2. Quantum Theory of Solids

2A. Free Electron Model
2B. Periodic Potential and Band Structure
2C. Lattice Vibration

While the free electron model is highly successful in explaining
many observations for metals, it fails dramatically for certain

properties, most notably the existence of positively charged hole
carriers.

To explain this, we explicitly consider the periodic potential
experienced by the electrons, and the resulting energy structures
are termed as the band structure. The band theory is the most

widely used model for explaining the electronic properties of
solid materials.
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The free-electron model in the previous section is certainly very useful in explaining key features in
metals. Even though simple, the theory is based on the two quantum mechanical principles -
guantization of energy states and Fermi-Dirac distribution, which are essential for correct
theory of solids.

Nevertheless, it cannot explain several phenomena. Notable examples are as follows:
1) Existence of hole carrier (instead of electron carrier) in some metals.

i1) Boron is an insulator while its vertical neighbor aluminum is an excellent metal.
1) Why materials like silicon does not show metallic character?

So, what is missing in the free-electron theory? Foremost, the potential by ions were completely
ignored. In crystals, the atoms form a periodic structure. Therefore, the potential is also periodic.
In this chapter, we will explore solutions of the Schrédinger equation when the potential is periodic.



2B.1. Overview on the Crystalline Structure

Basic definitions

Conventional Unit Cell & Primitive Unit Cell

As you have learned in Crystallography, the crystal is just a three-dimensional repetition of atoms.
That is to say, the system is periodic and invariant under translation of R = n,a,+n,a,+nsa; (n,,n,, and
n;are any integers). We call a;,a,, and a; lattice vectors. The minium periodic unit of the crystal is
called the unit cell and it contains basis atoms. In other words, you can make a crystalline structure

by repeating basis atoms infinitely with lattice vectors. Bravais lattice is the lattice points expanded
by a;,a,, and a; (just one basis atom).

Ex) FCC structure

(a) FCC Unit Cell

Lattice vectors in cartesian coordinates:

a; =a/2(1,0,1) = a/2(X + 2).

a, = a/2(1,1,0) = a/2(2 + 9). %, , and 2 are the

ay = a/2(0,1,1) = /2§ + 2) Cartesian unit vectors.

L : Basis atom: (0,0,0
FCC (primitive) unit cell asts atom: ( )

a: lattice parameter 3



Ex) Silicon (Diamond Structure)

GaN Ex) BCC Fe

Lattice vectors: Basis atoms:
a, =a/2(1,0,1) (0,0,0)
a,=al2(110) (.. %)

Figure 10 Primitive translation vectors of the body-

az = a/2(0,1,1) centered cubic lattice: these vectors connect the lattice
.. ) point at the origin to lattice points at the body centers.
The position of basis atoms are usually The primitive cell is obtained on completing the rhom-
referenced to lattice vectors. That is to say, bohedron. In terms of the cube edge @, the primitive
(Y, Va, Va4 ) = Ya a,+ Y4 a,+ V4 a3, Lattice translation vectors are
vectors are in cartesian coordinates: a; = a,=zax+y—2) ; a,=30(—%+9+2) ;

a/2(1,0,1) = a/2(X + 2). a; =3k —§+2) .



Reciprocal Lattice

For lattice vectors a,, a,, and ag, reciprocal lattice vectors b,, b,, and b, are defined as follows:

dg X ag dg X ay a; X a
by = 2m 1 2

b3:2ﬂ'

by = 2w
' a; - (az x ag) : a; - (a2 X ag) a; - (ap X ag)

Note that the denominator is the volume of the unit cell. The Bravais lattice G expanded by
these vectors, i.e., G = m|b,+m,b,+msb; (m,m,, and m; are any integers) are called the
reciprocal lattice. The space in which by, b,, and bs lie is called the reciprocal space or k-space,
which contrasts with the real space or r-space. Keep in mid that reciprocal space is an
imaginary space that is mathematically constructed. It is completely different from the real
space. It is straightforward to show that b; - a; = 276;;. This in turn means that exp iG-R =1
for any G and R.

r space Vvs. Kkspace

Band Structure
Diffraction



Examples)

Cubic > Cubic

Real space

Real space Reciprocal space Reciprocal space

The lattice parameters in real and reciprocal spaces are inversely proportional.
If the real lattice is BCC, the reciprocal lattice is FCC.



One can also define the reciprocal lattice for low dimensional systems. In this case, we can ignore
periodicity in the unused dimensions by simply equating the lattice vectors with the unit vector along

the direction.

EX) 2-d system in the xy plane — a; =2

Square lattice

I Space a

a<o>n

Kk space .
2m/a 0

Hexagonal lattice (ex. graphene)

y
AV

A
3 X

1

30° rotated hexagonal lattice

al—ax
a—££+£af/
2727 2
(a, = 2)

Zpﬂ j;\
b, =5 x-—==
. ak \/5)

20 2
b2=—'0—y

a /3
(b, =2p2)
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EX) 1 D system along the x-axis — a, =y, a; =2

a

<>
r-space oo —o—> X
0 —2a —a 0 a 2a

P
/-
<>
k_space @ @ @ @ *—> X
_4p 2p 0 2p 4p

a a a a



Brillouin Zone

Definition) A primitive cell in the reciprocal space whose boundaries are set by intersecting
planes (lines in 2-d and points in 1-d) connecting points in the reciprocal space

Ex) 2D square Bravais lattice
K space

'?\ The number i in each zone indicates that points in the
v - zone relate to the central point as the i'" nearest neighbor.
Each zone is named as it Brillouin zone (BZ). Every it
BZ expands the whole k space when added over lattice
points. 15t BZ is a unit cell of the reciprocal lattice,
which is called the Wigner-Seitz cell.

- r 3 s
y \ e S #
| R ; :
[ a1 B . a’ :
! . / Y
- S )




» Examples of 15t BZ.

1D 2D
Square lattice Hexagonal lattice
r-space oo o o o . s &
_— —2a —a 0 a 2a . =
L ] L L . . .
1 L L L] ] [
1t BZ : 1 1
— PS
‘ ‘ L il ] P
® A
4p 2 20 4 . . s e
_dp _2p 2P 4p . wé&'“ﬁ
a a a a Y g
. /S e » <
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3D
k-space: BCC

r-space: FCC

15t Brillouin zone:
truncated octahedron

In the 15t BZ, points with high symmetry are called the special points and given specific names. The
name depends on the crystal system but some names are commonly used. For example, I" point
always means the origin when certain lattice point is assigned to the origin. X point is the
intersection between the x-axis and boundary of 15t BZ. In the above example, there are 6 points that
are equivalent to X if the crystal has the full symmetry of FCC. 11



(skip)

Repeating the truncated 15t BZ of other structures.

octahedron fills the whole space
without leaving any void.

Simple cubic

12
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2B.2. Bloch Theorem

Because of translational symmetry of atoms in crystals,
the potential experienced by electrons is also periodic in crystals.

¥ - 2 Figure 8.1

- 4UM A typical crystalline periodic
: potential, plotted along a line
of ions and along a line mid-
way between a plane of ions.
(Closed circles are the equi-
librium 1on sites; the solid
curves give the potential
along the line of ions; the
dotted curves give the poten-
tial along a line between
planes of ions; the dashed
curves give the potential of
single isolated ions.)

Mathematically, V(r + R) = V(r) for any lattice vector R. What is the solution of
Schrodinger equation under this potential?

{_;_ZVZ + V(r)}w (r)=Ey(r) V(E+R)=V(r)
m
-Thu/9/10/20
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2B.2. Bloch Theorem

There is a theorem that applies to any energy eigenstate under periodic potential. It starts with
the question that whether the eigenstate is also periodic. That is to say, w(r+R) = w(r) ?. This
may sound plausible but it is incorrect. It is true that every physical quantity that we measure
should be periodic but we cannot measure the wave function itself. Instead, we can measure the
electron density or |w(r)>. That is to say, |w(r+R)|> = |w(r)|>. The mathematical condition
compatible with this was found by Bloch, who proved that the eigenstate under the periodic
potential can be expressed as:

y(r) = eieru!rz
where k_can be any vectorin the 1st BZ and u(r) = u(r + R), i.e, lattice periodic.
(For a proof, refer to A&M pp 133.)

This is called the Bloch theorem, and k is named as Bloch vector. The function in this form is
called Bloch function. According to this theorem,

. o . any lattice vector R
y(r + R) - esz(r+R)u(r + R) - elkXReszru(r) - eszRy(r) y

Therefore, |y/(r + R)|2 = |y(r)‘2 .

Momentum (p = mv) vs. crystal momentum?

The dynamic significance of the wave vector k can only be acquired when one
considers the response of Bloch electrons to externally applied electromagnetic
fields (by electron dynamics). Refer to Aschcroft/Mermin pp. 133.

14



Bloch Wave w(r) = ek u(r)

A/ M u(r+R) = u(r)
\ R kin the 1%t BZ
#}f \,\) \/J \“f,‘x kf\] any lattice vector R

Solid line: a schematic of a typical Bloch wave in 1D.
(The actual wave is complex; this is the real part.)

The dotted line is from the ek factor. The light circles
represent atoms. from Wikipidea

15



(skip)

When we put this form into the Schrdodinger equation,

2

{—h—zvz + V(r)}[/(r) =Ey(r)— [—h—Vz + V(r)}e"k'ru(r) = Ee™"u(r)
2m 2m

2
— - 2h— e’ (—|k‘2 +2ik-V+V? )u(r) +V(r)e™ u(r)= Ee™ u(r)
m

N _Zh_z(_‘k‘z +27k -V + V2 )u(r) +V(r)u(r)=Eu(r) with u(r)=u(r+R)
m

Therefore, for each k, we solve different Schrodinger equations. In the next section, we will first
solve this equation for the simple 1D system.



2B.3. Kronig-Penney Model

Kronig-Penney model is the simplest 1D periodic model. Nevertheless, it exhibits many essential
features of periodic system. In many textbooks, the analytic approach is discussed but we first
investigate the numerical solutions.

V(X)
N
a: lattice parameter
I W: barrier width.
U U: barrier height
W
e=0 \ > X-axis
—2a —a 0 a 2a
When the Bloch theorem is applied on 1D system,  y/(x) = e™u(x), - Porel
a a
n d’
VD 4y (o) = ey )
m dx

N _h—z(—kz + 2iki+ d—ZJu(x) +V (x)u(x) = gu(x)
dx dx

2m

17



(SKip)

Since u,(x) and V(x) are periodic (u(x+a)=u(x), V(x+a)=V(x)), one can expand them using Fourier

series, 2pm v
X O

u(x) = a c, ¢ o = a c e

1 2,0m

; 0, u(x)e a

By inserting u(x) into the equation in the previous page,

Then multiply e ~*%¢* on both sides, integrate with x
from 0 to a, and use the relation foa etGn=Gox gy =

.I"_ —————————————————— 1
[
o) '

a :
| m +Vo v, V, : )
I hzkz I C—l
: 4 o +V, v, : ¢, |=¢€

2 | C
I 1
I hz(k+2ﬂ) I :
a
: v, 4 . +V, :
I .

k = pi/a 0f Afsinusoidal potential £ 7/ &6t 1 2x2 &&= XI5 E0/2 5

2,0n
Vi(x)= a Ve a
=_¥
l . _i2pm

V = ;00 V(x)e ¢ dx

[eS]

w | #2 2
Z h (k2+ Gn) + V(X) cneian —c 2 Cneian
= —oo m

n=—o0

- | B (k+G,)

>

Nn=—co

5 5M+V/_n c =&c
" , ,

This is equivalent to the matrix eigenvalue
problem. In practice, the matrix is cut into a
finite size (10x10 is enough). From the
eigenvalue problem, a series of quantized
energy levels are obtained and they can be
labelled by (n,k), inwhichn=1, 2, 3,...
indexing the energy level in the increasing
order. ‘n’ is called the band index. This means
that (n,k) is the quantum number in the
crystal and the energy and eigenstates can be
labelled as ¢, and = K" u,. 18



Free Particle or Empty-Lattice Approximation (witha=4.54, U=0 ‘

Band Structure = oo :

The results were produced by

(collection of Energies ¢,,) . KPmodelm
20— ‘ C

15+°, o

10 ¢ % o

Energy (eV)

—m/a -0.5 0 0.5 7t/a

Zone boundary

Note that k points can be any real number within 15t BZ. Here we
uniformly sampled k points with an equal spacing. In reality, the
band structures consist of continuous lines.

19



Free Particle V/S.

However, we already have the solution
for the free particle state:

hk?
w(x)=Ae™ & E= —
M
4th 3rd 2nd 1tBZ 2nd 3rd 4th
20 T T ' . L T
. . ] .
.............................. BecissssnnnnssnnnnnnnnasPyld
'. < ..................... >-. ........................... ..
® '. .' C
15+ .’ ‘ .. l. | :
. . . °
L] . . L]
* ] ] [ 2
0. o. .u .o
1ol .‘ ............... o > n. ..<. .................. ..
° . ’ °
° % o )
o o0 D
. .o'o 8
5 0. ..o o.. s
0.................'l ........ > '.. ..o
.... .... <. ............. LS ...... . ..;..‘
0 | v .
2 -1 0 1 2
3P _2p P p2p 3
a a a a a a

Empty-Lattice Calculation

—i2pNx
e =e a e ¢4

( N is an integer)

w(r) = e u(r)
u(r+R) = u(r)
k in the 1stBZ

Enk
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Weak Potential | a=z452 w=34 U =3eV

When U is relatively small, the band structure is similar to the free-electron band structure.

20 o
18 e .
16 e °

b % A 3" band
12+ . .

10 - °° .
gl , Forbidden energies
2"d band

2 t.....‘“o.ooo“uoo““.'.“.j’ lSt band

-0.5 0 0.5

However, one clear difference is that there exist forbidden energy regions that electrons
cannot have. As a result, the allowed energies form “energy bands” that are separated by the
bandgap energy. Note that there is no such energy gaps in the free electrons.

To emphasize, the band structure or -k relation dictates the electrical and optical properties.

21



What is the Origin of the Bandgap? U=3eV

When superimposed with the free-electron band structure, it is found that the
bandgap is caused by the energy change near the zone boundary.

At the zone boundary K = st/a (A = 2a), the free electron states are:

P P
e , e " or sin Ex, COSEX (doubly degenerate)
20, | —a a a
* L ]
18 ". .o—
16 '-. .-° 1
14 - % o 1 P P : - ,0 _ -
2 K A Dt ~SIN—x  (If x =0 is set to the well center.)
2 ° * 1 a
Q. .0 -1
e o 0 5 10
10 - ::: 1 X ma \4
8 : L These two states are degenerate
6 . when U = 0.
00°.. ..°01|’ -7 0 5 10
> v /
2r ...‘....00000.‘...... 1 \\\ p
N 0
Y — ‘ ‘ < —~C0s—x (If x =0 is set to the well center.)
-0.5 0 0.5 a
1
(Gray: free-electron 05
band structure shifted oA INA
0 5 10
upward)

The two degenerate states are split (lifted) into two states with maximum and
minimum exposure to the barrier, creating the energy gap between them. This also
explains why the maximum splitting occurs at the zone boundaries where linear
combination of degenerate states produce states that are maximally or minimally
exposed to the periodic potential. 22
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w(x) = e**u(x)

u(x+R) = u(x)
Kin the 1t BZ

Since the two states could not fully avoid or face up to the barrier,
the energy splitting is smaller.
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The band structures drawn within the 1t BZ is called the reduced zone scheme. Below is
the extended scheme. The nt" band shift into the nth BZ.

Reduced Zone Scheme Extended Zone Scheme (red)
E
o B
" K, L
*e o Second First Second
167 *e o Brillouin Brillouin Brillouin Band
141 e o Zone Zone Zone
12 ¢ .o‘ ...
10© %ege’ . Energy I Forbid.den
R i gap energies
8 ..- '.. . , =
6 .o... .‘o. Band
00‘.. ..‘00 E/- - T - T > E \
47 ] : : i
L1, 5 SE o lard Energy gap ;ﬂ:i;lz(:
o | | | < \__//f : Band /
0.5 0 05 —2mla —ma O
— pikX
w(x) = e**u(x)
U(x+R) = u(x) ik 22y 2P i(k+2P)x

e“u(x)=e e “ux)=e < ub(x)

In the extended zone scheme, the energy splitting occurs between zone boundaries.
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0
k —
Figure 4 Three energy bands of a linear lattice plotted in (a) the extended (Brillouin),
(b) reduced, and (c) periodic zone schemes.

(skip)

Periodic zone scheme is just for
representational convenience.

For a given band index n, £ (k) has no
simple explicit form. The only general
property is periodicity in the reciprocal
lattice:

&,k + K) = &,(K).




Bube Fig. 7.4
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Bldch Theorem

w(r) = e*ru(r)

Group Velocity
Bube pp. 124-125

The extended zone scheme is useful in understanding
the band structure when the potential is weak and
electrons are free-electron like. One can simply start
with the free-electron band structure and split the
energy at zone boundaries. By folding the band
structure into the 1%t BZ, one may obtain the
approximate form of band structure in the 15t BZ. This
Is particularly useful in 2D or 3D.

Important:

In the free electron model, k relates to the particle
momentum or velocity (p = #k). However, in the
periodic system, k is the Bloch vector and 7k is called
the crystal momentum, which can be very different
from the real momentum especially near the zone
boundary. We will learn more about its meaning in the
next chapter.
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How similar are the Bloch function e**u(x) to the free electron wave function elkx ?
This can be examined by plotting the periodic u(x). Ifitis close to a constant function,
the Bloch state is similar to the free-electron state.

w(x) = e**u(x)

u(X) # constant function

10

like behavior

20 o o
) °
18 e o
° °
° °
16 e °
L] [ )
14 + " '.
[ ) L]
[ )
12+ ..
°
o o
10 1 %°
%
o %
8t .
o*
6 o'. "o L
o’ e 0
o0® ‘On
4
6o
P00, o0®®
Free-electron </—L —" /‘.’\‘\
\ 1 ...............

O

10

5
u(X) = constant function

Re[uk]
I T
-1

10
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Analytical approach

d’ 2m
(I) dxyz/+h2 Ey =0,
d’y  2m
(1) 2 + 2 (E—VO)I//:O.
2m »  2m
az—?E, Y _?(VO_E)

l//(X) = U(X) : eikx (Bloch function)

dx® dx®  dx

=

(skip---)

2 2
'y =(d u, du 2ik—k2uJe‘kX.

>
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- Put it to equation (1), () then
2
(I) d—lZJ—FZikd—u—(k2 —Olz)U =0,
dx dx

d’u . du
@ — +2ik——(k*+7*)u=0.
dx? ax ( 7)

[ (I) U= e—ikX(Aeiax + Be—iaX)’

(@ u=e"(Ce" +De™).

Boundary condition

) v, =Y,
(dl///dX)I = (dl///dX)II

29



(1) At x=0
A+B=C+D.

A(ic —ik) + B(—ia —ik) = C(=y —ik) + D(y —ik).

(2) From periodicity , Eq | = Eq Il (at x=0,x=a+h)
Ae(ia—ik)a n Be(—ia—ik)a _ Ce(ik+;/)b n De(ik—y)b.

Ai(ar — k)& — Bi(a +k)e )
= —C(y +ik)e™ 7 4 D(y —ik)e™ 7.

From this 4 equations we can determine unknowns A,B,C,D and the
conditions which tells us where solutions to the Schrédinger equations
exist.



Krong-Penney approximation:

- - . ... (Thatis to say, the potential is a delta function.
b— 0 but Vb (potential barrier strength) is finite (That is to say, the potential is a delta function.)

cosh(yb) =1 and sinh(yb) = yb.

PRl . cosera

m .
=) —V,bsinca+cosaa=coska. a
3
ah 2

-3n - [1] n 1\37;
sin aa RANNAEA 1 7 2= 7 -
P + C0S a = cos ka. )
aa
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(SKip)

Because of —1<coska<1

Sin aa

P

+CO0Saa are allowed at specific region of aa

¥

aa

It means that Energy of electron is forbidden at specific regions

m
Because of @ = — E, this forbidden regions are called by “Energy
h

band gap”.
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2B.4. Density of States

According to the Bloch theorem, there are infinite number of states because k is continuous. This
Is unphysical because any system is finite. Let’s check how the finiteness can limit k values.
Suppose that N unit cells (N around the Avogadro number) are connected in a macroscopic circular
ring with a regular spacing of a (periodic boundary condition or Born-von Karman boundary
condition). This boundary condition is compatible with the translational symmetry of crystal, i.e.,
V(x+a) = V(X).

Y(x)=e"u(x) (u(x+a)=u(x))
Y(x+ Na)=y(x)
N eik(x+Na)u(x + Na) — eik(x+Na)u(x) — eikxu(x)

i Vi gu gl X VA T T & e
— 000006 666s:
e YL L 0608606666600 $opg T

™M =1 kNa=2mp mV12)—> k=—"2

Therefore, Bloch vectors k are not truly continuous and they are separated by a constant Ak = 2zt/Na,
which is a extremely small number because N is on the order of Avogadro number. Since Kk is
confined with the 15t BZ,

Free Electron

p p_, P .2mp_p N N k = zn/L
a

-C<k<E 5 -F< - —<m<— .
a a a Na 2 2 potential well

Thus, the number of possible m is exactly N. If there are N cells in the whole system, each band has
N discrete points within 15t BZ. Since each Bloch state can be filled with two electrons (spin up and

down), one band can house up to 2N electrons, i.e., 2 electrons per unit cell. .

-Tue/9/15/20



At 0 K, electrons are filled up to the Fermi level (Ep). If there is only one electron per primitive unit cell,
half of the bands are occupied. To be specific, E¢ is increased up to the point where the projected line on
the k-axis is the half of the total length of 15t BZ. N, = number of electrons per primitive unit cell.

201. | | | 'l

18 re o
161 B . | The Fermi level can lie at any point
°r i i o within the bandgap at 0 K. (At finite T,
14 '.1- L.’ ] E- is close to the middle of the
i°, K| bandgap as will be discussed later.)
12 7 i ... ... i
i I . o I
Ot b---ss -t Er when N, =4
8 i ...o o... i
le  _______d e _
6 ----::;-!---- T’... E- when N, =
00... 1 1 ....0
4emmmm- e fo—==—r---- E- when N,=2
s0e,, 1 1 0000
Py T st ity E; when N, = 1
1 / 1
0 1 ‘ 1
0.5 0 0.5

quantized k space

The bandgap or energy gap (Ey) of the material is the difference between the energies of
highest occupied (HOMO) and lowest unoccupied states (LUMO). If Eg is zero, it is metal. If
E, is finite but small (~1-3 eV), it is semiconductor. Otherwise, the material is an insulator.
(The boundary between insulator and semiconductor is not clear-cut.)

The above 1D material is metallic if electrons per unit cell are odd numbers. When the

number is 2 and 4, E exits. 4



(skip)

The density of states can be obtained by applying the definition to the band structure. That is to
say, D(E)dE = number of states in [E, E+dE]

Energy

Band DOS
-2.5 : -..;.. : s
-2.55 s
2.6 6
-2.65 - . o 265
o.. E) l
hl s L 27
. L
=275 S . -
2.8 “ons 2.8 . .
van Hove singularity
-2.85[ i
-2.85
tangent slope at band edges
2-9: /"‘r'/ 2.9 1
"u..'% o )
O X:] S— = — E o Etop >
-3 1

1 1 1
D(E R S —
() H|tan9ent sloge atE| H k “Jé 1D

Since the band shape near the top and bottom of each band is similar to that of 1D free
electron system, DOS is also similar to the free-electron form (D(E) ~ E™0).
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2B.5. Tight-Binding Approach

Deep potential :

............. () = 6T U
az45h w=3A. U=50eV I ANt AAAE AN
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o® L A S — — band structures Of free electrons
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and 15t excited state of the
guantum well.
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32.9
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000
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These bands originate from the eigenstates in the guantum well.
Nodal points (e) between orbitals are signature of anti-bonding

character.
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Cf. Bonding and antibonding in H, molecule.

H H H H
a i \ Iyl , N\ I,
H I I | |

| I I !
Two hydrogen atoms ‘ ‘ : :
approaching each other. (a) Electron probability distributions for bonding and antibonding orbitals, w_ and y_..

e E .
/ N

\\
_"_ E\s 1 AE = Bonding
. % s energy
Eﬂ'

Bonding molecular orbital H atom H, H atom
l : W, =¥15(ry) +¥(rp) ° o o °
|
t t r

> o

r

Yox = Wls(rA) - l//]s(rg)
Antibonding molecular orbital

System

2 H atoms
Ol-----A-—- = . 2 Electrons
Bonding 1 Electron/atom
energy 1 Orbital/atom

Interatomic
© x separation

I
|
0 a R

(a) Energy of y_and y . vs.
the interatomic separation R. 38
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F O‘d ..... \ff*ﬁ*ff‘fdffu , Fu”y bondlng

8.784 / o 10 20 30 40 0 10 20 30 40
8.7835 sen,,
°, - . .
8.783 %o
. ..

8.7825

0 10 20 30 40 0 16 26 3‘0 4‘0

8.782

v

Fully anti-
bonding

It is seen that the phase relation between orbitals is determined by the phase factor of eix,
W (x)="+ e M Pp(x+2a)+ e P(x + a)+ e'P(x) + e P(x — a)+ ™ Pp(x —2a) + - -
where ¢ is the ground-state wave function in the isolated quantum well. This is called the tight-

binding approach or tight-biding approximation. .



Tight-binding approach works when orbitals at different atomic sites are well separated. This is a
o00d approximation for most states in real solids except for conduction electrons in metals for
which free electron picture is more appropriate. When ¢ (x) is a localized function that is an

eigenstate of the isolated potential, the eigenstate of the periodic potential is approximated as (skip)
follows: - ) o . .
inka In chemistry, this is known as the linear combination
w(x)= ), e"Pp(x—na)

= of atomic orbitals (LCAO)

This approximation is consistent with the Bloch theorem:

¥ ¥
y(x)= é " fx - na) = ™ é e (x'"”)f(x - na) = e™u(x)

n=-¥ n=-¥

The energy of this state is obtained by the Schrédinger equation.

N inka N\ inka hz d2
V= Ze k¢(x—na): Ze k(bﬂ%Hl//le// [H:—2——2+V(x))

— oo m dx

z einkaH¢n —¢ Z einka¢n
n=—oo n=—oo
Z einkaj¢mH¢n — ¢ 2 einka‘[qu(bn ~ £ Z einkaém,n — geimka
n=—00 n=—oo Nn=—oco
_[ o Hp = €, m=n (on-site energy)

R t m=nztl
eikmago +t(eik(m+1)a + eik(m—l)a) — geikma

—>E=E, +2tcoska
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€=e,+2tCcoSka

t<O0

2t

—ni/a 0 n/a
k

t is called the transfer integral and its magnitude mainly
depends on how much two neighboring orbitals overlap.
When wave functions overlap with the same phase, this
value is usually negative. The 15t and 2" bands of the

deep potential is well approximated by this energy form.

The band width (2t) of the second band is larger than for
the first band. This is because the orbital forming the
second band is more extended so the neighboring
orbitals overlap more than the first band. (Recall the
tunneling effect for the finite qguantum well.)
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32.85

32.8

32.75

32.7

8.784

8.78354

8.783

8.7825

8.782
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Energy Bands vs. Distance Na: 1s22s?2p®3st Cohesive Energy vs. Distance

0

}3:! !
7 4s
3p
/ el i il o v 35

Observed valve of /7

3 Ro = 36T A
. |
¥ |
5 -20 - | —
|
| - 2
| 2 , : i
| R = 3.67 A 10 A )
| L
5 10 I
R ()
(g} (b)
Bube F16.73 @) Energy bands developing in metallic sodium as a function of the interatomic
distance R. (From J. C. Slater, Phys. Rev. 45, 794 (1934).) (b) Specific energy-band formation
for three values of R. .
4.6 eV for c-Si

Cohesive Energy = Energy required to form separated neutral atoms

in thelr ground state from the solid at 0 K at 1 atm 42




When bands from different orbitals overlap, they are intermixed (no pure 2s or 2p bands).

2 I
%ﬂ A | E Overlapping energy bands
=] i
t : T Free electron A Free electron
% ------- L E = 0 (vacuum level) E=0 __3_S | Vacuum I _
2 2z X E level T 1
- E, T 2 :_: 3
=4 o Ezp 5 f—2p
2 * . 2 el & L 2
el Li- 15725 ¢ | 2 ssssessesseses o
* E sesssssesessss (Ciccrons | |
| | |
= Eu 2 Sessssssseesss o
j Interatomic ! 00000000000000] v | |
R '= j » =| - > separation (R) Ny : : s
The solid Isolated atoms Solid Atom
Figure 4.9 AslLi ms are br h her . .
; S _ef 9 hs ato ] sa E_ b loug t'ltoget s Figure 410 In a metal, the various energy bands
rF)m |-n inity, the atomic or |’Fa s overlap an overlap to give a single energy band that is only
give rise to bands (Schematic only.) partially full of electrons.
Outer orbitals overlap first. The 3s orbitals There are states with energies up to the vacuum
give rise to the 3s band, 2p orbitals to the level, where the electron is free.

2p band, and so on. The various bands
overlap to produce a single band in which
the energy is nearly continuous.

43



(SKip)

- B - BB B D BB > g(E)

Energy band
(a) (b) (c)

Figure 4.23 (a) In the solid there are N atoms and N extended electron wavefunctions from ys
all the way to yy. There are many wavefunctions, states, that have energies that fall in the central
regions of the energy band. Note that although only eight atoms are shown, these are eight
sequential atoms among N atoms, and N is very large. Overall, the wavefunctions for N atoms
must be symmetric or antisymmetric. (b) The distribution of states in the energy band; darker
regions have a higher number of states. (c) Schematic representation of the density of states
g(E) versus energy E.
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Free Electron Limit » Band Structure « Isolated atom

Weak Periodic Potential T|ght_B|nd|ng Approach
Weak Potential Strong
Momentum Kk Bonding-antibonding
\Vacuum Materials Science Chemistry

Inorganic Chemistry

v

e e u(r) - u(r)

The bands in real solids have both free-electron and tight-binding natures. Depending on
the situation, one of them provide better interpretation. Since the valence bands are low in
energy, they are well described by the tight-binding approach in most cases.
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2B.6. Band structures in 2d

a

2d square lattice

H B (=
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The full 3-d band structure is beautiful but it is difficult to capture the whole aspect in one shot. In
addition, the band structure of 3d materials cannot be visualized in this way. Therefore, one usually
plot the band structure along the lines connecting high-symmetry points.

Energy (eV)
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02052000 RS
i N S
CIALT DS
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0.5 -0.5

+ fa

Line plot S

Degenerate

First Brillouin zone
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Gamma
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Weak potential (@a=5A,W=3A,U=3¢eV)

. 7 P
4 AN N
N
Wﬁ"& "

0.6 0.4 0.2 0 K 02 -04 -06

Energy splitting at zone boundaries! Unlike 1d, this
does not result in the gap opening. In 1d, the periodic
potential is unavoidable, which is not the case in 2d.

7’% N

6,

Gamma X v M Gamma

Degeneracy is lifted because of the periodic
potential. This is similar to the 1-d case. 48
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Strong potential (@a=5A, W=3A, U=6¢eV)

Gap opens!

3 '
n - o - no w S o [} ~
) ; , , P ,

Gamma X M Gamma

However, recall that this line plot is along the high-
symmetry points. Therefore, the appearance of band
gap in the line plot does not necessarily indicate the
finite band gap, which should be checked over the
entire 15t BZ as in the left figure. Nevertheless, in
most materials, the band extrema (maximum or
minimum) usually appear on or between high-
symmetry points, so it is enough to check the band
gap in the line plot.
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Constant energy line (surface in 3d)

Weak potential (a=5A, W=3A,U=3¢eV)

1t band 2"d band

gy O
7 AT
A T RNRNIR

Ol AL T FALIIRED
4

N « Curves of equal energy inserted into the first
—s Brillouin zone for 2-D square lattice

N - -
It can be proved that the constant energy line always perpendicular to
3

the zone boundary. 50
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Electron occupation

Like in 1d system, each state is separated in the regular mesh in k,-k, plane with the total number in
the BZ equal to the number of whole cells. Therefore, each band can house up to 2 electrons per cell.
In the below, occupied states are marked in shade when N, = 2.

weak periodic
patential

P )
// Strong periodic
E / potential
.
. _ 7r 7r
no periodic potential
6 6
=)
5¢ 5¢
4r 4+
S A \_! e = A
e — E 3 3
F
2 2
1t 1t
0 : : 0 :
Gamma X M Gamma Gamma X M Gamma
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Fermi surface in 2d

Collection of k points crossing the Fermi level in 3d is called Fermi surface. That is to say, equal energy
surfaces for the Fermi energy. All k points inside the Fermi surface are occupied. For free electrons, the
constant energy surface is always spherical. Here “inside” means the direction to which the energy
decreases.

Weak potential Strong potential

1% band 2nd pand

Energy (eV)
o - N w = w (2] ~ «©

O b Nk
>

—— Fermi surface (line) when N, = 1

—— Fermi surface (line) when N, = 2
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Fermi surface repeated in the periodic zone scheme. Fermi surfaces of real
materials (see later) can be understood schematically using 2d models.

Strong potential
Weak potential

Li, Na, or K

‘ T '

Cu, Ag, or Au

) X

A TTE

‘ .\\\\\\
‘ _maae '
‘ ‘\\\\\\

l’,”. \

Be, Cd, or Zn 53
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2B.7. Band structures in 3d

Band structure of free electrons on FCC (empty) lattice

Figure 9.5
2 Free electron energy levels
4 &/6 2 2 2
2 b= _(k +h, K, for an fcc Bravais lattice. The

LI
7 1\ X

X\

N\ e

4

=N Wk O

Electrons per unit cell

energies are plotted along
lines in the first Brillouin
zone joining the points
I'k =0), K, L, W, and X.
&y 18 the energy at point X
([#*/2m][2r/a]?). The hori-
zontal lines give Fermi
energies for the indicated
numbers of electrons per
primitive cell. The number of
dots on a curve specifies the
number of degenerate free
electron levels represented by
the curve. (From F. Herman,
in An Atomistic Approach to
the Nature and Properties of
Materials, J. A. Pask, ed.,

(SKip)

Some of the lines are degenerate. Wiley, New York, 1967.)

Like 1d&2d, the number of states constituting each band is equal to the number of unit cells
In the macroscopic material. 54



For real materials, the band structure can be calculated quite accurately using the
computational approach based on the density functional theory. The following is
the calculated band structure of Al (=[Ne]3s23p?) for valence electrons.

1.2F There are three valence
- \ Al / electrons per cell.
1.0 \ // R\ %
L \\ 7 . \ 7
~ Fermi level N\ L
- 8 z N\ 0
= = I"f "'r;:.:\.
= =11.4eV (11.7 eV from free-
4 electron model)
Ry =
v
r X W \ L r K X

1 Rydberg = 13.6 eV Degeneracy along the high-symmetry line is lifted by the periodic potential.

The band structure is similar to the free-electron model, except that degeneracy is lifted by weak
potential by ions. For metals belonging to group I, I, I11, and 1V, s and p electrons experience only
weak ionic potential, because potentials are largely screened by free electrons and valence electrons
are relatively away from the ion. These elements are called “nearly free-electron metals”. The band

structure explains why the free-electron model worked so well for these metals. -



Band structure of CU ([AF]3d10481)

One can know the orbital character of the band by inspecting the wave function shape.

Figure 15.4

(a) Calculated energy bands
in copper. (After G. A. Bur-
dick, Phys. Rev. 129, 138
(1963).) The & vs. k curves are
shown along several lines in
the interior and on the surface
of the first zone. (The point I
Is at the center of the zone.)
The d-bands occupy the
darkest region of the figure,
whose width is about 3.5 eV.
(b) The lowest-lying free
electron energies along the
same lines as in (a). (The
energy scales in (a) and (b)
are not the same.)

s-band (close to the free-electron band)

/

E

$ d-band (localized and so

well described by tight-
binding approach)

: |
Only 4s states behave like free electron. This is why we assume one free electron for Cu. The
d electrons are more localized than s electrons and so they are better described by the tight-

binding approach and develop flat bands.

Even though d electrons contribute to chemical

56

bonding and belong to the valence band, they do not behave like free electrons.



Fermi Surface of Some Metals

Collection of k points crossing the Fermi level in 3d is called Fermi surface. That is to say, equal
energy surfaces for the Fermi energy. All k points inside the Fermi surface are occupied. For free
electrons, the constant energy surface is always spherical. Here “inside” means the direction to which

the energy decreases.
K
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Museum at Cambridge University

The FERMI SURFACE is a 3 dimensional reL')resentat;onto(f;bggtleute
maximum momentum which an electron may have in a.meto ah s
zero, The shape helps to determine many propertles‘of the me ; :
eg, electrical and thermal conductivity, Hall coefficient, magneto

resistance and cyclotron resonance frequency.
A freely moving electron of mass m
Free electron and momentum p has an energy given by E=§ 5
m
E is the same whatever the direction of P
so the surface of a sphere of radius p is a
constant energy surface.

7constant energy
/surfaces

4 In a metal the electrons interact
with the metal atoms and this alters the
simple energy equation. As the atoms are
arranged in a regular lattice the
interaction is different in different
directions, ie. for constant E the value
of p varies in different directions,

Electron in
a metal
—— e L

Ref, Kitte],

Solid state pp a1




Density of States Near the Bandedges

3D
2 A
Near the band edges, E = i%lk— kol?. E ‘I
Therefore, DOS is proportionaltg /E as |
was calculated in the free-electron model. |
% 0 ﬁ - \/Etop _:E
D(E)= Lz 2_’? JE Free Electron Model N(E) )
47°\ h ppt 2A-8 <}
|
D(E) Metals D(E) ~VE = Eqpom
Bube Chap. 7
or pp. 120-124
‘ Figs. 7-7 & 7-8
E. E
Partially occupied Bands overlap
Semiconductor Insulator
D(E) A D(E) A
AE ~ KT E AE >> KT E 59



Band Structure of GaAs

Zincblende
Lattice
(GaAs)

Bandstructure

L

_ \ & .
T o R Vil Direct bandgap

N
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Band Structure of Si ([Ne]3823p2) Valence electrons from 3s and 3p orbitals form the
bands around the band gap.

6 “valleys” 10 | | T .
: Conduction Bands
5 B - - - _
< Condygtion bandtinimum (0.85/X)
Le —
AN = 1.14 eV
-@---<--ne r'll S "AQ ZSZ(—-__} y \é
SN 2 W Fe1]
Fal dil S
©
' Valence Bands
1t BZ of FCC

r X W L r KWUJ X

In the band structure, the conduction band minimum appears at a point close to X along the I'"-X line
(around 0.85 X). Because of full symmetry of the diamond structure, this means that there are six k
points in BZ (@) that correspond to the conduction band minimum. When conduction band
minimum and valence band maximum appears at the (approximately) same k points, it is called
the direct bandgap. Otherwise, it is called the indirect bandgap. This distinction is very
important for the optical properties. 61



Band structure and DOS of Li (1s%2st)
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Band structure and DOS for Au ([Xe]4f1#5d1%6s?)
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flat d-band (can be well described by tight-binding approach)
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