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— Lattice vibration or wave describes the vibrational motion of
atoms in a crystalline solid in terms of a wave passing through
the atoms of the crystal as they are displaced by their thermal
energy from their equilibrium positions.

— The thermal properties of solids and the electronic transport
are strongly related to these lattice waves. SiC at 600 K

— The behavior of lattice waves and the derivation of the suitable
wave equation can be based on the same classical mechanics
approach we have used for waves in a string.

— Many of the major characteristics of the lattice waves can be
derived from the consideration of a one dimensional crystal

lattice, which can be thought as a kind of discontinuous string.
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2C.1. 1D Monoatomic Lattice

We first consider vibrations associated with a one-dimensional crystal in which all the atoms have the same
mass (M) and the same atomic spacing of a. The spring constant, which reflects interatomic interaction, is
also a constant K. The displacement of n™" atom from the equilibrium point is denoted as u,(t).
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Let’s consider the longitudinal vibration. The force on the n'" atom is affected by the stretch
or compression of the two springs attached to it.
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This is the wave equation for the discrete atoms. When a is very small, the left-hand side becomes
the second derivative of the displacement and the above equation becomes the wave equation for the
continuum.
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We look for a steady-state solution or normal mode in the form of u,(t) = A exp i(kna — wt), where k

is the wave number. Inserting this into above,
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There is a maximum frequency wmax = 2

This wave is called the acoustic mode and
neighboring atoms in acoustic waves move in
the same direction. When sound waves
travel in solid, they involve this type of
lattice oscillation near k = 0 (long
wavelength limit). Wavelengths of the sound
wave are on the order of m.
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Since the lattice spacing is a, the shortest possible wavelength is 2a, and any wavelength shorter

than this is unphysical in this system. This means that |k| bigger than 7t/a practically corresponds
to k within the 15t BZ (see below). This is also true for 2D and 3D systems.

k =12x/5a or A = 5a/6

'k =2n/5a or 1 =5a

Figure 5 The wave represented by the solid ' not gi ) -
dashed curve. Only wavelengths longer than 2a a motior Kittel Chap 4

The velocity at which traveling waves carry energy is v
the group velocity: A

dW (K\llz

v acos —ka\ = sound velocity
e Uwm) O)

The V., is obtained at the long wavelength limit, which ; v > [K]
corresponds to the sound wave. In the continuum
description,
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Speed of sound in normal air is 343 m/s. In water the speed of sound is 1433 m/s. Sound velocity in some common solids are indicated in the table below:

Medium Ves) ~300 m/s in air
shear -pl\l)unr;;tnul:irinr{al wave 3040 - 6420
Beryllium 12890
Brass 3500 - 4700
Brick 3600 - 4200
Concrete 3200 - 3700
Copper 3560 - 3900
Cork 366 - 518
Diamond 12000
Glass 3950 - 5000
Glass, Pyrex 5640
Gold 3240
Granite 5950
Iron 3850 - 5130
Lead 1160 - 1320
Lucite 2680
Rubber, butyl 1830
Rubber 40 - 150
Silver 3650
Steel 4880 - 5050
Steel, stainless 5790
Titanium 6070
Wood (hard) 3960
Wood 3300 - 5000



The transverse mode can be described in similar approach. The only difference is that atoms
displace vertically, so the restoring force is weaker than for longitudinal modes. In terms of spring
constant, K, > K+ (L: longitudinal mode, T: transverse mode).
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Coupled oscillator = independent normal modes with certain oscillation frequency



Phonon

We have seen in the simple harmonic oscillators that the energy of an oscillator with the angular
frequency of w is quantized as (N + 1/2)hw (n=0, 1, 2, ..). The same is true for the vibration in

solids: energy of each normal mode is quantized as (n + 1/2)hw, meaning that the energy-exchange
with lattice waves occurs in integer multiples of zw.

The quantized vibration is called phonon, similar to photon. And, the energy of phonon s
E phonon = A1 = hv. The phonon momentum is /2k, similar to photon. However, the momentum
of the phonon is sometimes called a phonon crystal momentum because the lattice wave itself does

not have a real physical momentum.

Phonon behaves as if it had a momentum 7%k in its interactions (with electrons or photons) inside the

crystal, and is involved in the momentum conversation law.



2C.2. 1D Diatomic Lattice Primitive Unit Cell

Next, we consider when the unit cell of the 1D lattice contains two basis atoms. The two atoms
could be of different kind or the same species with different left and right spring constants. The
two cases give qualitatively the same results so we will assume the latter case because it is slightly
simpler. . a
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2C.3. Band Structure and DOS of Phonon

In real materials in 3D with p number of basis atoms, for each normal mode identified by K in
the 15t BZ, the 3px3p dynamical matrix (like K and G) is constructed. This results in 3p normal
modes, among which three are acoustic branches. Collecting the (o, k) gives the phonon band

structure.
Dispersion curves or phonon band structure of fcc Pb.  In 3D, there are two transverse
Since there is only one basis atom, only acoustic modes for each propagating
modes appear. direction of k, they are indexed
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Figure 22.13

(a) Typical dispersion curves for the normal-mode frequencies in a monatomic Bravais lattice.
The curves are for lead (face-centered cubic) and are plotted in a repeated-zone scheme along the
edges of the shaded triangle shown in (b). Note that the two transverse branches are degenerate
in the [ 100] direction. (After Brockhouse et al., Piys. Rer. 128, 1099 (1962).)

The phonon band structure can be measured to high precision using NeUtron scattering. 12
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Phonon Density of States (DOS) ?,55125_33

Like in electronic band structure, K IS discrete, rather than continuous, for finite crystals, which
can be neatly handled by Born-von Karman boundary condition. The mathematical procedure is
exactly the same, which shows that k is discrete with a small spacing and the number of k points in
each band is exactly the same as the number of unit cell in the crystal. Like electronic DOS, this
results in the phonon DOS. The total number of normal modes is 3pN = 3x(basis atom) x (number of
unit cell) = 3x(total number of atoms in solid)!

Phonon DOS D,(®)
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structure measured with OB.4 Y
neutron diffraction



Densit StS DOYS) in Metal and Semiconductor

Phonon Density of States schematically




2C.4. Heat Capacity of Lattice Vibrations (skip---)

Mean thermal energy of normal modes

1) Semiclassical approach

At finite T, normal modes vibrate with certain amplitude and carry thermal energies. For a certain
normal mode with the angular frequency of w, the mean energy at T can be calculated using
Boltzmann factor. The probability P, for the oscillator in the n™" quantum state is proportional to
the Boltzmann factor: P, o< exp(—E,/kT) where E, = nAw. (Here the zero-point energy is
neglected.) From normalization condition,
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1) Quantum approach

Another way is to consider a normal mode as the bosonic system and each energy quanta as one
phonon particle. That is to say, a certain normal mode is a state that can be occupied by phonons.

According to the Bose-Einstein statistics, the number of bosons occupying a state with the energy
of Eis
1

S(E)= oL E-MIKT _

1

The chemical potential is zero for phonons or photons because the total number of particles are
not conserved and so cannot be a constraint for f(E). (Note that for electrons, x or E- was
determined by the total number of electrons.) Therefore, the occupation number for the normal
mode with the energy of zw is

1
E)=———
FEY=

The mean energy of the normal mode is then

E= Ef(E)=- h

ho/kT _q

which is the same as the previous result.

For acoustic modes near the zone center, the average energy is kT which is equal to the classical
equipartition theorem.
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Total energy of lattice vibration (phonons)

The total energy of phonons is given as follows:

Do — N (10))
U, = jo E(w)D,, (0)dw = jo i 7 D (@)d0
In Debye approximation, phonon DOS is simplified by assuming a linear dispersion (o = v|K|). This
results in Dp,(w) o 02 (v is the effective sound velocity.) m,, for the Debye model is determined
by the fact that the total number of modes up to ,,,, should be 3x(total number of atoms in solid). It
is called the Debye frequency. The Debye temperature (Tp) is given by Ty = hw,,,/Kg For detailed
expression of the model, please refer to Kittel or Kasap.
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Density of states for phonons in copper. The solid
“— curve is deduced from experiments on

neutron scattering. The broken curve is the three-

dimensional Debye approximation, scaled such that

the areas under the two curves are the same.

This requires that w,,,,, ~4.5%10%3rad s, or a

Debye characteristic temperature T, = 344 K.
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Phonon DOS D, (w)
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The v in the Debye model is the effective sound velocity. It is given by the average of
three acoustic modes as follows:

1_1(1 2)
73\ @)

where v, and v are sound velocities of longitudinal and transverse modes that are
experimentally measured.

D(w) o
More correct Debye approximation

From Kittel

O & V(67°Ny/V)'? (N, total number of atoms)

and v is related to the hardness (Young’s modulus). Therefore,

T, reflects the hardness.
21



By putting the analytic expression of D,(») from the Debye model into the total energy formula
and differentiating with respect to temperature gives the following formula for the Debye molar heat

capacity.
e C,»3R=249 (at high T>Tp)
T 1,07 x*e*dx
C,(T)= 9RK—J |’ o1 — {
€ C, ocL—J (at low T)

o 225> C =3R
0.9 Cu -
0.8 - Y (T =62 —20 .

N S Ip=OR ) . Debye constant-volume molar heat capacity
07 s curve. The dependence of the molar heat
0 -C e capacity C,, on temperature with respect to

CU/3R 05 3 - Jmole! the Debye temperature: C, vs. T/Tp. For Si,

04 3 - 10 Tp = 625 K so that at room temperature (300
0.3 3 i K), T/Tp =0.48 and C, is only 0.81(3R).
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(skip)

Table 4.5 Debye temperatures Tp, heat capacities, and thermal conductivities of selected elements

Crystal
Ag Be Cu Diamond Ge Hg Si W
Tp (K)* 215 1000 315 1860 360 100 625 310
Cp (J K= mol=1)7 25.6 16.46 24.5 6.48 23.38 27.68 19.74 24.45
cs(JK=1 g7l 0.237 1.825 0.385 0.540 0.322 0.138 0.703 0.133
Kk (Wm='K=hHT 429 183 385 1000 60 8.65 148 173

C,,: molar heat capacity
c.: specific heat capacity
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