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The electrical conductivity of materials varies over an unusually wide range, from values of the

order of 106 ( cm)-1 for metals to less than 10-16 ( cm)-1 for insulators. Semiconductors usually

have a room temperature conductivity of the order of 1, although this value strongly depends on both

the temperature and purity of the semiconductor. The wide range of conductivity is because it is a

product of two quantities - carrier density and mobility (how fast the carrier can move).

Low carrier density

Low mobility

Medium carrier density

High mobility
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( cm)-1

Au             ~106 S/cm

graphite    ~104 S/cm

graphene  ~105 S/cm

TCO         ~104 S/cm

c-Si = 5.0×1022 atoms/cm3

c-Si 

μe = 1400 cm2/V∙s

μh =  500 cm2/V∙s



3A. Classical Theory (Bube Ch. 9 or Kasap Ch. 2)

3A.1. Drude Model and Ohm’s Law

3A.2. Temperature Dependence of Resistivity

3A.3. Matthiessens’s Rule

3A.4. Hall Effect

3A.5. Ionic Conduction

Electrical conduction is essentially about how electrons move under the external electromagnetic fields.

In principle, the phenomena can be described accurately by solving Schrödinger equation under the

external field. However, it is a practically impossible job.

Instead, we start with a simple but useful classical theory, and apply the results in understanding various

experiments. In 1900, Drude suggested a conductivity model in which electrons behave like a classical

free particle with certain position and momentum, which is called the Drude model. It was long before

the quantum mechanics was known, but surprisingly, his model well addressed several essential features

of electrical conduction even though the original model contained false assumptions. For example, he

thought that every particle is like gas atom (electron gas) with mean average energy of 3/2 kT.

Nevertheless, many assumptions in his theory were supported by quantum mechanics later. The Drue

model presented here is a modified version to be consistent with the quantum theory of solids.
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σ = neμ = ne2t / m*

free electron model



3A.1. Drude Model and Ohm’s Law

Electrons accelerate under the electrical bias. If there is no barrier, the velocity of the electron will

increase indefinitely, resulting in the infinite conductivity. Of course, this does not happen in real

materials (except for superconductors).

Electrons collide or scatter with some barriers. When electrons are in the solid in which atoms

are perfectly ordered, electrons do not scatter (this will be demonstrated later in the quantum

approach). When lattice vibrates from the equilibrium points (i.e., in the presence of phonons) or

lattice imperfections such as impurity exist, the electron will collide with them. This is the starting

point of the Drude model. The Drude model in this chapter mainly concerns nearly free-electron

metals, but the key concept is quite universal and applicable to semiconducting system as well.

Assumptions in the Drude model: 

• In the absence of external fields, conduction electron in the metal

moves randomly with a mean speed u: (On average, there is no

net motion of electrons: <u> = 0. Here the average is over

electrons in the system at a certain instance and/or over long time

for an electron.) As will be shown later, the conduction is mainly

mediated by electrons at the Fermi level, the mean speed of

conduction electrons is typically ~108 cm/s (Fermi velocity).

• The electrons are scattered (change of direction) by lattice

vibration or imperfections. (When atoms are periodic and static,

as in 0 K, there is no scattering). The scattering among electrons

is ignored.

• After collision, the velocity information is completely lost and electrons scatter in a random

direction with the mean speed of u. That is to say, one scattering event randomize the

velocity. This also means that the scattering is inelastic. 4
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Note that the scattering events occur in the stochastic (random) manner. The mean time between collisions or

scattering events is noted as τ, which is also called as relaxation time or collision time.

1/τ, the inverse of τ, corresponds to the mean frequency of collisions. ℓ = uτ is called the mean free path
(length), and indicates the length over which the electron does not experience any collision.

x

velocity of ith electron

initial velocity from the last collision

v
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the last collision

This approach is called the relaxation-time approximation.
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We then take the average over the whole electrons in the system.

v
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The remaining velocity vd is called the drift velocity. 

v
d

=
et

m
E = m

d
E

6

______
____ ≡υd = μE

→→

ui = initial velocity from the last collision

_



Probability that the collision occurs between t and t + dt:

dN = -N
1
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1/τ : mean probability per unit time that an electron is scattered. (mean frequency of collisions)

N(t): the number of unscattered electron at time t among N0 electrons in the beginning.

P(t): probability that the electron will have no collision during t seconds after collision.

Therefore, the average time for the next collision is τ. The average time for the previous 

collision is also τ.

dt
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If the whole length of the wire is L, the voltage between two ends is V = EL. The current is I = JA = σEA. V = ExL,   I = JxA = s ExA

®
V

I
=
L

As
= R  (Ohm's law)

R =
Lr

A
   (r : resistivity = 1 /s )

Therefore, all the electrons move with the same drift

velocity on average. Consider a wire lying along the

direction of the electric field with the cross-sectional area

of A and the free electron density of n. If the charge of

Δq passes through A for the time duration of Δt,

J =
Dq

ADt
=
enAv

d
Dt

ADt
= env

d
= enm

d
E = s E

s = enm
d

=
e2nt

m
:   conductivity

R is the resistance. The unit of R is Ohm (Ω) in SI unit. Since R is proportional to L and inverse to 

A, we can normalize it to obtain a quantity intrinsic to the material, which is called the resistivity ρ.

r = R
A

L
=

1

s
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Example: Consider fcc Cu at room temperature. The mass density (d) is 8.96 g cm-3 and atomic mass (Mat)

is 63.5 g mol-1. When the measured conductivity is σ = 5.9×105 Ω-1cm-1, obtain the following quantities

1. Electron Mobility

s = enmd

n =  carrier density = number of electrons per unit volume

 = number of Cu atoms per unit volume 

(Cu yields one conduction electron)

=
d

M at / NA
= 8.5 ´ 1022  electrons cm-3

md =
s

en
= 43.4 cm2 /V ×s

2. Collision Time and Mean Free Path

3. for E = 102 V/cm,  vd = ?

 

t =
mdme
e

= 2.5 ´10-14 s = 25 fs

u ~ 1.5 ´106  m/s® ℓ= 37 nm

ud = mdE = 43.4 cm2 / Vs ´100 V/cm = 4340 cm/s = 43.4 m/s much smaller than the Fermi velocity

Note: It is incorrect that all the free electrons contribute to conduction because

only electrons near the Fermi level do so. Surprisingly, the Drude formula for

the conductivity is exactly correct due to the proper cancellation. (You will see

this later. He should be a very lucky man.) Therefore, the quantities obtained in

the above are all valid.
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Cu: [Ar]3d104s1

← Fermi velocity

Ideal Gas at 1 atm + 300 K

v τ = 300 nm   separation = 3 nm

v = 500 m/s    τ = 1 ns (= 0.5 ns)

σ = neμ = ne2t / m*

υd = μE



3A.2. Temperature Dependence of Resistivity

The figure on the right illustrates scattering of an electron from 

the thermal vibrations of the atoms.  The electron travels a 

mean distance  ℓ = uτ between collisions.  Since the scattering 

cross-sectional area is S (in the volume), there must be at least 

one scatterer Ns (Suτ ) = 1, where Ns is the density of scattering 

centers which is on the order of approximately atomic density.  

Therefore,

1

4
Ma2w 2 =

1

2
kT  (equipartition theorem)

w : angular frequency = 2p f

® t µ
1

a2
µ

1

T
=
C

T

There are various sources of electron scattering which gives rise to resistivity. There are two contributions

that are dominant in most materials: lattice vibrations (phonons) and lattice imperfections. In this

section, we deal with the first contribution, lattice vibrations. The lattice atoms vibrate more energetically

at higher temperatures, producing the temperature-dependent component of conductivity or resistivity (σT

or ρT).

t =
1

SuN
s

In quantum picture, this corresponds to the

scattering by acoustic phonons that are easily

excited at room temperatures. The perturbing

potential is described by the deformation potential.
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This is called lattice-scattering-limited conductivity (resistivity).

Ex. If the temperature changes from 30ºC (summer) to -10ºC (winter), what is the 

change in the resistance of a pure-metal wire?

Rsummer - Rwinter

Rsummer

=
Tsummer - Twinter

Tsummer

=
(30 + 273) - (-10 + 273)

30 + 273
= 0.107 or 10.7 %

Keep in mind that the absolute temperature should be used.

m
d

=
e

m
t =

eC

mT

This results in the dependence of mobility on the temperature.

® r
T

=
1

s
T

=
1

enm
d

=
mT

e2nC
= AT
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Ex. The mean speed of electron carrier in Cu is 1.5×106 m/s. 

The vibrational frequency of Cu atoms at room T is 4×1012 s-1

(4 THz). Estimate the electron mobility [density (d) = 8.96 g 

cm-3, Mat = 63.56 g mol-1].

N s =
dNA

M at

=
(8.96 ´103  kg m-3)(6.02 ´1023mol-1)

63.56 ´ 10-3  kg mol-1
= 8.5 ´1028  m-3

S = pa2 =
2p kT

Mw 2
=

2p (1.38 ´10-23 J K-1)(300 K)

63.56 ´10-3  kg mol-1

6.022 ´1023  mol-1

æ

èç
ö

ø÷
(2p ´ 4 ´1012 s-1)2

= 3.9 ´ 10-22  m2   (a = 0.11 Ang)

t =
1

SuNs
=

1

(3.9 ´ 10-22  m2 )(1.5 ´ 106  m/s)(8.5 ´ 1028  m-3)
= 2.0 ´ 10-14  s

md =
et

me
= 35 cm2 / V ×s

s = enmd = (1.6 ´ 10-19 C)(8.5 ´ 1022 cm-3)(35 cm2 / Vs) = 4.8 ´ 105 W-1cm-1

This is in good agreement with the experimental value of σ = 5.9×105Ω-1cm-1. 

Cf. phonon band of Cu
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Low-Temperature Behavior of Resistivity

Ex) Cu

At low temperatures, the number of lattice vibrations are greatly suppressed due

to the quantum nature, resulting in much more rapid decrease with temperature.

(The equipartition theorem for zone-center acoustic modes does not hold.)

See Kasap pp 387 for explaining why ρ is proportional to T5 at low temperatures.
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~Figs. 9.2 &9.3 (Bube)

log-log scale

linear-linear scale
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3A.3. Mathiessens’s Rule (Bube p. 178)
Another major contribution to the resistivity is from the

defects/impurities, which breaks the translational symmetry of

crystal. The defects can be classified into point defects (vacancies,

interstitials, substitutional impurities) and extended defects

(dislocations and grain boundaries). The point defects induce

local variation of potential, which cause the electron scattering.

Let’s first assume there is one type of defects. The mean time

between the collisions with the defects is τI. Most discussions on the

phonon scattering equally apply to the impurity scattering if they

exist separately. However, the two scattering mechanisms
should exist simultaneously. Then how to add them? The inverse of

scattering time is the scattering frequency.

1/tT :  scattering frequency from thermal vibrations

1/t I :  scattering frequency from lattice imperfections

If the two scattering mechanisms are independent, the mean 

scattering rate is the sum of these two scattering frequency.

1

t
=

1

t T
+

1

t I

md =
e

me
t ®

1

md
=

1

mT
+

1

m I

This is called the Mathiessen’s rule.
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The total resistivity is equal to the sum of the resistivity

due to the lattice scattering and due to the impurities.=
1/τ = mean frequency of collision

σ = ne2t / m*

- Phonons

- Lattice Imperfections



r =
1

enmd
=

1

enmT
+

1

enm I
= rT + r I

For the mobility

In terms of resistivity,

m
d

=
e

m
t ®

1
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m

e

1
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m

e
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That is to say, the drift mobility is the harmonic average of lattice-scattering-limited drift mobility (μT) 

and the impurity-scattering-limited drift mobility (μI). 

Note that ρI is (approximately) temperature independent and depends on the defect

concentration. In general, there are several types of defects. The scattering with each defect

type is independent if the density is not too high. Therefore, one can apply to Matthiesen’s

rule, and total resistivity is the sum of resistivity caused by each defect type. The impurity

scattering remains even at low temperatures.

The concentration of equilibrium defects such as vacancies depends on the temperature.  Its 

concentrations are typically very low so do not affect the conductivity much.  Here we rather 

concern on the non-equilibrium defects.  
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 = ne e + p e h

Semiconductor or Electrolyte (cation/anion)
σ = neμ = ne2t / m*
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Two Scattering Mechanisms 
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Demonstration of Mathiessen’s law: resistivity of Cu

Typical temperature dependence of the resistivity of annealed and cold-worked (deformed)

copper containing various amounts of Ni in atomic percentage. The deformed samples contain

extended defects such as dislocations while they disappear in the annealed samples. The alloying

element substitutes Cu atoms randomly so they play as impurities and scattering centers.
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Lattice imperfections
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(a) Phase diagram of the Cu-Ni alloy system.

Above the liquidus line, only the liquid phase

exists. In the L + S region, the liquid (L) and

solid (S) phases coexist, whereas below the

solidus line, only the solid phase (a solid solution)

exists.

(b) The resistivity of the Cu-Ni alloy as a

function of Ni content (at. %) at room

temperature. It is peaked at approximately 1:1

composition where the randomness is maximized.
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Electrical resistivity vs. composition at room temperature in Cu-Au alloys. The quenched sample

(dashed curve) is obtained by quenching the liquid, and the Cu and Au atoms are randomly mixed.

When the quenched sample is annealed or the liquid is slowly cooled (solid curve), certain

compositions (Cu3Au and CuAu) result in an ordered crystalline structure in which the Cu and Au

atoms are positioned in an ordered fashion in the crystal and the scattering

effect is reduced.
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melting

Iron and nickel show strong

deviations from the linear

behavior due to the

electron-magnon scattering.

large residual resistivity for alloys: small T-dependence

Temperature Dependence of Resistivity in Various Metals
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3A.4. Hall Effect

eEH = eudxBz     Jx = enudx

® EH =
1

en

æ

èç
ö

ø÷
JxBz

® Hall coefficient: RH =
Ey

JxBz
= -

EH

JxBz
= -

1

en

s RH =
s

en
=
enmd
en

= md  (from Drude model) = mH : Hall mobility
Again, this classical result is confirmed by quantum mechanical approach (see A&M pp 235).

eEH = eudxBz     Jx = enudx

® EH =
1

en

æ
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JxBz

® Hall coefficient: RH =
Ey

JxBz
= -

EH

JxBz
= -

1

en

s RH =
s

en
=
enmd
en

= md  (from Drude model) = mH : Hall mobility

The Hall field can be measured by the voltmeter.  In addition, the current density Jx can be detected by 

the amperemeter.  The Hall coefficient is defined as
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RH = -1/nec

To measure the carrier concentration n experimentally.

TCO     Semiconductor     Metal     etc.



Hall coefficients are measured 

typically based on van der 

Pauw method

eEH = eudxBz     Jx = enudx

® EH =
1

en

æ

èç
ö

ø÷
JxBz

® Hall coefficient: RH =
Ey

JxBz
= -

EH

JxBz
= -

1

en

s RH =
s

en
=
enmd
en

= md  (from Drude model) = mH : Hall mobilityIn addition,

The theoretical values are obtained by applying the nominal valence charges to the formula and 

they are in fair agreement with the experimental data. The Hall mobility for Cu is similar to the 

drift mobility calculated previously. 

The positive values for Co, Be, and Zn indicates that the charge carrier is positively charged, 

which cannot be explained classically. We will see that the band structure can account for this 

anomaly. 
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3A.5. Ionic Conduction

In insulating ionic solids  where charge carriers are negligible, ions can move under the external bias, 

producing electric currents.

Possible contribution to the conductivity 

of ceramic and glass insulators.

(a) Possible mobile charges in a 

ceramic

(b) An Na+ ion in the glass diffuses 

and drifts in the direction of the 

field

Since the creation and diffusion of atoms are thermally activated processes,

s = s 0 exp -
Es

kT

æ

èç
ö

ø÷
    Es : activation energy for conductivity
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Electrolyte: liquid & solid
Ideal Electrolyte = 100% Ionic Conductivity
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Voltage & Current Measurements with Cross Section



Ex.  Eσ for conductivity of a soda-silicate glass (12% Na2O-88% SiO2)

Slope in lnσ vs. 1/T = -Eσ/kB → Eσ =0.71 eV

cf. Ea for diffusion of Na+ in glass: 0.65-0.75 eV

Conductivity for the ionic conduction exhibits a linear relationship between the log of conductivity and 1/T.

The slope in this plot corresponds to the activation energy for diffusion divided by the Boltzmann constant.
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Electrical Conductivity
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