3. Electrical Conduction in Solids

3A. Classical Theory
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The electrical conductivity of materials varies over an unusually wide range, from values of the
order of 10% (QQ cm)! for metals to less than 10-16 (Q cm)* for insulators. Semiconductors usually
have a room temperature conductivity of the order of 1, although this value strongly depends on both
the temperature and purity of the semiconductor. The wide range of conductivity is because it is a
product of two quantities - carrier density and mobility (how fast the carrier can move).
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3A C|aSSIC8.| Theory (BUbe Chap 9) (or Kasap Chap. 2)

3A.1. Drude Model and Ohm’s Law

3A.2. Temperature Dependence of Resistivity

3A.3. Matthiessens’s Rule

3A.4. Hall Effect

3A.5. lonic Conduction

Electrical conduction is essentially about how electrons move under the external electromagnetic fields.

In principle, the phenomena can be described accurately by solving Schrédinger equation under the
external field. However, it is a practically impossible job.

Instead, we start with a simple but useful classical theory, and apply the results in understanding various
experiments. In 1900, Drude suggested a conductivity model in which electrons behave like a classical
free particle with certain position and momentum, which is called the Drude model. It was long before
the guantum mechanics was known, but surprisingly, his model well addressed several essential features
of electrical conduction even though the original model contained false assumptions. For example, he
thought that every particle is like gas atom (electron gas) with mean average energy of 3/2 kT.
Nevertheless, many assumptions in his theory were supported by quantum mechanics later. The Drue
model presented here is a modified version to be consistent with the quantum theory of solids.
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3A.l. Drude Model and Ohm’s Law

Electrons accelerate under the electrical bias. If there is no barrier, the velocity of the electron will
increase indefinitely, resulting in the infinite conductivity. Of course, this does not happen in real
materials (except for superconductors).

Electrons collide or scatter with some barriers. When electrons are in the solid in which atoms
are perfectly ordered, electrons do not scatter. (This can be demonstrated later in the quantum
approach.) When lattice vibrates from the equilibrium points (i.e., in the presence of phonons) or
lattice imperfections such as impurity exist, the electron will collide with them. This is the starting
point of the Drude model. The Drude model in this chapter mainly concerns nearly free-electron
metals, but the key concept is quite universal and applicable to semiconducting system as well.

r\\ﬁ

Assumptions in the Drude model:
* In the absence of external fields, conduction electron in the metal
moves randomly with a mean speed u: (On average, there is no

net motion of electrons: <U> = (0. Here the average is over

electrons in the system at a certain instance and/or over long time
for an electron.) As will be shown later, the conduction is mainly

mediated by electrons at the Fermi level, the mean speed of

conduction electrons is typically ~108 cm/s (Fermi velocity). ‘
 The electrons are scattered (change of direction) by Ilattice Vlbratme : Cu' ions

vibration or imperfections. (When atoms are periodic and static, Bube Fig. 9.1

as in 0 K, there is no scattering.) The scattering among electrons

Is ignored.

« After collision, the velocity information is completely lost and electrons scatter in a random
direction with the mean speed of u. That is to say, one scattering event randomize the
velocity. This also means that the scattering is inelastic. 4




Note that the scattering events occur in the stochastic (random) manner. The mean time between collisions or

scattering events is noted as T, which is also called as relaxation time or collision time.

1/, the inverse of 7, corresponds to the frequency of collision. ¢ = ut is called the mean free path
(length), and indicates the length over which the electron does not experience any collision.

Next, we introduce an external electric field along —x direction (E = —EX). Electrons feel the force
F = eEX and accelerate along x direction. Note that the accelerated component is lost after
collision according to the assumption. Let’s consider a certain instance. The velocity of each
electron is given as follows:

o _ . —> X
initial velocity from the last collision
\ ) E
eEx
v.=u +—Dr
velocity of the it electron time elapsed from
the last collision ' I I
This approach is called the relaxation-time approximation. Bube Fig. 9.1



We then take the average over the whole electrons in the system.

(v,)=(u,)+ %<D€-> U; = initial velocity from the last collision

Since velocity after collision is random, (u;) is equal to zero. (At;) is the mean time after
collision and is equal to 1. (Drude mistakenly thought that this is 7/2 but the proof in the next
slide shows that it is 1.)

<Vl.>: eEtx —v

=v. X
d
m

d

t
v =—E=mE

L

The proportional coefficient u, is called the (drift) mobility. It determines the average speed
under the electric field and heavily affect the device speed. In general, mobility is a tensor; vq =
UE but we consider a isotropic case where i = ul.

The remaining velocity v, is called the drift velocity. 7 — E
d=H



(skip)

Proof of (At;) =T T or7/2

1/t : mean probability per unit time that an electron is scattered. (mean frequency of collisions)
N(t): the number of unscattered electron at time t among N, electrons in the beginning.

dN =- N(tl) dt = N =N, exp[- tij

% = exp(- tij =P(t)

P(t): probability that the electron will have no collision during t seconds after collision.

Probability that the collision occurs between t and t + dt:

P(t)- P(r+dz):exp(- tij : exp(_ M) _dt

—_ [~ —_ © 1 - th —
t—IOtQ(t)dt—IOFe dt =t

Therefore, the average time for the next collision is t. The average time for the previous
collision is also 7.



Flux J = amount of property through unit area & unit time

Therefore, all the electrons move with the same drift
velocity on average. Consider a wire lying along the
direction of the electric field with the cross-sectional area
of A and the free electron density of n. If the charge of
Aq passes through A for the time duration of At,

Dg _ endv, Dt
J = = =env,=enME=SE
m— ADr ADt
[
v, = CE= mE
e‘nt . m
S =enm= . conductivity from ppt 3A-6
*

If the whole length of the wire is L, the voltage between two ends is V = EL. The current is | = JA = ¢EA.
VL

— —=—=R (Ohm's law)
I As

R is the resistance. The unit of R is Ohm (€2) in SI unit. Since R is proportional to L and inverse to

A, we can normalize it to obtain a quantity intrinsic to the material, which is called the resistivity p.

r=R

B~
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Example: Consider fcc CuU at room temperature. The mass density (d) is 8.96 g cm and atomic mass (M,,)
is 63.5 g molt. When the measured conductivity is ¢ = 5.9x10° Qlcm?, obtain the following quantities

¢ = neu =ne’r/m’
Ud — ﬂE

1. Electron Mobility

S =enmm,
n = carrier density = number of electrons per unit volume
= number of Cu atoms per unit volume
(Cu yields one conduction electron) Cu: [Ar]3d104s?
d R 5 Ideal Gas at 1 atm + 300 K
=8.5" 10* electrons cm _ -
M,IN, vz =300 nm separation =3 nm
v=500m/s 7=1ns(=0.5ns)

m = > =43.4 cm?/Vss
en

2. Collision Time and Mean Eree Path t = 2™ = 25410 %5 = 25 fs
e

u~15x10° m/s— £= 37 nm <« Fermi velocity

3. for E=102V/cm, Vd_(Drift Velocity)
u,=mE=43.4cm?/Vs ~ 100 V/cm = 4340 cm/s = 43.4 m/s much smaller than the Fermi velocity

- Note: It is incorrect that all the free electrons contribute to conduction because
only electrons near the Fermi level do so. Surprisingly, the Drude formula for
the conductivity is exactly correct due to the proper cancellation.

- You will see this later. He should be a very lucky man. The quantities obtained
in the above are all valid.




3A.2. Temperature Dependence of Resistivity

There are various sources of electron scattering which gives rise to resistivity. There are two contributions
that are dominant in most materials: lattice vibrations (phonons) and lattice imperfections (or
Impurities). In this section, we deal with the first contribution, lattice vibrations. The lattice atoms

vibrate more energetically at higher temperatures, producing the temperature-dependent component of
conductivity or resistivity (ot Or pr).

R
S=ma

The figure on the right illustrates scattering of an electron from
the thermal vibrations of the atoms. The electron travels a
mean distance ¢ = ur between collisions. Since the scattering
cross-sectional area is S (in the volume), there must be at least
one scatterer Ns (Suz ) = 1, where N, is the density of scattering
centers which is approximately atomic density. Therefore:

1
SuN Electron
N

. : o : 1
Suppose that each atom vibrates with the vibrational amplitude of a, S « na?. Therefore, T « =

For simplicity, we assume that each atom is bound to its own harmonic oscillator (Einstein model).
. .1 . . :
Then the average kinetic energy is ZM a’w?, where M is the atomic mass and o is the angular

frequency of the oscillator. From the equipartition theorem, the mean kinetic energy is equal to

1
EkT' In quantum picture, this corresponds to the
1 _C scattering by acoustic phonons that are easily
- “y“f‘f excited at room temperatures. 0




¢ =neu =ne’z/m’
This results in the dependence of mobility on the temperature.

e eC 1 1 mT
m=—t=—: —>r,. = = =——=AT
m mT s, enm enC
This is called lattice-scattering-limited conductivity (resistivity). Toc 1/T

Ex. If the temperature changes from 309C (summer) to -109C (winter), what is the
change in the resistance of a pure-metal wire?

Rsummer - Rwinter — Tsummer - Twinter - (30 + 273) - (' 10+ 273)
R T. 30+ 273

summer summer

=0.107 or 10.7 %

Keep in mind that the absolute temperature should be used.
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Ex. The mean speed of electron carrier in Cu is 1.5x10°% m/s.
The vibrational frequency of Cu atoms at room T is 4x10%? s
(4 THz). Estimate the electron mobility [density (d) =8.96 g
cm3, Ma = 63.56 g mol].

Frequency (THz)
=
T

T X W X K T L K W

_dN, _ (8967 10° kg m~)(6.02 10%mol™) _ 8.5 10 m Cf. phonon band of Cu

M 63.56" 10°° kg mol*

s 1n-23 -1
s=pa? = 2PAT 2p(1-38 10 K )(300K) =39 102 m? (a=0.11 Ang)
Mw 63.56" 10" kg mol s A AAL2. 12
2p” 47 107°s)
6.022" 10% mol™*

1 1

t= = 1022 2 - 106 1028 m-3 =2.0710"s
SuN. (3.9 1002 m?)(1.5" 10° m/s)(8.5" 10% m™)

@:1:35 cm? / Vs
m

e

s =enm, =(1.6" 10°°C)(8.5" 10%cm™®)(35 cm®/Vs)=4.8" 10°W'cm™

This is in good agreement with the experimental value of ¢ = 5.9x10°Q-tcm™.

12
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Low-Temperature Behavior of Resistivity

Ex) Cu

1003

10 5

log-log scale Bube Figs. 9.2 & 9.3
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At low temperatures, the number of lattice vibrations are greatly suppressed due
to the quantum nature, resulting in much more rapid decrease with temperature.
(The equipartition theorem for zone-center acoustic modes does not hold.)

See Kasap pp 387 for explaining why p is proportional to T at low temperatures.
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3A.3. Mathiessens’s Rule (Bube p. 178, Chap. 9)

Another major contribution to the resistivity is from the
defects/impurities, which breaks the translational symmetry of

crystal. The defects can be classified into point defects (vacancies,

interstitials, substitutional impurities) and extended defects
(dislocations and grain boundaries). The defects induce local
variation of potential, which causes the electron scattering.

Let’s first assume there is one type of defects. The mean time
between the collisions with the defects is t,. Most discussions on the
phonon scattering equally apply to the impurity scattering if they
exist separately. However, the tw0 scattering mechanisms
should exist simultaneously. Then, how to add them? The
inverse of scattering time is the scattering frequency.

1/t : scattering frequency from thermal vibrations

- Phonons

oc=nelr/m"

Strained region by impurity exerts a
scattering force F = - d(PE) /dx

000000200

o.oooo:oo
-0 8990 000
olo- 0000w

1/¢,: scattering frequency from lattice imperfections - Lattice Imperfections

If the two scattering mechanisms are independent, the mean
scattering rate is the sum of these two scattering frequencies:

The total resistivity is equal to the sum of the resistivity

= 4 — —

due to the lattice scattering and

1.1 1
t t, t,

due to the lattice imperfections.

This is called the Mathiessen’s rule.

1/T = mean frequency of collision

14



Dfferent Scattering Mechanisms tlzti+t_
- e 1 ml m(1 1) 1 1 "' Bube (9.19)
For the mobility mM=—(—>—=——=—| —+—|=—+— .
m —m et e\t, t,) m m o = Nex = ne2z/m

That is to say, the drift mobility is the harmonic average of lattice-scattering-limited drift mobility (p)
and the impurity-scattering-limited drift mobility ().

In terms of TS‘S“V‘“I : Phonons & Lattice Imperfections
o e e PPT 3A-14

Note that p, is (approximately) temperature independent, and depends on the defect
concentration. In general, there are several types of defects. The scattering with each
defect type is independent if the density is not too high. Therefore, one can apply to
Matthiesen’s rule, and total resistivity is the sum of resistivity caused by each defect type.
The impurity scattering remains even at low temperatures.

The concentration of equilibrium defects such as vacancies depends on the temperature.
Its concentrations are typically very low, so do not affect the conductivity much. Here we are
rather concerned on the non-equilibrium defects.

Semiconductor or Electrolyte (cation/anion)

o =nlejue +plejun PPT 3A-8 Bube (9.5)

1 *
o =neu =ne‘zr/m



Resistivity by Lattice Imperfections

60 _
Cu-3.32%N1

Cu-2.16%Ni by Impurities

_..-=T Cu-1.12%Ni (Deformed)
[ Cu-1.12%Ni

Resistivity (n€2 m)

. -==100%Cu (Deformed)
A 100%Cu ((Annealed) by Defects

0 100 200 300
Temperature (K)

Typical temperature dependence of the resistivity of annealed and cold-worked
(deformed) copper containing various amounts of Ni in atomic percentage. The
deformed samples contain extended defects such as dislocations while they
disappear in the annealed samples. The alloying element substitutes Cu atoms
randomly so they play as impurities and scattering centers.

-Thu/Sep/30/21
-Class Exam = Tue/Oct/19/21
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Cu-Ni Alloys
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(@) Phase diagram of the Cu-Ni alloy system.
Above the liquidus line, only the liquid phase
exists. In the L + S region, the liquid (L) and
solid (S) phases coexist, whereas below the

solidus line, only the solid phase (a solid
solution) exists.

(b) The resistivity of the Cu-Ni alloy as a
function of Ni content (at. %) at room
temperature. It is peaked at approximately

1:1 composition where the randomness is
maximized.
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Electrical resistivity vs. composition at room temperature in Cu-Au alloys.
The quenched sample (dashed curve) is obtained by guenching the liquid,
and the Cu and Au atoms are randomly mixed.

Solid Solution

When the quenched sample is annealed or the liquid is slowly cooled
(solid curve), certain compositions (CusAu and CuAu) result in an
ordered crystalline structure in which the Cu and Au atoms are
positioned in an ordered fashion in the crystal and the scattering effect is
reduced. 18

Ordering




Temperature Dependence of Resistivity in Various Metals

large residual resistivity for alloys: small T-dependence
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3A.4. Hall Effect 1,0
d@ ® o
o Vi + o+ + o+ o+ £_>
In the Hall measurement, the device is under the ‘ ¢E,, 5>
uniform electric and magnetic fields that are L_ o 1 »E _L_
perpendicular to each other. Electrons experience the E, <_f
Lorentz force F = q(E + vXxB). The magnetic field II evB.
deflects the electron such that electrons accumulate at —— T @
the bottom and positive ions (stripped with electrons) © oy}
remain at the top. The charge separation continues 4 I [
until the Hall field En between them balances the ¥

Lorentz force by the magnetic field. The steady-state _ _
is then established and the electron flows along the eEH —dl, BZ Jx =end,
external field direction. Ey; for this stead-state 1

condition can be obtained as follows: — EH = (—) Jx BZ
en

The Hall field can be measured by the voltmeter. In addition, the current density J, can be detected by
the amperemeter. The Hall coefficient is defined as

— Hall coefficient: R, = T RH — -1/n6C

JB  JB  en

Xz

Again, this classical result is confirmed by quantum mechanical approach (see A&M pp 235).

To measure the carrier concentration N experimentally.
TCO, Semiconductor, Metal, etc.

. 20
6 = neu = ne’r/m



(skip)

s R,|= S ooy o m, (from Drude model) = m,: Hall mobility

en en

In addition,

Fu=Vip

Table 2.4 Hall coefficient and Hall mobility (uy = |oRy|) of selected metals

Ry (m3 A 5_1) Ry (m3 A~ S_l) Hu = |oRy|
Metal Valency (Experiment) x 107" (Theory) x 107" (em? V1
Na 1 —24.8 —24.6 50.8
K 1 —42.8 —47.0 57.9
Ag 1 -9.0 —-10.7 53.9
Cu 1 =54 -7.4 31.6
fﬂu ; —;i —lg-g fé‘; Hall coefficients are measured
g —8. = . .
Al 3 34 35 2.6 typically based on van der
Co 2 +36 Pauw method
Be 2 +24
Zn 2 +3.3

SOURCE: Hurd, C., The Hall Coefficient of Metals and Alloys, Plenum, New York, NY, 1972, along with other

various sources.
The theoretical values are obtained by applying the nominal valence charges to the formula and
they are in fair agreement with the experimental data. The Hall mobility for Cu is similar to the
drift mobility calculated previously.

The positive values for Co, Be, and Zn indicates that the charge carrier is positively charged,
which cannot be explained classically. We will see that the band structure can account for this
anomaly.
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3A.5. lonic Conduction Electrolyte: liquid & solid

Ideal Electrolyte = 100% lonic Conductivity

In insulating ionic solids where charge carriers are negligible, ions can move under the external bias,
producing electric currents.

E > E >

Vacancy aids the diffusion of positive ion o 0 Possible contribution to the conductivity
00060 ¢ o Sit* of ceramic and glass insulators.
DIC) G)/MG) ®0 (a) Possible mobile charges in a
0 T0®0® ceramic
BICYORXOXCKO Na* (b) An Na+ ion in the glass diffuses
70 0 @6‘6’ ® and drifts in the direction of the
QT@ Qe @T@ O field

Anion vacanc . ) .
Y Interstitial cation diffuses
acts as a donor

(a) (b)

Since the creation and diffusion of atoms are thermally activated processes,

S =5, exp(- ﬁj E, :activation energy for conductivity
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Voltage & Current Measurements with Cross Section

CUNBENY v
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SLAVE

TRACKING

This soda glass rod when heated under a torch becomes electrically conducting. It passes
4 mA when the voltage is 50 V (2 x 25 V); a resistance of 12.5 k! Ordinary soda glass at
room temperature is an insulator but can be quite conducting at sufficiently high temperatures.
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Electrical Conductivity by lonic Conduction

Conductivity for the ionic conduction exhibits a linear relationship between the log of conductivity and 1/T.
The slope in this plot corresponds to the activation energy for diffusion divided by the Boltzmann constant.

1x10-17 24%NayO-76%Si0H
] Asz gTes Si) 2Gey o glass .
ba0i] Arrhenius-Type
- X o
B 1x105] Temperature
= 107 Dependence
Z - 12%Na, 0-88%SiO, L
g 1x109 vae Activation Enthalpy
'-D - ~ o o
Lg) 1oL = Activation Energy
[x10713.
lxlo_ls \II|\\ I ‘ I LI | [ T ' I LI | LI | | I LI '

12 16 2 24 28 32 36 4
103/T (1/K)

Ex. Es for conductivity of a soda-silicate glass (12% Na20-88% SiO2)
Slope in Inc vs. 1/T = -Es/lkg — Ec=0.71 eV
cf. Ea for diffusion of Na+ in glass: 0.65-0.75 eV

Solid-State Electrolyte

for Li-lon Batteries 24




