2. Quantum Theory of Solids

2A. Free Electron Model
2B. Periodic Potential and Band Structure
2C. Lattice Vibration

2C. Lattice Vibration (Bube Ch. 3)
 2C.1. 1D Monoatomic Lattice
 2C.2. 1D Diatomic Lattice
 2C.3. Band Structure and DOS of Phonon 2C.4. Heat Capacity

- Lattice vibration or wave describes the vibrational motion of atoms in a crystalline solid in terms of a wave passing through the atoms of the crystal as they are displaced by their thermal energy from their equilibrium positions.
- The thermal properties of solids and the electronic transport are strongly related to these lattice waves.

SiC at 600 K

- The behavior of lattice waves and the derivation of the suitable wave equation can be based on the same classical mechanics approach we have used for waves in a string.
- Many of the major characteristics of the lattice waves can be derived from the consideration of a one dimensional crystal lattice, which can be thought as a kind of discontinuous string.

2C.1. 1D Monoatomic Lattice

We first consider vibrations associated with a one-dimensional crystal in which all the atoms have the same mass (M) and the same atomic spacing of a. The spring constant, which reflects interatomic interaction, is also a constant K. The displacement of $n^{\text {th }}$ atom from the equilibrium point is denoted as $u_{n}(t)$.

Let's consider the longitudinal vibration. The force on the $n^{\text {th }}$ atom is affected by the stretch or compression of the two springs attached to it.

$$
F=K\left(u_{n+1}-u_{n}\right)-K\left(u_{n}-u_{n-1}\right)=K\left(u_{n+1}+u_{n-1}-2 u_{n}\right)=M \frac{d^{2} u_{n}}{d t^{2}}
$$

This is the wave equation for the discrete atoms. When a is very small, the left-hand side becomes the second derivative of the displacement and the above equation becomes the wave equation for the continuum.

$$
\frac{\partial^{2} u(x, t)}{\partial t^{2}}=v^{2} \frac{\partial^{2} u(x, t)}{\partial x^{2}}
$$

We look for a steady-state solution or normal mode in the form of $u_{n}(t)=A \exp i(k n a-\omega t)$, where k is the wave number. Inserting this into above,

$$
\begin{aligned}
& u_{n+1}=e^{i k a} u_{n}, u_{n-1}=e^{-i k a} u_{n}, \quad \ddot{u_{n}}=-\omega^{2} u_{n} \\
& K\left(e^{i k a}+e^{-i k a}-2\right) u_{n}=-M \omega^{2} u_{n} \\
& K(2 \cos k a-2)=-M \omega^{2} \\
& 4 K \sin ^{2} \frac{k a}{2}=M \omega^{2} \\
& \omega=2 \sqrt{\frac{K}{M}}\left|\sin \frac{k a}{2}\right| \quad \begin{array}{l}
\text { : dispersion relation for } \\
\text { acoustic wave }
\end{array}
\end{aligned}
$$

$$
\lambda=2 a \quad \lambda=\infty \quad \lambda=2 a
$$

There is a maximum frequency $\omega_{\max }=2 \sqrt{\frac{K}{M}}$. This wave is called the acoustic mode and neighboring atoms in acoustic waves move in the same direction. When sound waves travel in solid, they involve this type of lattice oscillation near $k=0$ (long wavelength limit). Wavelengths of the sound wave are on the order of m.

The largest wavelength for an infinite string.

The shortest wavelength.

All the atoms displaced by the same amount in the same direction.

Since the lattice spacing is a, the shortest possible wavelength is $2 a$, and any wavelength shorter than this is unphysical in this system. This means that $|k|$ bigger than $\boldsymbol{\pi} / \boldsymbol{a}$ practically corresponds to k within the $1^{\text {st }} \mathrm{BZ}$ (see below). This is also true for 2D and 3D systems.

Figure 5 The wave represented by the solid curve conveys no information not given by the dashed curve. Only wavelengths longer than $2 a$ are needed to represent the motion.

Kittel Chap. 4
The velocity at which traveling waves carry energy is the group velocity:

$$
v_{g}=\frac{d}{d l_{1}}=\left(\frac{K}{M}\right)^{1 / 2} a \cos \left(\frac{1}{2} k a\right) \quad=\text { sound velocity }
$$

The $v_{\text {max }}$ is obtained at the long wavelength limit, which corresponds to the sound wave. In the continuum description,

$$
v_{g} \approx\left(\frac{Y}{)^{1 / 2}} Y=\text { elastic modulus, } \rho=\right.\text { density }
$$

$\psi(r)=\mathrm{e}^{\mathrm{i} k \cdot r} \boldsymbol{u}(r)$
Bloch Wave

Speed of sound in normal air is $343 \mathrm{~m} / \mathrm{s}$. In water the speed of sound is $1433 \mathrm{~m} / \mathrm{s}$. Sound velocity in some common solids are indicated in the table below:

Medium	Velocity (m / s) (ft/min)
Aluminum, shear - Iongitudinal wave	3040-6420
Beryllium	12890
Brass	3500-4700
Brick	3600-4200
Concrete	3200-3700
Copper	3560-3900
Cork	366-518
Diamond	12000
Glass	3950-5000
Glass, Pyrex	5640
Gold	3240
Granite	5950
Iron	3850-5130
Lead	1160-1320
Lucite	2680
Rubber, butyl	1830
Rubber	40-150
Silver	3650
Steel	4880-5050
Steel, stainless	5790
Titanium	6070
Wood (hard)	3960
Wood	3300-5000

$\sim 300 \mathrm{~m} / \mathrm{s}$ in air

The transverse mode can be described in similar approach. The only difference is that atoms displace vertically, so the restoring force is weaker than for longitudinal modes. In terms of spring constant, $\boldsymbol{K}_{L}>\boldsymbol{K}_{\boldsymbol{T}}$ (L: longitudinal mode, T : transverse mode).

Coupled oscillator \rightarrow independent normal modes with certain oscillation frequency

Phonon

We have seen in the simple harmonic oscillators that the energy of an oscillator with the angular frequency of ω is quantized as $(\boldsymbol{n}+\mathbf{1} / 2) \hbar \omega(n=0,1,2, .$.$) . The same is true for the vibration in$ solids: energy of each normal mode is quantized as $(n+1 / 2) \hbar \omega$, meaning that the energy-exchange with lattice waves occurs in integer multiples of $\hbar \omega$.

The quantized vibration is called phonon, similar to photon. And, the energy of phonon is $\boldsymbol{E}_{\text {phonon }}=\boldsymbol{\hbar} \boldsymbol{\omega}=\boldsymbol{h} \boldsymbol{v}$. The phonon momentum is $\boldsymbol{\hbar} \boldsymbol{k}$, similar to photon. However, the momentum of the phonon is sometimes called a phonon crystal momentum because the lattice wave itself does not have a real physical momentum.

Phonon behaves as if it had a momentum $\hbar k$ in its interactions (with electrons or photons) inside the crystal, and is involved in the momentum conversation law.

Next, we consider when the unit cell of the 1D lattice contains two basis atoms. The two atoms could be of different kind or the same species with different left and right spring constants. The two cases give qualitatively the same results so we will assume the latter case because it is slightly simpler.

$\stackrel{a}{\longleftrightarrow} \quad G \quad K \quad G$

$.000000 \mathrm{~W} \cdot 00000 \mathrm{~W} \cdot 000000 \mathrm{M} 000000 \mathrm{M} 000000 \mathrm{MM} 000000 \mathrm{M} 000000 \mathrm{M} 000000 \mathrm{M} \cdot$

$$
\begin{aligned}
& 00000 \quad G \text {-spring } \quad u_{n-1} v_{n-1} \quad u_{n} \quad v_{n} \quad u_{n+1} v_{n+1} \\
& \text { W }{ }^{K} \text {-spring } \\
& M \frac{d^{2} u_{n}}{d t^{2}}=K\left(\begin{array}{llll}
u_{n} & v_{n}
\end{array}\right) G\left(\begin{array}{ll}
u_{n} & v_{n 1}
\end{array}\right) \quad \begin{array}{l}
u_{n}=A e^{i(k n a} \quad \\
v_{n}=B e^{i(k n a}
\end{array} \\
& M \frac{d^{2} v_{n}}{d t^{2}}=K\left(\begin{array}{llll}
v_{n} & u_{n}
\end{array}\right) \quad G\left(\begin{array}{ll}
v_{n} & u_{n+1}
\end{array}\right) \quad \xrightarrow[\text { Normal mode }]{ } \\
& \left(\begin{array}{cc}
M^{2}(K+G) & K+G e^{i k a} \\
K+G e^{i k a} & M^{2} \\
\hline
\end{array}\right)\left(\begin{array}{l}
A \\
A \\
B
\end{array}\right)=\binom{0}{0} \\
& {\left[M^{2}(K+G)\right] A+\left(K+G e^{i k a}\right) B=0} \\
& \left(K+G e^{i k a}\right) A+\left[M^{2} \quad(K+G)\right] B=0 \\
& \text { (Eigenvalue } \\
& \text { problem of } \\
& \text { dynamical matrix) }
\end{aligned}
$$

For non-trivial solution, the determinant should be zero.

$$
\left[M^{2} \quad(K+G)\right]^{2}=\left|K+G e^{i k a}\right|^{2}=K^{2}+G^{2}+2 K G \cos k a
$$

$$
{ }^{2}=\frac{K+G}{M} \pm \frac{1}{M} \sqrt{K^{2}+G^{2}+2 K G \cos k a}, \quad \frac{B}{A}=\frac{K+G e^{i k a}}{\left|K+G e^{i k a}\right|}
$$

i) $k \sim 0$ (long wavelength) $\cos k a \sim 1-(k a)^{2} / 2$

$$
=\sqrt{\frac{2(K+G)}{M}} \quad O(k a)^{2}, \quad \frac{B}{A}=1
$$

$$
=\sqrt{\frac{K G}{2 M(K+G)}}|k a|, \quad \frac{B}{A}=1
$$

ii) $k=\pi / a \quad(K>G)$

$$
=\sqrt{\frac{2 K}{M}}, \quad \frac{B}{A}=1
$$

$$
=\sqrt{\frac{2 G}{M}}, \quad \frac{B}{A}=1
$$

Optical phonons, especially in ionic solids, is critical in electron scattering. This is called optical phonon because it is activated by the electric field as the ions with different charges move in the opposite direction under the electric field.

at $k=\pi d 4 a$

at $k=\pi / 2 a$

2C.3. Band Structure and DOS of Phonon

In real materials in 3D with p number of basis atoms, for each normal mode identified by \mathbf{k} in the $1^{\text {st }} \mathrm{BZ}$, the $3 p \times 3 p$ dynamical matrix (like K and G) is constructed. This results in $3 p$ normal modes, among which three are acoustic branches. Collecting the (ω, \mathbf{k}) gives the phonon band structure.

Dispersion curves or phonon band structure of fcc Pb . Since there is only one basis atom, only acoustic modes appear.

THz

(a)

In 3D, there are two transverse modes for each propagating direction of \mathbf{k}, they are indexed as TA_{1} and TA_{2}.

TA_{1} and TA_{2} are degenerate.
Figure 22.13
(a) Typical dispersion curves for the normal-mode frequencies in a monatomic Bravais lattice. The curves are for lead (face-centered cubic) and are plotted in a repeated-zone scheme along the edges of the shaded triangle shown in (b). Note that the two transverse branches are degenerate in the [100] direction. (After Brockhouse et al., Phys. Rev. 128, 1099 (1962).)
The phonon band structure can be measured to high precision using neutron scattering.

Phonon band of GaAs

Phonon Energy

$\approx 9 \mathrm{THz}$ or

Note that these modes are all independent.

13
Transverse acoustic (TA) Longitudinal acoustic (LA)

Phonon Density of States (DOS)

Like in electronic band structure, \boldsymbol{k} is discrete, rather than continuous, for finite crystals, which can be neatly handled by Born-von Karman boundary condition. The mathematical procedure is exactly the same, which shows that \boldsymbol{k} is discrete with a small spacing and the number of \boldsymbol{k} points in each band is exactly the same as the number of unit cell in the crystal. Like electronic DOS, this results in the phonon DOS. The total number of normal modes is $3 p N=3 \times($ basis atom $) \times($ number of unit cell) $=3 \times($ total number of atoms in solid) !

Phonon Density of States (DOS)
schematically

Mean thermal energy of normal modes
i) Semiclassical approach

At finite T, normal modes vibrate with certain amplitude and carry thermal energies. For a certain normal mode with the angular frequency of ω, the mean energy at T can be calculated using Boltzmann factor. The probability P_{n} for the oscillator in the $n^{\text {th }}$ quantum state is proportional to the Boltzmann factor: $P_{n} \propto \exp \left(-E_{n} / k T\right)$ where $E_{n}=n \hbar \omega$. (Here the zero-point energy is neglected.) From normalization condition,

$$
P_{n}=\frac{e^{-n \hbar \omega / k T}}{\sum_{m=0}^{\infty} e^{-m \hbar \omega / k T}}=\frac{e^{-n \hbar \omega / k T}}{\frac{1}{1-e^{-\hbar \omega / k T}}}=\left(1-e^{-\hbar \omega / k T}\right) e^{-n \hbar \omega / k T}
$$

The mean energy \bar{E} of the normal mode is then

$$
\begin{aligned}
& \bar{E}=\sum_{n=0}^{\infty} E_{n} P_{n}=\sum_{n=0}^{\infty} n \hbar \omega\left(1-e^{-\hbar \omega / k T}\right) e^{-n \hbar \omega / k T} \\
& =\left(1-e^{-\hbar \omega / k T}\right) \hbar \omega \sum_{n=0}^{\infty} n e^{-n \hbar \omega / k T}=\left(1-e^{-\hbar \omega / k T}\right) \hbar \omega \sum_{n=0}^{\infty} n\left(e^{-\hbar \omega / k T}\right)^{n} \\
& =\hbar \omega \frac{e^{-\hbar \omega / k T}}{\left(1-e^{-\hbar \omega / k T}\right)}=\frac{\hbar \omega}{e^{\hbar \omega / k T}-1}
\end{aligned}
$$

$$
n x_{n=0}^{n}=x_{n=1}^{n}=\frac{x}{(1 \quad x)^{2}}
$$

ii) Quantum approach

Another way is to consider a normal mode as the bosonic system and each energy quanta as one phonon particle. That is to say, a certain normal mode is a state that can be occupied by phonons. According to the Bose-Einstein statistics, the number of bosons occupying a state with the energy of E is

$$
f(E)=\frac{1}{e^{(E \quad) / k T} \quad 1}
$$

The chemical potential is zero for phonons or photons because the total number of particles are not conserved and so cannot be a constraint for $f(E)$. (Note that for electrons, μ or E_{F} was determined by the total number of electrons.) Therefore, the occupation number for the normal mode with the energy of $\hbar \omega$ is

$$
f(E)=\frac{1}{e^{\hbar \omega / k T}-1}
$$

The mean energy of the normal mode is then

$$
\bar{E}=E f(E)=\frac{\hbar \omega}{e^{\hbar \omega / k T}-1}
$$

which is the same as the previous result.
For acoustic modes near the zone center, the average energy is $k T$ which is equal to the classical equipartition theorem.

The total energy of phonons is given as follows:

$$
U_{L}=\int_{0}^{\omega_{\max }} \bar{E}(\omega) D_{\mathrm{ph}}(\omega) d \omega=\int_{0}^{\omega_{\max }} \frac{\hbar \omega}{e^{\hbar \omega / k T}-1} D_{\mathrm{ph}}(\omega) d \omega
$$

In Debye approximation, phonon DOS is simplified by assuming a linear dispersion $(\omega=v|\mathbf{k}|)$. This results in $D_{\mathrm{ph}}(\omega) \propto \omega^{2}$. (v is the effective sound velocity.) $\omega_{\max }$ for the Debye model is determined by the fact that the total number of modes up to $\omega_{\max }$ should be $3 \times$ (total number of atoms in solid). It is called the Debye frequency. The Debye temperature $\left(T_{\mathrm{D}}\right)$ is given by $T_{\mathrm{D}}=\hbar \omega_{\text {max }} / k_{\mathrm{B}}$. For detailed expression of the model, please refer to Kittel or Kasap.

Density of states for phonons in copper. The solid curve is deduced from experiments on neutron scattering. The broken curve is the threedimensional Debye approximation, scaled such that the areas under the two curves are the same. This requires that $\omega_{\max } \sim 4.5 \times 10^{13} \mathrm{rad} \mathrm{s}^{-1}$, or a Debye characteristic temperature $T_{D}=344 \mathrm{~K}$.

The v in the Debye model is the effective sound velocity. It is given by the average of three acoustic modes as follows:

$$
\frac{1}{3}=\frac{1}{3}\left(\frac{1}{3}+\frac{2}{L_{T}}\right)
$$

where v_{L} and v_{T} are sound velocities of longitudinal and transverse modes that are experimentally measured.

More correct Debye approximation
From Kittel

$$
\omega_{\max } \approx v\left(6 \pi^{2} N_{A} / V\right)^{1 / 3} \quad\left(N_{\mathrm{A}}: \text { total number of atoms }\right)
$$

and v is related to the hardness (Young's modulus). Therefore, T_{D} reflects the hardness.

By putting the analytic expression of $D_{\mathrm{ph}}(\omega)$ from the Debye model into the total energy formula and differentiating with respect to temperature gives the following formula for the Debye molar heat capacity.

Debye constant-volume molar heat capacity curve. The dependence of the molar heat capacity C_{m} on temperature with respect to the Debye temperature: C_{L} vs. T / T_{D}. For Si , $T_{D}=625 \mathrm{~K}$ so that at room temperature (300 $\mathrm{K}), T / T_{D}=0.48$ and C_{L} is only $0.81(3 \mathrm{R})$.

Table 4.5 Debye temperatures T_{D}, heat capacities, and thermal conductivities of selected elements

	Crystal														
	Ag	Be								$\mathbf{C u}$	Diamond	$\mathbf{G e}$	$\mathbf{H g}$	$\mathbf{S i}$	\mathbf{W}
$T_{D}(\mathrm{~K})^{*}$	215	1000	315	1860	360	100	625	310							
$C_{m}\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)^{\dagger}$	25.6	16.46	24.5	6.48	23.38	27.68	19.74	24.45							
$c_{s}\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}\right)^{\dagger}$	0.237	1.825	0.385	0.540	0.322	0.138	0.703	0.133							
$\kappa\left(\mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}\right)^{\dagger}$	429	183	385	1000	60	8.65	148	173							

C_{m} : molar heat capacity
c_{s} : specific heat capacity

