
3B. Semiclassical Theory

3B.1. Dynamics of Bloch State

3B.2. Semiclassical Model

3B.3. Conduction within Semiclassical Model

In the previous section, we understood the electric properties of materials using the classical

picture or the modified Drude model. That is to say, the electron was regarded as a point

particle, and the underlying lattice structure was almost ignored except that the lattice

vibrations (phonon) scatter electrons. This classical picture explained many observations

successfully but fails in some cases, most notably, the hole carriers in the Hall effect.

This requires the improvement in the theory. You may recall that in Chap. 2B, we learned

about the band structure as a result of interactions between electrons and the periodic

potential. The consideration of band structure should be a next step to go. Therefore, the

free electron in the Drude model is replaced by the Bloch electron, and we will discuss on

the dynamics of Bloch electrons between collisions.
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en,k &  ψn,k(r) = eik·r un,k(r)

σ = neμ = ne2t / m*

free electron model

_  _  _  _  _  _  _  _  _  _  _  _  _  _

(Ashcroft/Mermin Chap. 12)



3B.1. Dynamics of Bloch States

The Bloch state is identified by the two quantum number – band index n and Bloch vector k. For free

electrons, ħk is the particle momentum. In crystal, ħk is called the “crystal momentum.” The crystal

momentum appears in the conservation law like momentum conservation. However, it is not the actual

momentum (mass × velocity). In order to understand the real motion of Bloch states, one needs to

construct a wave packet by multiplying an envelope function such as Gaussian with the Bloch state ψn,k.

Demonstration with simulation shows that i) a Bloch state slides through the periodic potential without any

scattering, and ii) the velocity is related to the band slope at k. It can be shown that the mean velocity

of the Bloch state is given by (proof in Appendix E of A&M):

This looks similar to the velocity of free particle:

Unlike free electron, the mean velocity is 

only obtained through the derivative.

Bube Eq. (7.21)
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The electron described by Aei(kx−ωt) is dispersed over the whole space.  If there is one electron 

moving in free space, such a form of wave function may not be appropriate.  Rather, a “wave packet” 

with the spread of ~10 nm would best represent such an electron.  The figure in the below shows the 

wave packet with the Gaussian envelope.  This state is fairly localized and has a relatively well 

defined wavelength although it is not the exact energy eigenstate. 

You can observe that the envelope moves with a velocity that is faster than the phase velocity. 

The speed of such a localized wave packet is the group velocity and it is given by the 

following formula.

This is exactly the same as the classical velocity!  (In the case of photon, ω = ck and so vp = vg = c)

Suppose that the initial wave function is the Gaussian 

wave packet:

The time evolution of the wave function can be 

obtained by solving the time-dependent Schrödinger 

equation (numerically or analytically). It is 

visualized by MATLAB file : wavepacket.m 

vg

vp

The group velocity is the speed at which energy and charge actually travels through the medium.
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3B.2. Semiclassical Model

Next, we discuss how the Bloch states move under the external electric and/or magnetic fields when there

is no scattering (or between collisions). For the Bloch electron at (n, k) under external field that varies

much longer than the lattice constant with its magnitude not too large, one can describe the motion of the

corresponding wave packet within the semiclassical model.

In the semiclassical model, the slowly varying fields

give rise to ordinary classical forces in an equation

of motion describing the evolution of the position

and wavevector of the wave packet. The difference

from the free electrons is that the periodic potential

varies over the lengths that are small compared

with the spread of the wave packet, and therefore

cannot be treated classically. Thus the semiclassical

model is only partially classical:

- the applied fields are treated classically, but

- the periodic potential of the ions is not.
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The semiclassical model predicts how, in the absence of collisions, the position r and Bloch vector k of

each electron evolve in the presence of externally applied electric and magnetic fields. Theory consists

of the two following statements:

According to the semiclassical theory, the motion of an electron is described

by considering its approximate positions in both r and k spaces

simultaneously. Note that if the electric field varies spatially, the electric

field at the new position should be provided in evaluating the equation of

motion in k-space.

This is called the semiclassical theory because 

- electrons are classically treated with momentum and effective mass

while

- the effective mass and temporal change of crystal momentum are 

conditioned by the band structure. 

1.  The band index n is a constant of the motion. The semiclassical model 

ignores the possibility of “interband transitions”.

2.  The time evolution of the position and wave vector of an electron with 

band index n are determined by the equation of motion:

in r space

in k space
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r space

equivalent

1D with constant E field along the –x direction 

Re(ψ)

“Zener-Bloch oscillation”
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Limits of Semiclassical Model

The semiclassical model forbids interband transitions, and therefore requires that the energy

of any electron remains confined within the limits of the given band. There must be some minimum

strength to a periodic potential before the semiclassical model can be applied. We here state the

conditions without proof.

At a given point in k-space, the semiclassical equations will be valid for electrons in the nth band

provided that the amplitudes of the slowly varying external electric and magnetic fields satisfy:

If the first (second) condition is violated, it is 

called the electric (magnetic) breakdown.

a: lattice parameter and ωc: cyclotron frequency (∝B).
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These conditions are satisfied in most electrical devices with reasonable field strength.

For optical properties, the photon energy of visible lights is bigger than the bandgap of 

semiconductors.
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3B.3. Conduction within Semiclassical Theory
(For now, we do not consider collisions. This means that the discussion below applies to Bloch

electrons between collisions.)

According to the semiclassical theory, every filled band does not carry any net current without external

field. This is because the bands contain both left-moving and right-moving electrons with net velocity

equal to zero. Under the external field, each Bloch state moves along the –E direction. Because of

periodic boundary condition, the net current is still zero. Therefore, insulators that have only filled bands

are not conducting, while partially filled metallic system can conduct electrons. This also explains

why the filled d electrons in Cu do not contribute to any current.

Insulator Metal

More electrons in the right-moving states.

k k

E = 0   Inet = 0 E < 0 Inet = 0 E = 0   Inet = 0 E < 0 Inet <  0

k k

Occupied

Empty
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In semiconductors, small number

of electrons occupy the conduction

bottom or small number of empty

states (holes) are present at the

valence top. Since the bands are

not fully occupied, these states can

give rise to net currents along the

electric field. However, the spatial

movement is opposite in the two

cases. That is to say, hole moves

spatially along the electric field

(not against) like positive charge.
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Holes (≈ 1023 Electrons with Several Vacancies)

Electron vs. Hole

Kittel Chap. 8
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Effective Mass

Let’s assume a constant electric field E is applied to 1D solid. 

Therefore, the acceleration of a Bloch state can be described classically by the effective mass. This

is particularly useful for electrons at the bandedge (top or bottom) where the band is

parabolic and so the effective mass is constant over k. As long as the electrons (or holes)

are confined in this region, they behave like classical particles.
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In 3D, the effective mass is a tensorial form:
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Band dispersions near the edges are

well approximated by parabolas

with coefficients given by the

effective mass.
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Scattering in Quantum Mechanics

In quantum mechanics, the change of states, for instance acceleration, is described by the 

electronic transitions between the two states.  The rate of transition (transition rate) Γ between the 

initial state (i) and the final state (f) is calculated by the Fermi golden rule:

Transition rate per unit time 

from initial to final (= 1/τ).
Matrix element of the perturbation H′ between 

the final and initial states (= ∫ ψf* H′ ψi )

Density of final states

H′ is related to scattering mechanism such as lattice vibration, impurity,.. etc. If it is the lattice vibration, the

matrix element can be understood in terms of (inelastic) collision between electrons and phonons.

*** During the collision, energy and crystal momentum conservations are always satisfied.

Phonon Absorption Phonon Emissionħk' = ħk + ħq ħk' = ħk − ħq

k',Ek'
k',Ek'

Electron

Phonon
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Energy and crystal momentum conservations 

Ashcroft/Mermin Appendix M:  

The Hamiltonian of a crystal with a symmetry leads to the conservation of crystal momentum, and leads to the 

conservation of the total real momentum of the ions and electrons.

f          i i f          i f



Electron Band structure Phonon Band Structure 
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Phonon energy is negligible while the momentum transfer is significant.

The same 1st BZ
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h = 2 - 3 eV

Lattice Constant a ≈ 2 Å

EF



When τ is 25 fs and the external field is 100 V/cm, the displacement in k-space (Δk) is:

Electronic Transition by Scattering
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Transition by lattice scattering

Δk

1st BZ 1st BZ

Fermi surface

Only electrons near

the Fermi surface

contributes to the net

current.

Therefore, the net conduction is essentially limited to the electrons at the Fermi level.  

k (Å −1)

The energy-loss by

the lattice scattering

results in the Joule

heating.

Zone center
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Conduction in Metals – Derivation of Drude Model from Quantum Theory

J = eDnv
F

= eD(E
F

)DEv
F

= e2v
F

2t D(E
F

)E

®s = e2v
F

2t D(E
F

)

This is correct for 1D system.  In 3D crystal, because of the spherical geometry, this is modified with a factor of 1/3:

s =
1

3
e2v

F

2t D(E
F

)

s =
ne2t

m

Using the previous results on the density of states, one can show that

which is exactly the same as that of the classical model!

Δk
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Both electrons and holes experience the

Lorentz force in the same direction and

pile up at the bottom

(See Kasap for the derivation)RH =
pmh

2 - nme

2

e pmh + nme( )
2

=
p - nb2

e(p + nb)2
  (b =

me

mh

)

When both electrons and holes coexist like in divalent metals, the Hall coefficient is 

obtained by considering the dynamics of both carrier types.
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*** From the conventional Hall measurements, we cannot separate the values of n and p.

(carrier concentrations n and p)

Experiments: Hall Measurements Metal or Semiconductor



Ne = 1

Li, Na, or K

Ne = 2

For divalent or trivalent metals, the Fermi surface extends beyond 1st BZ. 

Electrons in the 1st BZ Electrons in the 2nd BZ

“Hole pocket”

The electrons in each BZ move only 

within the same BZ according to the 

semiclassical model. This means that 

electrons near the Fermi surface move 

quite differently  in 1st and 2nd BZ.
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EB

E
B

e

+ + + + + + +

E
B

Electrons at the hole 

pocket effectively 

behaves like positive 

charge carriers 

Hall effects within the semiclassical model

Ne = 1 or 2nd BZ of divalent metals

− − − − − − − 

1st BZ of divalent metals

EB

e

− − − − − − − 

+ + + + + + +

Hall field Hall field

k-space

r-space
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~Ñ
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n
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: velocity in r-space

: shift in k-

space due to B

19

(skip)


