience of discussions in the section of Magnetic Properties, we implicitly assume 

this is DOS for spin-up or spin-down.  This is to say, D(E) = D↑(E) = D↓(E).
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Density of States (DOS) in Metal and Semiconductor

quantized k space



Low Dimensional Systems

Some materials have highly anisotropic geometries.  These systems can also be approximated as 

quantum well structure.  In order to  accommodate anisotropy, we generalize the previous example 

to 3D quantum well with different cell lengths of Lx, Ly, and Lz along each direction.  It should be 

straightforward to solve this problem using the same technique of separation of variables.

Lx

Ly

Lz
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SnS2 , MoS2, ZrS2, …



Lz (nm) << Lx, Ly (> μm)

Quantum well

First, let’s first consider 2-dimensional system in which one 

length (Lz) is nanometer scale while the other two lengths are 

macroscopic.  Examples are ultrathin metal layers or AlAs/GaAs 

heterostructures (quantum well). In this case, changing nz will 

increase the energy in much bigger steps than changing nx or ny. 

Therefore, we can effectively fix nz and obtain DOS by 

considering (nx,ny) in the two dimensional plane as we have done 

for three-dimensional case in the previous subsection.  In this 

case, DOS per unit energy and unit area is given by (homework).

nz = 1 nz = 2

Energy

D
O

S

States belong to a certain nz are called subband. 

(Note that DOS for graphene is quite different because its unique linear dispersion relation.) 
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Ly,Lz << Lx

1D:

Nanowire or quantum wire

Similarly, one can derive DOS for one-dimensional systems 

such as nanowire or carbon nanotubes.

van Hove singularity

The sharp peak at the beginning of each 

subband is called the van Hove singularity.  

E−1/2 behavior can be also understood 

from the 1D quantum well where the 

energy spacing increases with n. 

The van Hove singularity renders the 

quantum wire to display sharp absorption 

spectra.  On the right is the example of 

semiconducting carbon nanotube.  The 

electronic transition between singularities 

produce notable peaks in the absorption 

spectra.
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Very sharp and well defined energy levels in 0D quantum dots allow for their usages in display applications.

(Samsung QLED TV – in fact it is not true QLED even though it makes use of quantum dots.)
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2A.2. Fermi-Dirac Distribution

So far, we counted number of states that electrons can occupy. The actual occupation number of

each state is given by thermodynamics. Classically, the Boltzmann distribution can be derived in

which the occupation number (probability) is proportional to the Boltzmann factor exp(−E/kBT).

This is based on the assumption that every particle is distinguishable. This may look obvious, but

in quantum mechanics or fundamentally you cannot distinguish two identical particles such as

proton-proton / electron-electron / Fe-Fe. (Remember that we considered this in calculating

entropy in thermodynamics.)

For example, consider four identical particles (a,b,c,d) in a hypothetical quantum well with only

three energy level 0, δE, and 2δE. Let’s count the number of microstates with the total energy

fixed to 2δE.

When particles are distinguishable (classical):
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Next, the particles are indistinguishable.  In nature, there are two types of particles.  Fermions with 

spin half-integer cannot occupy the same state if the spin is the same because of the Pauli exclusion 

principle.  Bosons have integer spins and no limitations in the occupation number.
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f (E) =

1

BeE /kT
µ e-E /kT

1

BeE /kT -1
=

1

e(E-m )/kT -1

1

BeE /kT +1
=

1

e(E-m )/kT +1

ì

í
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ï
ï
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Boltzmann (distinguishable)

Bose-Einstein (bosons)

Fermi-Dirac (fermions)

The above discussion can be extended for the macroscopic systems with the Avogadro number of

particles. By using the partition function for the grand canonical ensemble, the occupation

number or occupation probability f(E), which is the expected number of particles at a state with

the energy of E, is obtained as follows:

Here μ is the chemical potential of the system (change in the Gibbs free energy when one particle

is added to the system). For electrons, this is also called the Fermi level or Fermi energy (EF).

In all cases, B is determined by the total number of particles in the system. (For photons or vibrations,

the particle number is not conserved so Β = 1.)

All distributions monotonically decrease with the energy.

For Fermi-Dirac, f(E) cannot exceed 1 and is equal to ½ for E = EF.

For Bose-Einstein, f(E) can be any positive number.
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2A.2. Fermi-Dirac Distribution

At T = 0 K: f(E) = 1 for E < EF and 0 for E > EF : step function. (Can you understand why EF

corresponds to the chemical potential?)

As T increases, f(E) becomes gradually broadened. The broadening width is approximately kBT,

which is much smaller than EF (see later). EF(T) is determined by the total number of particles.

Since the distribution at usual T is almost the same as that at T = 0 K, EF(T) ≈ EF(0).

f (E) =
1

e
(E-E

F
)/k

B
T

+1

For E≫E
F
,  f (E) approach to e

-E k
B
T

 

(Maxwell-Boltzmann distribution)

That is to say, when particles are sparse, the 

indistinguishability and Pauli-exclusion principle are not 

important. 17
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2A.3. Free-Electron Theory of Metals

In the preceding sections, we obtained the number of states (DOS: D(E)) and how much to fill each

state under the temperature T (Fermi-Dirac distribution: f(E)). Thus, the number of electrons

occupied per volume per energy is D(E)×f(E). Integrating this over the whole energy range

should be equal to the number of electrons per unit volume, i.e., electron density n, (provided

that D(E) is defined per volume).

D

D

D

Since Fermi-Dirac does not change much at finite T (<< EF/kB), let’s assume the zero temperature 

for simplicity.  In this case, f(E) is 1 up to EF(0) and 0 above. 

The factor 2 accounts for the spin degeneracy. 

0 K

n(E)

18

n = electrons/volume
ppt-2A-8

ppt-2A-8T = 1000 K

σ = neμ = ne2t / m*
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Free-Electron Model

T = 0 K

T = 1000 K

Vacuum Level

Fermi Energy = Chemical Potential

Work Function

-Tue/9/8/20

Bube - Figs. 6.8 & 6.11



To convert the Fermi level formula to be more 

explicit, we define the effective radius of free 

electrons (rs) from the mean volume per electron.

V

N
=

1

n
=

4pr
s

3

3
;    r

s
=

3

4pn

æ

èç
ö

ø÷

1

3

The table on the right shows rs for 

various metals using the nominal 

number of valence electrons (Z) and 

crystal volume. 

Bohr radius:

20

c-Si = 5.0×1022 atoms/cm3

Na: [Ne]3s1 Mg: [Ne]3s2 In: [Kr]4d105s25p1

_ __
n = electrons/volume



The zero temperature EF(0) can be expressed 

by rs and a0 as follows:

Note in the right table that EF is typically

several eVs. The Fermi

temperature (TF = EF/kB) is much higher than

usual temperatures.

The Fermi velocity (vF) is the group velocity of

the free electron at the Fermi level:

We will see in the next chapter that the

electrical conduction is mediated by mostly

electrons at the Fermi level. Therefore, the

Fermi velocity can be regarded as the velocity

of the charge carrier (~1% of light velocity).
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Experimental EF = 30.3 − 27 = 3.3 eV  vs. Theoretical EF = 3.24 eV

On this page, g(E) = D(E)

1s22s22p63s1

• Total energy of free electrons (per volume) 

• Average energy per electron: E
av

=
3

5
E

F
(0)

The Fermi level can be measured experimentally using soft x-ray emission.
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E
F
(T ) = E

F
(0) 1-

p 2

12

k
B
T

E
F
(0)

æ

è
ç

ö

ø
÷

2é

ë

ê
ê

ù

û

ú
ú

How about finite temperatures?  I emphasize that the previous results on 0 K still valid for most 

temperatures.  Nevertheless, we here focus on the small change induced by the temperature.  The 

following relation still holds:

E
tot

(T ) = E
tot

(0) 1+
5p 2
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The temperature dependence of Etot can be understood by

considering the change in the F-D distribution in the right

figure. The excited electrons range over the Δε ~ kBT,

and so their number is ~D(EF) kBT. The energy increase of

each excited electron is also ~ kBT. Therefore, the increase

in Etot is ~D(EF)(kBT)2, which is in fact very similar to the

exact expression in the above.

excited

Finite Temperature

The right-hand side depends on EF, and EF that satisfies the equality is the Fermi level at the given 

temperature.  

23



The heat capacity at normal temperatures is

mainly contributed by the lattice vibration or

phonons. We will see at the end of this chapter

that the lattice component of the heat capacity (CL)

is proportional to T3 at low temperatures.

Therefore, Ce becomes significant at low

temperatures:

3

L eC C C AT BT= + = +

Since EF(0) >> kBT (kT/EF(0) = T/TF  ~ 0.01), the temperature dependence is very small. 

Nevertheless, the temperature dependence of Eav and so Etot leads to the electronic part of the 

heat capacity (Ce) that originates from free electrons.

C
e
=

¶E
tot

¶T
µT
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2A.4. Application of Free Electron Model

Thermionic Emission 

FE

0
¬ n

E
(E)

xJ→

x-axis

Metal

Surface

Vacuum

Φ

J
x

=
-2em3

h3

v
x
dv

x
dv

y
dv

z

e
(E-E

F
)/kT

+12(E
F

+F)/m

¥

ò-¥

¥

ò-¥

¥

ò

[Henceforth, Boltzmann constant is k instead of kB.]
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When E > EF+Φ, E − EF >> kT and f(E) follows the Boltzmann distribution. 

J
x

= -
2em3

h3
exp -

(E - E
F

)

kT
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This gaussian integration can be evaluated analytically. The result is the Richardson equation.

J
x

= -
4pemk 2

h3
T 2 exp -

F

kT
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= B

0
T 2 exp -

F

kT
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Bo=4πemk2/h3 = 1.20×106 A m−2 K−2

: Richardson constant

(Here we neglect the minus sign for convenience.)

The Richardson formula indicates a linear relationship between Jx/T
2 and 1/T. The slope is equal 

to −Φ/k.  

ln
J
x

T 2

æ

èç
ö

ø÷
= lnB

0
-

F

kT
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The thermionic emission also occurs internally 

between materials. The slope gives an effective 

injection barrier of 0.97 eV from Pd to a-Si. 

The injection barrier plays an important role in 

I-V characteristics and thermionic emission is a 

useful tool to measure it. 

Thermionic emission from W into vacuum.

Note that the thermionic emission becomes 

significant only at very high temperatures.

The wave nature of electron indicates that 

some electrons reflect back from the 

surface. Because of this, the measured B0 is 

about half of the Richardson constant. 

The work function estimated by the slope 

is about 4.4 eV. 

Thermionic emission from Pd into a-Si. Pd a-Si

xJ→

0.97 eV
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Field Emission 

Another way to extract electrons from metals is using the quantum-mechanical tunneling effect.

When an electric field is applied on the surface of metal (electric field pointing into the metal), a 

downward potential develops outside the surface. Therefore, emission by electron tunneling becomes 

possible, which is called the field emission. As we have learned in the previous chapter, the 

tunneling probability or transmission coefficient (T(E)) strongly depends on the energy and tunneling 

length (barrier width). Multiplying n(E) and T(E) gives the tunneling current that has a sharp peak 

around EF.
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Field-Emission SEM     &     Field-Emission TEM



The transmission coefficient through a general shape of potential can be obtained by generalizing 

the result on the square barrier.

a

V0−E

E

V0 V(x)−E

E

x = 0 x = d

V(x)

Fowler-Nordheim equation
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• Field emission from different surfaces of tungsten.

From the slope, one can estimate the 

work function for each surface. 

Note that field emission has a very weak 

dependence on the temperature. Since it does not 

require high-temperature heating, the field emission 

is also called the cold emission.

In order to obtain meaningful field 

emission currents, the electric field at the 

surface should be at least 1V/nm. To 

enable such large fields, sharp tip 

structures are fabricated such that fields 

are concentrated at the tip owing to the 

field enhancement effect. (This is similar 

to a lightening rod.)

The above microtips are used for the 

display applications (called the field 

emission display).
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Problems from Chap. 2A

6-32
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