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 Lattice vibration or wave describes the vibrational motion of

atoms in a crystalline solid, in terms of a wave passing through

the atoms of the crystal, as they are displaced by their thermal

energy from their equilibrium positions.

 The thermal properties of solids and the electronic transport

are strongly related to these lattice waves.

 The behavior of lattice waves and the derivation of the suitable

wave equation can be based on the same classical mechanics

approach we have used for waves in a string.

 Many of the major characteristics of the lattice waves can be

derived from the consideration of a one dimensional crystal

lattice, which can be thought as a kind of discontinuous string.

SiC at 600 K
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We first consider vibrations associated with a one-dimensional crystal in which all the atoms have the same

mass (M) and the same atomic spacing of a. The spring constant, which reflects interatomic interaction, is

also a constant K. The displacement of nth atom from the equilibrium point is denoted as un(t).

Longitudinal wave

Transverse wave

Let’s consider the longitudinal vibration.  The force on the nth atom is affected by the stretch 

or compression of the two springs attached to it. 

This is the wave equation for the discrete atoms.  When a is very small, the left-hand side becomes 

the second derivative of the displacement and the above equation becomes the wave equation for the 

continuum. 

2C.1. 1D Monoatomic Lattice
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a ≈ 2 Å



This wave is called the acoustic mode and

neighboring atoms in acoustic waves move in

the same direction. When sound waves

travel in solid, they involve this type of

lattice oscillation near k = 0 (long

wavelength limit).

: dispersion relation for 

acoustic wave λ = ∞ λ = 2aλ = 2a

The largest wavelength 

for an infinite string.

All the atoms displaced

by the same amount in

in the same direction.

The shortest 

wavelength.
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Since the lattice spacing is a, the shortest possible wavelength is 2a, and any wavelength shorter

than this is unphysical in this system. This means that |k| bigger than π/a practically corresponds

to k within the 1st BZ (see below). This is also true for 2D and 3D systems.
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The velocity at which traveling waves carry energy is

the group velocity:

= sound velocity

The vgmax is obtained at the long wavelength limit, which 

corresponds to the sound wave.

|k|
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λ = 5a     or   k = 2p/5a

λ = 5a/6  or  k = 12p/5a

= 10p/5a + 2p/5a

Kittel  Chap. 4 

_

ψ(r) = eik·r u(r) 

Bloch Wave
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~300 m/s in air



The transverse mode can be described in similar approach.  The only difference is that atoms 

displace vertically, so the restoring force is weaker than for longitudinal modes.  In terms of spring 

constant, KL > KT (L: longitudinal mode, T: transverse mode).
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We have seen in the simple harmonic oscillators that the energy of an oscillator with the angular

frequency of ω is quantized as (n + 1/2)ħω (n = 0, 1, 2, ..).

The same is true for the vibration in solids: energy of each normal mode is quantized as (n + 1/2)ħω,

meaning that the energy-exchange with lattice waves occurs in integer multiples of ħω.

The quantized vibration is called phonon, similar to photon. And, the energy of phonon is

Ephonon = ħω = hν. The phonon momentum is ħk, similar to photon. However, the momentum

of the phonon is sometimes called a phonon crystal momentum because the lattice wave itself does

not have a real physical momentum.

Phonon behaves as if it had a momentum ħk in its interactions (with electrons or photons) inside the crystal, and is involved in the

momentum conversation law.

Phonon
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2C.2. 1D Diatomic Lattice

Next, we consider when the unit cell of the 1D lattice contains two basis atoms.  The two atoms 

could be of different kind or the same species with different left and right spring constants.  The 

two cases give qualitatively the same results so we will assume the latter case because it is slightly 

simpler. a
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For non-trivial solution, the determinant should be zero.

[Mw 2 - (K +G)]2 = K +Ge- ika
2

= K 2 +G2 + 2KGcoska

Normal mode

(Eigenvalue 

problem of 

dynamical matrix)
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w 2 =
K +G

M
±

1

M
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B
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Optical phonon

Acoustic phonon

Optical phonons, especially in ionic

solids, is critical in electron scattering.

This is called optical phonon because it

is activated by the electric field as the

ions with different charges move in the

opposite direction under the electric field.
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Fractional Ionic Character:

NaCl = 94%

GaAs = 31%

n ≈ 1013/s
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2C.3. Band Structure and DOS of Phonon

Dispersion curves or phonon band structure of fcc Pb.

Since there is only one basis atom, only acoustic 

modes appear.

TA1 and TA2 are degenerate.

In real 3D materials with p number of basis atoms, for each normal mode identified by k in the 1st BZ, the

3p×3p dynamical matrix (like K and G) is constructed. This results in 3p normal modes, among which

three are acoustic branches. Collecting the (ω, k) gives the phonon band structure.

THz

The phonon band structure can be measured to high precision using neutron inelastic scattering.

In 3D, there are two transverse 

modes for each propagating 

direction of k, they are indexed 

as TA1 and TA2. 
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FCC

3 Acoustic Branches

3(p-1) Optical Branches



Phonon spectrum of GaAs

Neutron scattering (♦) vs. Theory (⎯)

Phonon Band of GaAs   (2 basis atoms) Phonon Energy

≈ 9 THz or

≈ 0.037 eV

0

Note that these modes are all independent. 

Acoustic

Optical

Transverse acoustic (TA) Longitudinal acoustic (LA) Transverse optical (TO) Longitudinal optical (LO)

x

Courtesy by Kyuhyun Lee
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Phonon Density of States (DOS)

Like in the electronic band structure, k is discrete, rather than continuous, for finite crystals,

which can be neatly handled by the periodic boundary condition. The mathematical procedure is

exactly the same, which shows that k is discrete with a small spacing, and the number of k points in

each band is exactly the same as the number of unit cell in the crystal. Like electronic DOS, this

results in the phonon DOS. The total number of normal modes is 3pN = 3×(basis atom)×(number of

unit cell) = 3×(total number of atoms in solid)!

Measured by neutron diffraction

Phonon DOS Dph(ω)

ωmax

~ω2
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Electron Density of States (DOS) in Metal and Semiconductor

quantized k space

PPT 2A-8

PPT 2A-9

PPT 2B-2

Phonon Density of States (DOS) schematically

_  _  _  _  _  _  _  _  _  _  _  _  _



Mean thermal energy of normal modes

At finite T, normal modes vibrate with certain amplitude and carry thermal energies. For a certain 

normal mode with the angular frequency of ω, the mean energy at T can be calculated using 

Boltzmann factor. The probability Pn for the oscillator in the nth quantum state is proportional to 

the Boltzmann factor: Pn∝ exp(−En/kT) where En = nħω. (Here the zero-point energy is 

neglected.) From normalization condition, 
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2C.4. Heat Capacity of Lattice Vibrations

i) Semiclassical approach
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Another way is to consider a normal mode as the bosonic system and each energy quanta as one 

phonon particle. That is to say, a certain normal mode is a state that can be occupied by phonons. 

According to the Bose-Einstein statistics, the number of bosons occupying a state with the energy 

of E is

f (E) =
1

e(E-m )/kT -1

The chemical potential is zero for phonons or photons because the total number of particles are 

not conserved and so cannot be a constraint for f(E). (Note that for electrons, μ or EF was 

determined by the total number of electrons.) Therefore, the occupation number for the normal 

mode with the energy of ħω is

The mean energy of the normal mode is then

which is the same as the previous result.

ii) Quantum approach

For acoustic modes near the zone center, the average energy is kT which is equal to the classical 

equipartition theorem. 17
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Total energy of lattice vibration (phonons)

The total energy of phonons is given as follows:

In Debye approximation, phonon DOS is simplified by assuming a linear dispersion (ω = υ|k|). This 

results in  Dph(ω)∝ ω2. (υ is the effective sound velocity.) ωmax for the Debye model is determined 

by the fact that the total number of modes up to ωmax should be 3×(total number of atoms in solid). It 

is called the Debye frequency. The Debye temperature (TD) is given by TD = ħωmax/kB. For detailed 

expression of the model, please refer to Kittel or Kasap.

Density of states for phonons in copper. The solid 

curve is deduced from experiments on 

neutron scattering. The broken curve is the three-

dimensional Debye approximation, scaled such that 

the areas under the two curves are the same.

This requires that ωmax ~ 4.5×1013 rad s-1, or a 

Debye characteristic temperature TD = 344 K.
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Phonon DOS Dph(ω)
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The υ in the Debye model is the effective sound velocity. It is given by the average of 

three acoustic modes as follows:

1

u3
=

1

3

1

u
L

3
+

2

u
T

3

æ

è
ç

ö

ø
÷

where υL and υT are sound velocities of longitudinal and transverse modes that are 

experimentally measured.

and υ is related to the hardness (Young’s modulus). Therefore, 

TD reflects the hardness.

(NA: total number of atoms)

More correct Debye approximation

From Kittel
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By putting the analytic expression of Dph(ω) from the Debye model into the total energy formula 

and differentiating with respect to temperature gives the following formula for the Debye molar heat 

capacity.   

(at high T > TD)

(at low T)

Debye constant-volume molar heat capacity 

curve. The dependence of the molar heat 

capacity Cm on temperature with respect to 

the Debye temperature: CL vs. T/TD. For Si, 

TD = 625 K so that at room temperature (300 

K), T/TD = 0.48  and CL is only 0.81(3R).

CL = 3R

CL/3R
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Cm: molar heat capacity

cs: specific heat capacity
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